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Abstract: This study examined the effects of different modes of augmented visual feedback of joint
kinematics on the emerging joint moment patterns during the two-legged squat maneuver. Training
with augmented visual feedback supports improved kinematic performance of maneuvers related
to sports or daily activities. Despite being representative of intrinsic motor actions, joint moments
are not traditionally evaluated with kinematic feedback training. Furthermore, stabilizing joint
moment patterns with physical training is beneficial to rehabilitating joint-level function (e.g., targeted
strengthening and conditioning of muscles articulating that joint). Participants were presented with
different modes of augmented visual feedback to track a target squat-motion trajectory. The feedback
modes varied along features of complexity (i.e., number of segment trajectories shown) and body
representation (i.e., trajectories shown as sinusoids versus dynamic stick-figure avatars). Our results
indicated that mean values and variability (trial-to-trial standard deviations) of joint moments are
significantly (p < 0.05) altered depending on the visual feedback features being applied, the specific
joint (ankle, knee, hip), and the squat movement phase (early, middle, or late time window). This
study should incentivize more optimal delivery of visual guidance during rehabilitative training with
computerized interfaces (e.g., virtual reality).
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1. Introduction

Augmented sensory feedback for motion guidance can improve functional perfor-
mance during and after training [1] associated with rehabilitation [2]. Augmented visual
feedback about one’s movements may be provided through various tools, from simple
mirrors [3] to highly customizable computerized interfaces (e.g., large-screen displays [4,5]
and headsets [6]). Such feedback guidance can improve movement techniques [7] for motor
rehabilitation [4,5,8] and minimize the risk of re-injury [9,10]. Augmented feedback can be
used to acquire complex motor skills in sports [11] or play instruments [12] for populations
that are healthy, diseased, or athletic [13] In addition, augmented cues through virtual
reality can cognitively engage and motivate persons to participate in more therapeutic
activities [14]. Thus, there is a broad scope of applications and tools in which augmented
visual feedback of motion can be leveraged to support better motor performance. However,
the impact of augmented visual feedback about joint kinematics upon the intrinsic joint
kinetics (e.g., joint moments) that create the observed motions is largely unknown. While
internal kinetics and observed motions are naturally coupled through bodily dynamics [15],
their relative variabilities can diverge with complex multi-segment movements. Even for
stereotypical functions like walking, variability in joint kinetics can increase as a com-
pensatory mechanism to maintain target kinematic profiles pending the functional role
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and articulating muscles of that joint [16]. Thus, augmented feedback about kinematics
may also uniquely impact the underlying joint kinetics during the training of locomotor
function [17–19].

While joint kinetics can be generally sensitive to external cueing [20], it is unclear if
they respond uniquely to particular features in augmented feedback about joint kinematics.
Features are the defining characteristics of how the feedback is being provided. These
feedback features include what information is provided, how much, and how often it is de-
livered. Suppose joint kinetics have specific dependencies on feedback features. In that case,
we may better consider how we present cues for typically kinematics-focused guidance
paradigms [10,21] in rehabilitation to generate more stable patterns in the underlying joint
kinetics. The specific features of feedback cues for joint kinematics can then be considered
in optimizing task-specific motor training through improved inter-limb coordination [22]
and efficiency [16] of joint kinetics. Most importantly, regarding motor rehabilitation, stable
and consistent joint kinetic function during physical training may facilitate better outcomes
in targeting increases in function and stability (e.g., hip muscle strengthening, recovery
after ligament injury) at particular joints [23,24] or reducing the motor variability associated
with systemic dysfunction [25,26] (e.g., multiple sclerosis, arthritis).

Understanding how feature-level variations in augmented feedback typically about
kinematics [21] can impact joint kinetics may aid in designing rehabilitative training
paradigms for broadly improving joint function [27]. The features in augmented feed-
back of kinematics are temporal and spatial. Spatial features include the provision of
target motion trajectories across individual joints and body segments in relative positions
to one another. Temporal features include providing guidance feedback continuously or
intermittently [5,28,29]. The associated effects of these features should be assessed through
changes in motor output across phases of the movement [30]. Furthermore, features in
feedback to guide body movements can reflect themselves in variations of complexity
and level of body representation. Complexity denotes how much information about the
movement is provided. While more information with feedback can theoretically support
more accuracy for complex movements [31], it can risk cognitive overloading that worsens
performance [1]. Body representation is an essential consideration for movement rehabil-
itation protocols, especially in the context of visual feedback [32]. Congruency in body
representation with feedback is crucial to optimally modulate the reliance on external
cues [32,33] and provide clarity of self-recognition in making said movements [34]. Of
particular interest is understanding how functional measures with motor rehabilitation are
likely to respond to these features. Key functional measures include joint moment means,
as an indicator of skeletal muscle function [35] and joint structural health [36], and joint
moment variability, as a benchmark for gains in functional capabilities [37–39].

Our laboratory has previously investigated the kinematic performance of the two-
legged squat under the guidance of various visual feedback modes [4,5]. We define a
mode as the specific combination of feedback features applied with training guidance.
Such feedback features included complexity and level of body representation of target
trajectories of joint kinematics during the squat. Kinematic performance was measured as
accuracy (minimal error) and consistency (minimal standard deviation of error) in tracking
visual cues expressing target segmental kinematics. The feedback feature of complexity was
increased when participants were presented with more body segment trajectories to match
concurrently. We also observed improved performance with more complex feedback [4]
when coupled with the feature of greater body representation, i.e., joint motion trajectories
shown through dynamic stick figure compared to being expressed more abstractly through
sinusoids to be traced. We posited that the stick figure facilitated improved performance
through a greater sense of embodiment [40].

In this study, we applied inverse dynamics [41] retrospectively to the kinematic (joint
angles) and external force (ground reactions) data to compute and evaluate changes in
joint moments with various modes of augmented visual feedback to guide squat kine-
matics. We report results for flexion-extension moments at the hip, knee, and ankle joints
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produced under four distinct modes of visual feedback. Ultimately, we examined features
in augmented visual feedback with clear joint-level implications, i.e., complexity (num-
ber of joints displayed concurrently) and body representation (joint kinematics presented
as sinusoids or explicitly as stick-figure joints). We posited that these feedback features
would significantly and uniquely affect moments at the hip, knee, and ankle joints, given
their unique functional roles in load-bearing and balance for the two-legged squat [42,43].
Across feedback modes, we analyzed shifts in mean joint moment values and changes in
joint moment variability. With our experimental design, we mainly tested the following
hypotheses: (1) Features of visual feedback will significantly affect joint moment mean and
variability values; (2) More complex feedback increases joint moment variability; (3) In-
creased body representation in the feedback reduces joint moment variability. Furthermore,
we examined how joint moment effects due to visual feedback features change across
specific joints (spatial) and time phases (temporal) of the squat movement. As such, we
conduct two-factor analyses at three levels of increasing specificity: (1) across all joints and
time phases in the aggregate (overall), (2) across individual joints, and (3) across individual
time phases (i.e., early, middle/target, late) of the movement for each joint.

2. Materials and Methods
2.1. Participants

Eighteen able-bodied participants (12 males: 20.4 ± 0.9 years in age, 179 ± 5.0 cm
in height, 74.1 ± 7.9 kg in weight. 6 females: 19.7 ± 1.1 years in age, 166 ± 5.1 cm in
height, 61.6 ± 7.6 kg in weight) completed this study approved by the local (Stevens
Institute of Technology) Institutional Review Board. All participants signed informed
consent to participate voluntarily, and none reported any injury to the lower body that
would adversely affect their ability to perform the squat maneuver. A power analysis
with pilot data indicated twelve participants would generate significant differences across
visual feedback modes for alpha equal to 0.05 at 90% power (Cohen’s effect size of 0.5).
Participants were expected to be able-bodied with relatively little (minimal to no weekly
exercising) experience with the squat maneuver. Varsity athletes were excluded due to
their advanced skill with physical training exercises, as they may be more insensitive to
external cues while already performing at exceptionally high levels. Other exclusion criteria
included (1) Previous surgery to any lower extremity or of the spine/neck; (2) Chronic pain
of any lower extremity or the back/neck within the last three months; (3) A musculoskeletal
or neurological disease that affects normal gait or standing function; (4) Sub-normal vision
that is not correctable; (5) Any cardiovascular issues that make squat exercises difficult;
(6) Inability to regularly squat to the maximum squat depth of 70 degrees (angle between
the thigh and vertical). The squat depth of 70 degrees is short of a parallel squat (90 degrees)
or full squat [44].

2.2. Experimental Task

Visual feedback was provided to guide the performance of a 4-s squat cycle, which
begins and returns to an erect standing position. Participants controlled traces or avatars
with their movements to match a target movement trajectory displayed over a 4-s time
course, thereby naturally adhering participants to the 4-s squat cycle. Any temporal
or spatial deviations similarly manifested in errors (i.e., differences between actual and
target movement trajectories). The target movement trajectory for each body segment
(shank, thigh, and torso) was a symmetric sinusoid representing flexion-extension angular
positions during the squat cycle projected to the sagittal plane. The sagittal plane is of
primary interest since squat kinematics are most prevalent in this plane [45]. For bilateral
body segments (i.e., shank, thigh), the left and right side segments were averaged for
projection due to the relatively high degree of symmetry observed for squatting by healthy
persons [46]. The maximum squat depth of the target trajectory occurred at the cycle
midpoint (i.e., squat cycle time = 2 s). Ideally, the maximum squat depth occurs at the
temporal midpoint between when the participant is at the initial erect standing position
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(at time = 0 s) and return to the erect standing position to complete the squat cycle (at
time = 4 s). Angular motions of all three segments were tracked utilizing marker-based
motion capture. These motions were displayed against target trajectories as visual feedback
to participants in real time.

As described below (abstract versus representative modes), the sinusoidal motion
trajectories of body segments are displayed explicitly as sinusoidal traces or stick-figure
avatars undergoing the same angular motions. The participant controls the up-down
position for sinusoidal trace tracking from their squat depth. In contrast, the left-right
position of the participant trace moves at a constant speed across the displayed screen for
four seconds, again encouraging participants to perform approximately a four-second squat
cycle. The target trajectories are displayed as a fixed sinusoid that participants attempt
to track with their moving trace. For stick-figure tracking, both the target and participant
trajectories are dynamic and superimposed on top of each other, with participants tasked
to follow the target segment trajectories, whose motions again last precisely four seconds.

The primary performance objective for each participant was to move the thigh seg-
ment’s angular position to match the target trajectory. The thigh segment was chosen as
the primary segment of interest for performance tracking since it undergoes the largest
angular changes in dictating knee joint dynamics, the most common rehabilitation target
with squat training [47].

2.3. Experimental Set-Up for Data Collection

As shown in Figure 1A, data collected with each trial included marker-based motion
capture (Optitrack®, NaturalPoint Inc., Corvalis, OR, USA) of major body segments and
vertical ground reaction forces measured from wireless force-sensitive resistors (FSRs) at-
tached to a standing board. Restricting our ground reaction measures to vertically-directed
loads is justified since the mean horizontal ground reaction forces (anterior-posterior,
medial-lateral) are <2% body weight for squatting [48]. Nine wide-angle infrared cameras
(Prime 17W by Optitrack®) were used for 3-D motion capture of marker clusters affixed to
each participant’s shank, thigh, and torso body segments. Each marker cluster comprised
three non-collinear retroreflective markers placed on a foam board platform. These marker
platforms were then attached with skin-safe adhesive tape. A platform was placed on
the lateral side of each shank, positioned equally between the medial malleolus and the
middle of the knee joint center of rotation. The platform on each thigh was positioned
equally between the lateral epicondyle (knee) and the greater trochanter (hip). A single
torso platform, with four markers, was centrally placed between the shoulder blades.

Each platform’s orientation was measured from a global reference frame. The initial
setpoint (zero-angle) for orientation was calibrated to coincide with each participant’s erect
standing position. Marker position data were streamed in real-time using motion capture
software (Version 2.02, Motive by Optitrack®) and processed at 30 frames per second in
MATLAB® (Mathworks Inc., Natick, MA, USA) using a desktop computer (Dell Intel®

Xeon® CPU E5-1660 v4 @ 3.20 GHz, Round Rock, TX, USA). Visual feedback cues were
displayed on a big-screen television (25.8′′ H × 44.5′′ W, TCL Model:50FS3800). Using
sensors from a wireless data acquisition system (Trigno by Delsys), FSR data were collected
for estimating the standing center of pressure. Four individual FSR sensors were attached
to a solid (wood) board on which subjects would stand. Sensor locations coincided with
each subject’s specific foot pressure points (four total for each foot: heel, big toe, 1st
metatarsal, 5th metatarsal). FSR data were initially sampled at 1925 Hz (system default)
and then re-sampled and synchronized offline to match the 30 Hz real-time display rate of
motion data.
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Figure 1. (A) Participant undergoes squat protocol while motion and ground reaction forces are
measured. (B) Visual feedback modes defined according to two primary features of complexity
(‘simple’ or ‘complex’) and representation (‘abstract’ or ‘representative’). Feedback complexity entails
tracking one segment (simple) versus three segments (complex). Representation entails observing
feedback explicitly as sinusoids (abstract) versus a stick figure (representative).
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2.4. General Testing Procedure and Visual Feedback Modes

Each participant completed ten consecutive trials for four visual feedback modes. A
block of ten training trials, in which concurrent (i.e., while squatting) feedback of actual and
target motions was provided. Before each block of official training trials, participants under-
went one practice trial and up to three (based on participant preference) to accommodate
themselves to the visual mode. Each trial entailed the execution of a single squat repetition.
Each mode was defined according to the unique pairing of two primary features (Figure 1B):
(1) complexity (simple versus complex) and (2) representation (abstract versus representa-
tive). Simple visual feedback only presented spatial information of the participant’s thigh
position as a single target to track. Complex visual feedback concurrently displayed the
spatial position of the participant’s shank, thigh, and torso segments as three separate
targets. Each target trajectory was a single-cycle sinusoid of a segment angular position.
The participant was instructed to track all three body segment targets but was aware that
the thigh was primarily important for performance.

With abstract feedback, the target trajectory to be traced was displayed on the screen
as a sinusoid, while the participant’s actual trajectory moved across the target trajectory
with time. Example traces for the time-progressive display of visual feedback are shown in
Figure 2A. With representative feedback, the target and the actual motions were displayed
as superimposed stick figures (i.e., motion-tracked segments connected and presumed
joint locations) moving in the sagittal plane. As such, the defining feature pair for each
mode was: simple-abstract (SA), simple-representative (SR), complex-abstract (CA), and
complex-representative (CR). The four visual feedback modes were presented in random
order to each participant.

For each mode, feedback was presented intermittently, as described in Sanford et al. [5].
The target trajectory disappeared when tracking errors (i.e., the difference between target
and actual motions) were less than 5% of a pre-determined mean error. This mean error
value was determined from a handful of practice trials (three minimum, up to five pending
participant preference) to familiarize participants with the experimental procedures before
collecting official data. The target trajectory progressively became more opaque with
greater exceeding of this 5% error band to acclimate the participant smoothly to changes in
the feedback. As discussed in Sanford et al. [5], this task with associated feedback modes
lends itself to the guidance hypothesis whereby intermittent feedback as a function of
performance function will promote faster task learning [49].

2.5. Data Analysis

Computation of Joint Angles and Ground Reaction Forces: Angular positions for
flexion-extension of the hip, knee, and ankle joints were approximated according to relative
changes in the orientation of adjacent body segments. For example, knee joint angles
were derived from the angular differences between the thigh and shank segments. Each
marker cluster represented a 3D coordinate system assumed to be at a neutral orientation
at the erect standing position at the start of each trial. Joint angles for the hips, knees, and
ankles were computed based on conventions for anatomical joint rotations computed from
adjacent coordinate systems described by Wu et al. [50]. Flexion-extension angles were the
primary rotation since participants observed their motions projected onto the sagittal plane
where flexion-extension dynamics are dominant [51]. Ground reaction force magnitude and
location (i.e., the center of pressure) were estimated for each foot according to the relative
voltage readings of the FSR sensors. Each FSR location was registered relative to the global
reference frame of the motion capture system using digitization procedures described in
Nataraj et al. [52]. When calibrating FSRs (0 to 50 lbs), the estimated resolution for force
measures was within 3 N. Furthermore, individual FSR outputs did not saturate for any
squat trials.
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Figure 2. (A) Example visual traces are shown when feedback is provided across time (0 to 4 sec) for
simple-abstract and complex-representative modes. (B) Flow of data processing shown for computing
joint moments with inverse dynamics on a musculoskeletal model. Example traces for experimental
data used as model inputs (joint angles, ground reaction forces) and corresponding outputs (joint
moments) shown as mean (solid center line) ±1 s.d. (denoted by faded outside lines).

Inverse Dynamics: Joint angles and ground reaction force data were inputted into
OpenSim 3.3, running the model ‘3DGaitModel2392’ to compute respective flexion-extension
moments at the hips, knees, and ankles [53]. The software includes a modeling layer that
solves equations of motion to compute joint moments from respective kinematic and exter-
nal force trajectories. This procedural pipeline for computing joint moments for squatting
has been validated with a similar use in prior studies [54–56]. We compute joint moments
for each participant’s left and right sides; however, we assume adequate squat symmetry
to report the average joint moments across the left and right sides for subsequent analyses
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in this paper. This symmetry assumption was justified by observing that the left and right
ground reaction forces were within 5% body weight on average across all participants. This
procedure to average results across the left and right sides is further reasoned by focusing
analysis (and visual feedback) along the flexion-extension plane. The joint moment trajec-
tory was computed over the entire squat maneuver (4 s) for each participant trial. Example
traces for joint angles and ground reaction forces (and center of pressure locations) serving
as inputs to a computational model to generate corresponding joint moment profiles are
shown in Figure 2B.

Statistical Analysis: The mean and variability (standard deviation) of the joint mo-
ment traces, across all trials, for each participant and visual feedback mode served as a
sample observation. Given only ten training trials per mode, we presume minimal learning
for a given mode such that neither trial-to-trial examination nor early-to-late trial compari-
son is needed. Data were normalized by the overall mean value for each joint when pooling
results (overall) across all three joints since each joint expresses considerably different
moment magnitudes during the squat maneuver [57]. Otherwise, each joint was treated
independently for joint-specific analyses. A two-way (2 × 2) ANOVA was applied to
both joint moment mean and variability data during visual feedback training to determine
whether significant differences exist across this study’s two primary factors (VF features):
(1) simple versus complex feedback and (2) abstract versus representative feedback. If a
significant interaction (p < 0.05) was observed, then simple effects (i.e., differences between
individual pairs of modes) were also examined. A Bonferroni correction was applied for
multiple comparisons. This two-way ANOVA is the primary analysis for this study in test-
ing the main hypotheses. To examine the spatial effects of modes, we repeat the two-way
ANOVA for each joint and across all joints (overall) after normalization. To preliminarily
investigate any temporal effects of modes, we examined changes in joint moment data
based on specific joints and time phases (windows) of the squat movement. Each trial was
divided into equal thirds (i.e., 4/3 s) to denote the ‘early’, ‘target’, and ‘late’ time windows
of the squat movement cycle. The ‘target’ window represents when participants focus on
matching and recovering from the maximum squat depth (at trial time = 2 s). A simple
one-way ANOVA was performed across the four visual feedback modes for each pairing of
joint and time window to avoid confounding multi-factor analysis of these effects.

3. Results

The effect size for all ANOVA comparisons was moderately large (Cohen’s D > 0.5),
and given the n = 18 sample size, the degrees of freedom for one-way and two-way ANOVA
were 17 and 18, respectively. There were no outlier trials by any participant (i.e., no trial
mean error > 3 standard deviations from the overall mean for the given participant),
suggesting the practice trials provided with each visual feedback mode were sufficient for
accommodation. The mean joint moment values during training per visual feedback feature
(complexity, representation) across all joints (overall) and per joint are shown in Figure 3A.
Corresponding results for joint moment variability are shown in Figure 3B. No significant
differences were observed with mean joint moment overall nor at the individual joint level
except with complexity at the knee joint. Significant increases in joint variability were
observed for higher complexity at the hip and ankle joints and across all joints (overall). A
significant increase in variability was also observed for abstract feedback for the knee joint.
Significant interactions (Table 1) between the factors of complexity and representation were
observed only for overall joint variability and specific joints (hip, knee). As such, we report
simple effects, i.e., significant differences between individual visual feedback modes, in
Table 2 for each joint and overall. Notably, the simple-abstract mode demonstrated the
lowest variability and had a significant difference with at least one other mode for every
test case (i.e., overall and all three joints).



Biomechanics 2023, 3 433

Biomechanics 2023, 4, FOR PEER REVIEW  10 
 

 

(1.1)  1.4  1.4  (6.73)  1.4  1.4  (19.9) 

Ankle Dorsi-

Flexion 

5.0 × 10−6 

(21.5) 

4.3 ±   

1.3 

4.9 ±   

1.4 

0.075 

(3.2) 

4.4 ±   

1.4 

4.7 ±   

1.3 

0.081 

(3.1) 

Note: significant p-values (<0.05) are bolded. 

 

Figure 3. (A) Joint moment mean per visual feedback feature (i.e., complexity, representation) and 

mode (unique feature pairing) shown overall and for each  joint. (B) Joint moment variability per 

visual feedback feature and mode is shown overall and for each joint. Note: * p < 0.05, ** p < 0.01, 

*** p < 0.001; Note: complexity is denoted by light gray to dark black, representation is denoted by 

red  (abstract)  to body-representative  (green), and modes combining  features are denoted by  the 

respective combination of red/green color and light/dark. 

Figure 3. (A) Joint moment mean per visual feedback feature (i.e., complexity, representation) and
mode (unique feature pairing) shown overall and for each joint. (B) Joint moment variability per
visual feedback feature and mode is shown overall and for each joint. Note: * p < 0.05, ** p < 0.01,
*** p < 0.001; Note: complexity is denoted by light gray to dark black, representation is denoted
by red (abstract) to body-representative (green), and modes combining features are denoted by the
respective combination of red/green color and light/dark.
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Table 1. Two-Way ANOVA (Factors: Complexity, Representation) Analysis for Joint Moment Mean
and Variability during Training per Joint and Overall (Across All Joints).

Joint Moment Mean

Joint
p-Val

Complexity
(F-Stat)

Simple
Mean

Value in
N·m

Complex
Mean
Value

in N·m

p-Val Repre-
sentation
(F-Stat)

Abstract
Mean
Value

in N·m

Representative
Mean
Value

in N·m

p-Val
Interaction

(F-Stat)

Overall 0.19
(1.7) −20.4 ± 27.6 −22.5 ± 26.6 0.75

(0.11) −21.2 ± 27.3 −21.7 ± 27.0 0.78
(0.08)

Hip Flexion 0.39
(0.74) −50.5 ± 17.2 −52.1 ± 18.7 0.93

(0.007) −51.4 ± 17.6 −51.2 ± 18.3 0.95
(0.005)

Knee Flexion 5.4 × 10−3

(7.8)
7.8 ± 16.0 3.6 ± 13.8 0.42

(0.66) 6.4 ± 15.1 5.1 ± 15.1 0.31
(1.0)

Ankle Dorsi-
Flexion

0.38
(0.77) −18.6 ± 4.7 −19.0 ± 4.3 0.31

(1.0) −18.5 ± 4.7 −19.0 ± 4.4 0.83
(0.05)

Joint Moment Variability

t
p-Val

Complexity
(F-Stat)

Simple
Mean

Value in
N·m

Complex
Mean
Value

in N·m

p-Val Repre-
sentation
(F-Stat)

Abstract
Mean
Value

in N·m

Representative
Mean
Value

in N·m

p-Val
Interaction

(F-Stat)

Overall 0.04
(4.4) 6.6 ± 2.6 6.9 ± 2.8 0.77

(0.09) 6.8 ± 2.8 6.7 ± 2.6 3.2 × 10−3

(8.8)

Hip Flexion 0.04
(4.4) 9.2 ± 2.3 9.7 ± 2.5 0.94

(0.03) 9.4 ± 2.6 9.4 ± 2.2 0.03
(5.0)

Knee Flexion 0.30
(1.1) 6.3 ± 1.4 6.1 ± 1.4 0.01

(6.73) 6.4 ± 1.4 6.0 ± 1.4 1.1 × 10−5

(19.9)

Ankle Dorsi-
Flexion

5.0 × 10−6

(21.5)
4.3 ± 1.3 4.9 ± 1.4 0.075

(3.2) 4.4 ± 1.4 4.7 ± 1.3 0.081
(3.1)

Note: significant p-values (<0.05) are bolded.

Table 2. Simple Effects (Across Visual Feedback Mode Pairs) for Joint Moment Mean and Variability
during Training per Joint and Overall.

Joint Moment Mean

Joint
Simple-Abstract

Mean Value
in N·m

Simple-
Representative

Mean Value
in N·m

Complex-Abstract
Mean Value

in N·m

Complex-
Representative

Mean Value
in N·m

Significant
Difference Pairs

(p-Val)

Overall −20.4 ± 27.5 −22.0 ± 27.2 −20.4 ± 27.8 −23.0 ± 26.2 N/A

Hip Flexion −50.5 ± 17.3 −52.3 ± 17.9 −50.5 ± 17.2 −52.0 ± 19.4 N/A

Knee Flexion 7.7 ± 15.2 5.0 ± 14.8 8.0 ± 16.7 2.2 ± 12.7 CA−CR (0.04)

Ankle
Dorsi-Flexion −18.3 ± 5.2 −18.8 ± 4.1 −18.9 ± 4.2 −19.2 ± 4.6 N/A

Joint Moment Variability

Joint
Simple-Abstract
Mean Value in

N·m

Simple-
Representative
Mean Value in

N·m

Complex-Abstract
Mean Value in

N·m

Complex-
Representative
Mean Value in

N·m

Significant
Difference Pairs

(p-Val)

Overall 6.4 ± 2.6 7.1 ± 2.9 6.8 ± 2.6 6.6 ± 2.6 SA-SR (2 × 10−3)

Hip Flexion 8.9 ± 2.4 9.9 ± 2.8 9.4 ± 2.1 9.4 ± 2.3 SA-SR (0.01)
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Table 2. Cont.

Joint Moment Variability

Joint
Simple-Abstract
Mean Value in

N·m

Simple-
Representative
Mean Value in

N·m

Complex-Abstract
Mean Value in

N·m

Complex-
Representative
Mean Value in

N·m

Significant
Difference Pairs

(p-Val)

Knee Flexion 6.2 ± 1.4 6.6 ± 1.4 6.4 ± 1.4 5.6 ± 1.3
SA-CR (0.05),

SR-CR (4 × 10−4),
CA-CR (6 × 10−4)

Ankle
Dorsi-Flexion 4.0 ± 1.3 4.9 ± 1.4 4.5 ± 1.2 4.9 ± 1.3 SA-SR (4 × 10−5),

SA-CA (3 × 10−5)

Note: significant p-values (<0.05) are bolded; p-values are only shown with significant interaction or significant
factor effect from two-way ANOVA.

The mean and variability results for joint moments across time windows (early, target,
late) of the squat movement per joint are shown in Figure 4. Within these time windows,
one-way ANOVA analyses suggest significant differences exist across visual feedback
modes. The p-value and F-stat for each significant difference per joint and time window
are shown in Table 3. Notably, the knee joint demonstrates a significant difference in both
the mean value and variability of joint moments in each of the three designated windows.
The hip joint shows a significant difference in both the mean value and variability of joint
moments in the target and late windows. The ankle joint only demonstrates a significant
difference in variability and the target and late windows. Although not the focus of the
current study, performance results (e.g., kinematic error in tracking target trajectories)
reported initially, in part, in [4,5] are provided in Table 4 for comparison.

Table 3. One-way ANOVA (i.e., across visual feedback mode pairs) for Joint Moment Mean and
Variability Across Movement Phases during Training per Joint and Overall.

Ankle Dorsi-Flexion Knee Flexion Hip Flexion

Early Target Late Early Target Late Early Target Late

JT Mom
Mean
p-val,

(F-stat)

0.95
(0.12)

0.90
(0.20)

0.50
(0.79)

0.04
(2.9)

5 × 10−4

(9.15)
0.04
(2.9)

0.98
(0.07)

0.02
(3.5)

7 × 10−3

(4.4)

JT Mom
Variability

p-val
(F-stat)

0.48
(0.83)

8 × 10−3

(4.4)
0.04
(2.9)

2 × 10−3

(5.7)
0.02
(3.8)

0.02
(3.8)

0.08
(2.3)

3 × 10−3

(5.1)
7 × 10−4

(6.4)

Note: significant p-values (<0.05) are bolded.

Table 4. Kinematic tracking performance (i.e., error to target trajectory) during training with each
visual feedback mode. (note: these results were initially reported in studies [4,5]).

Simple-Abstract Simple-
Representative Complex-Abstract Complex-

Representative

Accuracy
(mean error, degrees) 5.1 ± 1.3 3.0 ± 0.6 4.4 ± 1.4 5.2 ± 1.3

Consistency/precision
(s.d. of error, degrees) 3.5 ± 1.2 1.9 ± 0.6 2.4 ± 0.6 3.3 ± 0.7
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Figure 4. (A) Joint moment mean (±1 s.d. dotted lines) per visual feedback mode (unique feature
pairing) shown across time windows (early, target, late) for each joint. (B) Joint moment variability
(±1 s.d. dotted lines) per visual feedback mode shown across time windows (early, target, late) for
each joint. Note: * p < 0.05, ** p < 0.01, *** p < 0.001; Note: complexity is denoted by light gray to
dark black, representation is denoted by red (abstract) to body-representative (green) and modes
combining features are denoted by the respective combination of red/green color and light/dark.
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4. Discussion

To our knowledge, this study is the first to show how visual feedback features (i.e.,
complexity, level of body representation) used to guide joint kinematics during the two-
legged squat uniquely affect internal joint mechanics across spatial (different joints) and
temporal (different movement time phases) domains. Such findings indicate how visual
guidance for rehabilitative training delivered with technological interfaces, e.g., virtual
reality [58,59], can be optimized. The squat task is highly suitable for this pilot examination
since it is commonly used for lower-body rehabilitation [2,60], and it is a multi-joint
movement that effectively adheres to one degree of freedom (i.e., squat depth), thereby
simplifying interpretations. The primary findings from this study are (1) joint moment
variability, more than joint moment mean values, was significantly affected by changes in
features of visual feedback about kinematics, and (2) the feature of complexity produced
more evident changes in joint moments compared to the feature of body representation.

Our previous works [4,5] have shown that the performance of squat kinematics is
sensitive to the particular features of visual feedback provided about that performance. In
those studies, the primary goal was to examine the effect of training with various visual
feedback modes on short-term retention (i.e., performance immediately after feedback is
removed). In this study, we more closely examine the effects of these visual feedback modes
on internal joint mechanics during training. More specifically, this study now explicitly
shows how visual feedback features impact the underlying joint moments, most notably
along the dimension of variability. Shifts in motor variability indicate the potential adapta-
tion of control strategies [61] after repeated sessions of guided training. This study suggests
that movement tactics with guided training could be actively modulated through intelligent
variations in visual feedback features, which may lead to long-term changes in movement
strategies. A natural next question is whether it is desirable to prescribe visual feedback
features to induce higher or lower joint moment variability during rehabilitative training
in maximizing long-term functional outcomes. As mentioned, reducing joint moment
variability with rehabilitative practice is naturally beneficial when targeting improved
function at particular joints [23,24] or when aiming to mitigate dysfunctional variability
related to pathologies [25,26]. Furthermore, lower variability in function typically indicates
a higher skill level [62]. However, lowering variability is often achieved progressively with
skill development, and it can depend on the nature of the task [63].

However, if the rehabilitation goal is to improve kinematic performance, i.e., recov-
ering motion capabilities after stroke [59], then periods of high motor variability across
training sessions may be desirable. Higher variability can reflect a purposeful exploration
of the motor space [64] that drives early-stage motor practice. In this study, more visual
feedback complexity significantly increased joint moment variability, as hypothesized. Our
previous work [4] showed that complex feedback produced improved kinematic (tracking)
performance, but only when paired with the body-representative feature. Furthermore,
this study suggests a negligible difference in kinetic variability overall between complex-
representative and complex-abstract modes despite complex-representative generating
superior kinematic performance. Results across both studies indicate that increasing kinetic
variability with complex visual feedback could benefit the progressive practice of a rehabil-
itative motor task such as the squat. The optimal application of different visual feedback
features with rehabilitative training may depend on the stage of training (i.e., early versus
end), the goals of the rehabilitation paradigm (i.e., kinematic performance versus function
of individual joints), and the training task itself (i.e., squat versus gait).

A longitudinal study that evaluates skill transfer [65] on the same group of partici-
pants is needed to confirm the effects of higher or lower kinetic variability as kinematic
performance evolves with rehabilitation. A major limitation of this study is the lack of
repeated measures to examine true motor retention). Our previous work has success-
fully demonstrated the impact of altered visual feedback on short-term retention [4,5,66,67]
(i.e., the relative change in performance immediately after training) and real-time perfor-
mance [68,69]. While such experimental designs are provocative by inducing immediate
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behavioral changes, authentic behavioral changes must be demonstrated with follow-up
sessions to explore longer-term adaptations and transfer testing of acquired skills [22].
As is, this study successfully showed that applying specific visual feedback features is a
potentially viable pathway to modulate joint-level kinetic variability within individual
training sessions. Immediately reducing kinetic variability per training dosage can still be
beneficial in the functional rehabilitation of particular joints.

Depending on the exercise task, each joint can have unique biomechanical responsibil-
ities (load bearing, finer control, etc.) and be impacted by visual feedback accordingly. This
study examined joint-level dependencies of moment variations to visual feedback when
training with the squat task. The highest mean peak moments for the squat maneuver
are experienced at the hip (~80 N·m extension) and knee (~30 N·m extension) joints in
raising the person against gravitational loads. On the other hand, the ankle joint exhibits
considerably lower peak moments (~15 N·m plantar-flexion) in primarily stabilizing the
center of pressure within the base of support [70,71]. Thus, it is critical for the ankle to
constantly make corrective actions, presumably making its joint moment variability more
sensitive to changes in visual feedback. Similarly, the hip joint may be more reactive in
adjusting the center of mass position, given its relative proximity to the total body center of
mass at the erect (quiet) standing position [72]. Thus, variability at the hip and ankle joints
may be more sensitive to changes in visual feedback features like complexity due to their
fundamental roles in maintaining balance [73].

On the other hand, for the knee, joint moment variability was relatively more impacted
by changes in the visual feedback feature of representation. Presumably, joint mechanics
modulated by body representation are driven, in part, by feelings of embodiment with
the movement feedback [74,75]; however, our study’s limitations in methods are unable
to confirm the phenomenon. Still, with this paradigm’s attentive focus on the thigh
segment (i.e., primary tracking target), knee joint moment variability may have been
particularly sensitive to alterations in how that segment was visually presented (i.e., abstract
trajectory versus explicit body segment motions). Although hip angles also depend on
thigh orientation, knee dynamics drive the squatting maneuver [2,60] and are more directly
determined by thigh angle due to relatively small changes in shank angles. As such, joint
moment mean and variability at the knee have more apparent dependencies on visual
feedback across temporal phases of the squat. This temporal dependence may also be due
to the knee joint exhibiting more complex joint moment patterns, including directional
shifts between positive (extension) and negative (flexion) moment values, unlike the hip
(~always net extension) and ankle (~always net plantar flexion).

Another limitation of this study is evaluating only joint moments since regulation
of joint reaction forces is also of interest with rehabilitative paradigms [76–78], which
could be addressed with future examinations. Another analysis measure of interest may
be “efficiency”, by which we estimate changes in kinematic performance (output) per
change in kinetics (input) and as a function of feedback features. While such analyses
would further contextualize the impact of visual feedback features for optimizing motor
rehabilitation protocols, this study establishes the vital first step in demonstrating that
joint moments are responsive to variations in feedback features. Future studies could also
address limitations in our protocol by using high-resolution force plates and more complete
marker sets designed and calibrated for 3-D anatomical assessment of lower-extremity joint
mechanics [79,80]. However, our simplified measures and analyses for joint moments were
on par with similar studies for various applications [81–83] and, more importantly, were
consistent with the visual feedback provided in this study, i.e., three-segment stick figure
motions projected onto the sagittal plane. Furthermore, the measurement resolution of
our methods did not prevent the identification of significant differences in computed joint
moments based on visual feedback features, i.e., the study’s primary goal.
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5. Conclusions

In conclusion, visual feedback features (i.e., complexity, level of body representation)
can affect the internal mechanics used while training to perform a multi-joint kinematic
maneuver. Thus, there is an opportunity to optimize feature elements of augmented
feedback training paradigms for motor rehabilitation employing computerized interfaces
for guidance. Physical therapy with advanced technologies, such as virtual reality [14,58,84],
is increasingly prevalent due to its customizability and capabilities to activate sensory
modalities for greater engagement. Delivery of sensory feedback could be strategically
optimized with guided training for skill acquisition [85], depending on the movement
task, primary joints of interest, and user experience levels with such approaches [86].
Optimizing sensory feedback has clear implications for rehabilitation with visually-driven
computerized interfaces such as virtual reality to train improved capabilities in tracking
motion [69,87] and force [68] trajectories.
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