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Abstract: Although injury mechanisms of mild traumatic brain injury (mTBI) may be similar across
patients, it is becoming increasingly clear that patients cannot be treated as one homogenous group.
Several predominant symptom clusters (PSC) have been identified, each requiring specific and
individualised treatment plans. However, objective methods to support these clinical decisions
are lacking. This pilot study explored whether wearable sensor data collected during the Buffalo
Concussion Treadmill Test (BCTT) combined with a deep learning approach could accurately classify
mTBI patients with physiological PSC versus vestibulo-ocular PSC. A cross-sectional design evaluated
a convolutional neural network model trained with electrocardiography (ECG) and accelerometry
data. With a leave-one-out approach, this model classified 11 of 12 (92%) patients with physiological
PSC and 3 of 5 (60%) patients with vestibulo-ocular PSC. The same classification accuracy was
observed in a model only using accelerometry data. Our pilot results suggest that adding wearable
sensors during clinical tests like the BCTT, combined with deep learning models, may have the utility
to assist management decisions for mTBI patients in the future. We reiterate that more validation is
needed to replicate the current results.

Keywords: mTBI; convolutional neural network; ecological validity; neurophysiology; biomechanics;
symptom clusters

1. Introduction

Traumatic brain injuries (TBIs) occur as a consequence of exposure to sudden physical
trauma from external forces resulting in deformation and damage of neuronal and vascular
tissues within the brain [1]. An estimated 95% of TBI patients have suffered mild TBI
(mTBI) determined by a Glasgow Coma Scale score ≥13, absence of skull fracture or posi-
tive neuroimaging, and associated with symptoms resulting from impaired neurological
function [2–5]. Approximately 20% of TBIs result from a sport/physical activity related
mechanism of injury, with 98% of these sport-originated brain injuries considered mild [6].

Until recently, recommendations for managing mTBI followed a one-size-fits-all model,
where all patients received the same care regardless of their specific symptom burden [7].
It was thought that 85–90% of these mTBI patients would experience spontaneous clinical
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recovery and resolution of symptoms within 10–14 days post-injury; thus a “wait and see”
approach was adopted. Access to proactive interventions was consequently limited [8].
However, updated reports from large epidemiological studies of the general population
have indicated that up to half of mTBI patients can experience prolonged symptom burden
beyond this window [2,9–12]. Moreover, incomplete recovery at six and 12 months has
been observed in 50% of mTBI patients who presented to an emergency department within
24 h post-injury [11,12]. These poor outcomes, even in early-presenters, suggest that
improved assessment and management pathways are needed to reduce the burden of
mTBI. Although injury mechanisms of mTBI may be similar across patients, it is becoming
increasingly clear that patients cannot be treated as one homogenous group as several
predominant symptom clusters (PSCs) have been identified, each requiring specific and
individualised treatment plans [13–18]. Criteria have been developed to identify different
PSCs to determine whether a predominantly physiological, vestibulo-ocular, or cervicogenic
origin appears to contribute to unresolved symptoms at ≥21 days post-injury [13]. The
criteria to determine the PSC utilise the patient’s clinical history and examination along
with results of a provocative exercise test, commonly referred to as the Buffalo Concussion
Treadmill Test (BCTT) [13,19–21]. A framework has been provided to help understand
the pathophysiology responsible for each PSC, and how to approach the prescription
of individualised exercise-based interventions to address and resolve these underlying
mechanisms [13,18].

It has been hypothesised that symptoms consistent with physiological PSC are manifesta-
tions caused by uncoupling of the autonomic nervous and cardiovascular systems [13,22–24].
Previous laboratory research has identified differences in autonomic regulation during exer-
cise, but not at rest, between athletes who had recently sustained a mTBI, and healthy controls,
as measured by heart rate variability using electrocardiography (ECG) [23,24]. Conversely,
symptoms that characterise vestibulo-ocular PSC are thought to be due to underlying issues
with sensorimotor integration and vestibular function [13,22,25,26]. Static balance and gait
differences between healthy controls and participants with mTBI have been found, using force
plates and accelerometers [27–29]. Individuals with vestibulo-ocular PSC may display greater
impairment in balance/gait than those with physiological PSC, and vice versa for autonomic
regulation. Presently, even when the BCTT is used, identifying PSCs relies on athlete’s honest
symptom reporting, which is an issue when managing athletes with mTBI [30–33], and the
training/experience of the supervising clinician [34–36]. Previous observations with labo-
ratory grade equipment have highlighted that technological methods may be sensitive to
impairments not detected by clinical tests [23,24,27–29]. However, restricted accessibility to
laboratory grade equipment in clinical environments has limited translation of these findings.

The development of wearable sensors validated against laboratory grade equipment
has enabled research to be transitioned from the lab to the real-world [37]. Integrating
the BCTT within clinical practice presents an opportunity to use a wearable sensor to
collect ECG and accelerometry data under ecologically valid conditions. Adding objective
measures to this testing protocol might assist accurate PSC classification when symptom
reporting may be untrustworthy and/or when clinicians have limited experience working
with mTBI patients. Machine learning models are an increasingly popular approach for
analysing time series data such as ECG and accelerometry [37–41]. There is potential for
machine learning algorithms, specifically deep learning techniques, to support medical
decision making by automatically detecting the most important features related to patient
outcomes i.e., high versus low risk for a given condition [38,42]. The capability of a deep
learning model trained using time series signals from ECG (as a measure of autonomic
control) and accelerometry during gait (as a surrogate of sensorimotor integration) to
classify PSC subgroups in mTBI patients has not been previously explored.

Therefore, this pilot study aimed to investigate whether a deep learning approach
could accurately classify mTBI patients with physiological PSC versus vestibulo-ocular
PSC using wearable sensor data collected during the BCTT. A secondary aim was to
compare classification performance using ECG and accelerometry data in combination
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versus accelerometry alone. If accurate PSC classification was observed, a final aim was to
perform a post-hoc signal exploration to provide preliminary insight into features that may
differ between PSCs, thus contributing to classification.

2. Methods
2.1. Study Design and Participants

A cross-sectional design was adopted to evaluate the accuracy of a deep learning model
trained with ECG and accelerometry data in order to classify patients with physiological
PSC versus vestibulo-ocular PSC. Data collection took place at a single dedicated sport-
related mTBI clinic between April and July 2019. A total of 43 consenting patients diagnosed
with mTBI by a sport and exercise medicine physician completed a BCTT during the data
collection period for this study. Diagnosis of sport-related mTBI was made in line with the
2017 Concussion in Sport Group Consensus Statement [8]. The sample was inclusive for
age and sex. Institutional (AUTEC 18/374) and health and disability committee (HDEC
18/NTA/108) ethical approvals were obtained, and this study was conducted according to
the ethical standards of the Declaration of Helsinki. Participants provided written consent
(child assent and parental consent for participants <16 years old) for their data to be used for
research and publication. All participant data were de-identified prior to extraction/data
analysis to ensure confidentiality.

2.2. Procedures
2.2.1. Timing of BCTT

Participants received mTBI management as part of usual clinical care; the details of
this clinical pathway have been previously described [9]. Clinical scheduling constraints
meant that not all patients completed a BCTT. Testing was completed if requested by
the supervising physician to confirm suspected PSC based on patient history and clinical
examination and/or to inform an individualised treatment plan. The appointment during
which the BCTT was administered depended on the proximity of the participant’s initial
clinical assessment to the date of injury. Efforts were made to administer a BCTT approxi-
mately two weeks post-injury to aid in developing a targeted and individualised exercise
treatment plan for participants with unresolved symptoms based on their PSC. Participants
presenting for initial clinical assessment ≥10 days post-injury completed a BCTT on their
first visit if requested by the physician. Treadmill testing was performed during the first
follow-up appointment if participants initially presented within 10 days of their injury and
had not reported improvement in their symptoms between the first and second visits.

2.2.2. Treadmill Testing Protocol

The BCTT protocol is a safe and reliable method to assist patient prognosis, PSC identifi-
cation, and management decisions for mTBI patients with unresolved symptoms [13,19–21,43].
Contraindications, including inability to exercise because of orthopedic injury or increased
cardiorespiratory risk, were considered when deciding whether a participant had completed
a BCTT [20]. Pre-testing symptom burden was established by participants rating their current
symptom burden on a 1–10 scale (1 = minimal/no symptoms; 10 = severe symptoms), and
specific symptoms were recorded [20].

Participants walked on a treadmill at 5 km/h at 0% incline for one minute, then
incline was increased to 2% and a further 1% every minute thereafter, with the velocity
remaining at 5 km/h [20]. Participants were asked to walk normally, without resting their
hands on the treadmill rails. After every minute of the protocol, participants were asked
to report any changes in their symptom burden and rating of perceived exertion (scale
of 0–10; 10 representing maximal effort) [44]. Heart rate was monitored and recorded
at the end of each minute. Testing proceeded in this way until participants experienced
symptom exacerbation (increase of +3 from their initial reports) or volitional fatigue (rating
of perceived exertion ≥9) [20]. If the participant did not experience symptom exacerbation
or fatigue by the maximum incline of 15%, velocity was increased by 1 km/h while
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maintaining the 15% incline, to a maximum testing duration of 20 min. All BCTTs were
delivered by a clinician and/or researcher with training in exercise physiology.

2.2.3. Expert Labelling

Physicians with training and experience managing mTBI athletes identified the PSC
using published criteria [13]. Given that physiological and vestibulo-ocular PSCs were the
most prevalent in our previous research [45] combined with the novel nature of the current
study, we elected to focus specifically on these two groups. Data from 26 participants
(18 physiological PSC; eight vestibulo-ocular PSC) who completed a BCTT were eligible for
the current study. For analysis purposes, vestibulo-ocular PSC was considered the positive
class, since it is less prevalent and a predictor of worse recovery outcomes.

2.3. Instrumentation

During the BCTT, heart rate was recorded using a Zephyr BioHarness™ (Medtronic,
Dublin, Ireland) that contained three-lead ECG (sampling: rate 250 Hz) and a tri-axial ac-
celerometer (sampling rate: 100 Hz; x-axis = vertical, y = lateral, z-axis = sagittal). The
BioHarness™ has been shown to be a valid and reliable tool for physiological monitoring in
field-based applications with military, first responders, and athletes [46–48]. Data were trans-
mitted in real-time via Bluetooth to a smartphone application (IoTool sensor platform from
SenLab Ljubljana, Slovenia). Raw data were stored within local memory and downloaded
after recording. The BioHarness™ was worn in the same way as a typical heart rate monitor,
where the electrodes were lightly dampened with cold water and the strap was placed snugly
around the torso at the level of the xiphoid process. Two BioHarness™ of different sizes were
used for all testing based on subject chest size (sizes XS-M and M-XL). Preservation of clinical
flow and ecological validity of findings was a priority of this study. Once a consistent heart
rate was registered on the smartphone application, normal procedures for explaining and
administering the BCTT were initiated without further adjustment of the BioHarness™. All
BCTTs were performed on a Life Fitness Engage 95T treadmill (Hamilton, New Zealand).

2.4. Deep Learning Pipeline

While there are several deep learning methods, previous findings that indicate a
convolutional neural network (CNN) trained with ECG or accelerometry time series data
can accurately classify patients with/without cardiac dysfunction [41] and different human
activities [37,39,40], respectively. Notable advantages of CNNs include computational
efficiency and little to no manual feature engineering [39,49]. For these reasons, a CNN
appeared to be a good starting point to explore if deep learning could automatically
identify features in ECG and/or accelerometry signals that differentiate between mTBI
PSCs. Figure 1 shows the data pipeline from patient identification through the experiments
executed in this study. All data pre-processing and deep learning models were completed
in Python (v3.8.5) using the Sklearn (v0.23.2), Tensorflow (v2.3.1), and Keras (v2.4.0) packages.
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2.4.1. Dataset Preparation and Pre-Processing

Prior to analysis, accelerometry time series data were time aligned, labelled and up-
sampled from 100 Hz to 250 Hz to match the sampling frequency of ECG data using linear
interpolation. After up-sampling, three temporal slices of the ECG and accelerometry
signals were defined to standardise data inputs to the CNN across participants, due to the
symptom-dependent variation in BCTT duration. These slices included the first 60 s of
testing, the third minute, and the final 60 s before the BCTT was ended. The first minute
was chosen to explore if different PSCs could be classified using sensor data collected early
in the protocol without the need to push the patient to symptom exacerbation, whereas
the final 60 s should coincide with the onset of symptom exacerbation or volitional fatigue.
The third-minute slice was selected as the latest common time for all subjects, because the
shortest BCTT collected for this study was four minutes. The third minute provided a
standardised timepoint to evaluate all participants while under physiological load (5 km/h,
4% incline), but prior to symptom exacerbation or fatigue. When administering the BCTT,
the velocity of the treadmill gradually increased to 5 km/h, and the first minute of testing
began once the treadmill was up to the required velocity and the participant settled into
steady state walking. The beginning of testing was identified in each participant’s time
series file by plotting their accelerometry data and manually identifying the timestamp
when the participant settled into a repeatable gait pattern, defined by 5+ consecutive gait
cycles with similar waveform profiles (see Figure 2B).

The first-minute slice was the next 60 s from the manually defined point, and the third
minute was from 180 to 240 s. A similar approach was used to determine the final 60 s
slice. The time series accelerometry plots were manually inspected to identify when there
was a sudden change in the gait pattern, representing when the participant stepped onto
the treadmill rails, decreased the velocity or stopped the treadmill (Figure 2C). The 60 s of
signal leading up to the timestamp of this disruption in gait served as the final slice of data
to be explored.

ECG files were visually inspected to assess if a clean ECG signal with distinct and
repeatable QRS complexes had been recorded within the temporal slices of interest. Clean
ECG time series were observed in 17/26 participants (12 physiological PSC; five vestibulo-
ocular PSC). The remaining nine participants’ files were deemed unfit for further analysis
because they contained large amounts of noise, making it difficult to discern the QRS
pattern. Noise was likely due to poor coupling between the ECG nodes and the skin, due
to the quick deployment the BioHarness™ to prioritise clinical flow. An example of the
final dataset columns are provided in Figure 1.

Time series data were segmented for training and cross-validation of CNN models,
where n samples were divided into windows of W samples wide, with S overlap producing
D rows of data (Equation (1)) [37].

D = 1 +
n − W

S
(1)

Data were transformed into an array (D, W, F) with D rows, width of W samples, and
F features (F = 4 for ECG + accelerometry (x,y,z); F = 3 for accelerometry (x,y,z) only) so that
they were compatible with the CNN [37]. A separate one-dimensional array contained PSC
labels corresponding to each row within the signal data array based on which participant
the data belonged to.
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2.4.2. Deep Learning Model

The CNN consisted of four separate 1D convolutional networks for each axis of the
accelerometry signal (x,y,z) and ECG signal (see Figure 3 for CNN topology) combined into
a single classifier output stage. Each channel used two convolutional 1D layers and a ReLu
activation function with filter and kernel sizes of 64 and 3, respectively. Convolutional
layers were followed by a drop out layer of 50% for generalizability and a max pool layer
with pool size of 0.5. A flatten layer was used to combine separate channels, followed by a
dense layer with ReLu activation. Output weights from previous layers were transformed
into probabilities for each class using a SoftMax activation function. Learning used an
epoch of 50 and batch size of 100. Classification metrics, including accuracy, Cohen’s
kappa, sensitivity, specificity, positive predictive value (PPV), and negative predictive value
(NPV), were calculated to evaluate the CNN’s performance when classifying windows
with physiological labels versus vestibulo-ocular labels.
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2.4.3. Hyperparameter Tuning

Window size tuning was performed to optimise PSC classification accuracy. Windows
ranging in size from 16, 32, 64, 128, and 256, with a 50% overlap between windows, were
evaluated. For each set of hyperparameters, a randomised train test split of 0.66/0.33 was
selected using Sklearn in Python. During hyperparameter tuning, classification metrics
were calculated based on performance of the CNN to correctly classify the label associated
with each window in the test set, irrespective of which participant the window came from.
Priority was placed on hyperparameters that maximised Cohen’s kappa and PPV due to
the imbalance in PSC classes. This process was applied for each temporal slice (first minute,
third minute, final minute) to cross-reference optimal hyperparameters within each slice
and to evaluate if differences in classification metrics were evident.

2.4.4. LOOCV Experiment

Once optimum hyperparameters were determined the following experiment was
conducted to explore whether the CNN could correctly classify a given participant’s PSC.
Due to a limited sample size, a leave-one-out-cross-validation (LOOCV) methodology
was implemented to train the CNN on data from n − 1 participants, followed by testing
the model’s capacity to correctly identify the PSC of the left-out case using their sensor
data. This process was repeated for each participant and allowed exploration of how
well the model trained on current data might perform at classifying physiological versus
vestibulo-ocular PSC following a BCTT in a new mTBI patient.

Use of time series data in this study meant that 15,000 rows (250 Hz × 60 s) corre-
sponded to each participant per temporal slice. To effectively accomplish LOOCV for each
participant, Sklearn’s stratified k-folds method was used, wherein all data were split into
17 equal folds of 15,000 rows of data without shuffling. The first iteration held out rows
0–14,999 from participant 1 for LOOCV and trained on rows 15,000–254,999 (participants
2–17), the second iteration held out rows 15,000–29,999 from participant 2 while training
on 0–14,999 and 30,000–254,999 (participants 1, 3–17), and so on. The CNN was trained
on k − 1 folds using a randomised train test split of 0.66/0.33. A probability for each class
was calculated corresponding to each of the D windows in the validation fold and these
probabilities were stored in an array. For a given participant, some windows may have had
a higher probability of belonging to the physiological PSC class, while the rest indicated
that vestibulo-ocular PSC was more probable. Therefore, the mean probability across D
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windows was calculated for each class and the class with the greater mean probability
was recorded as the predicted class for the participant to which the windows belonged.
The predicted class was saved after each iteration. Once all iterations were complete, a
confusion matrix was produced, from which sensitivity, specificity, PPV, NPV, and area
under the curve (AUC) of the receiver operating characteristic (ROC) curve were calculated.
This process is visualised in Figure 4.
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Figure 4. Diagram of how LOOCV was implemented to evaluate potential utility of a CNN to predict
the class of ‘new’ sensor data collected during a BCTT.

This methodology was first used to explore the potential of a CNN trained with both
ECG and accelerometry time series data to accurately classify the PSC of 17 participants
with clean ECG data. Since noisy ECG data led to exclusion of nearly 1/3 of eligible
participants (9/26), this experiment was repeated using only accelerometry data to see the
level of classification accuracy that might be obtained, without the need to collect ECG data.

2.5. Post-Hoc Feature Exploration: PSD and Entropy Analysis

An advantage of deep learning models such as CNN is that they automatically detect
features in the data that maximise classification accuracy which may not be apparent to
a human analyst. This significantly reduces the time and expertise required to develop
the model, compared to machine learning techniques that rely on manually engineered
features [42]. Such an approach was appropriate for the current study, since our primary
aim was to evaluate if a model trained using wearable sensor data collected during the
BCTT could classify different PSCs in mTBI patients [38]. This approach did not allow
inferences to be made as to how the model differentiated between groups, leading to deep
learning techniques such as CNNs being commonly described as a ‘black box’ [38].

To provide a degree of explainability to our LOOCV experiment results, we performed
post-hoc analysis on two common time series features: power spectral density and mul-
tiscale entropy. Power spectral density (PSD) provides a method to estimate the power
or energy of a temporal signal at different frequencies [50] and PSD-based analyses have
demonstrated utility in neuroscientific investigations [51–53]. Multiscale entropy (MSE)
quantifies the complexity (i.e., repeatability or randomness) within physiological/physical
time series signals while accounting for different time scales [54,55] and has proven a useful
feature in the analysis of gait and ECG data [56,57]. For reference, periodic signals have
low entropy and random signals have high entropy.
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The maximum PSD of accelerometry and ECG signals were calculated using the
signal.welch() function in Python’s SciPy (v1.5.4) package. The MSE complexity index of
signals were determined using the Python EntropyHub (v0.2) package with coarse graining
and a scale factor of 10. Given the limited sample in this study, Hedges’ g effect sizes
with 95% confidence intervals were calculated to evaluate group differences in max PSD
and MSE complexity index between physiological and vestibulo-ocular PSC using the R
package effsize (v0.8.1). Finally, the magnitude of differences between PSCs for PSD and
MSE were presented in an effect measure plot using Python’s zEpid package (v0.9.0).

3. Results
3.1. Demographics

Of the 17 participants whose data were analysed, 11 were male eight physiological
PSC; three vestibulo-ocular PSC) and six were female (4 physiological PSC; 2 vestibulo-
ocular PSC), with a median age of 21.0 (IQR: 16.0; 28.0) years. Participants completed a
BCTT with a median of 17.0 (IQR: 13.0; 18.5) days post-injury, and with a median BCTT
duration (mm:ss) of 14:12 (IQR: 9:12; 17:55).

3.2. Hyperparameters and Temporal Slices

Results of hyperparameter tuning are shown in Table 1. The best classification per-
formance of windows corresponding to physiological PSC versus vestibulo-ocular PSC
occurred with a window size of 256 and an overlap of 128 between windows, as deter-
mined by Cohen’s Kappa and PPV. Similar levels of accuracy were observed using these
hyperparameters with data from both first- and third-minute slices. This meant that, for
each participant, their 60 s of data (sampled at 250 Hz) fed into the CNN was separated
into D = 117 windows for the LOOCV experiments.

Table 1. Hyperparameter tuning results from each temporal slice.

Window
Size Overlap Accuracy Kappa Sensitivity Specificity PPV NPV

First minute

16 8 0.90 0.76 0.84 0.92 0.82 0.93
32 16 0.93 0.83 0.92 0.93 0.84 0.97
64 32 0.95 0.88 0.93 0.96 0.9 0.97

128 64 0.97 0.92 0.92 0.98 0.96 0.97
256 128 0.98 0.96 0.98 0.99 0.97 0.99

Third minute

16 8 0.89 0.72 0.7 0.97 0.91 0.88
32 16 0.93 0.83 0.88 0.95 0.88 0.95
64 32 0.96 0.90 0.92 0.98 0.94 0.96
128 64 0.95 0.88 0.87 0.99 0.96 0.94
256 128 0.97 0.94 0.96 0.98 0.95 0.98

Final minute

16 8 0.88 0.69 0.7 0.95 0.86 0.88
32 16 0.93 0.82 0.8 0.98 0.94 0.92
64 32 0.96 0.91 0.95 0.97 0.92 0.98

128 64 0.96 0.90 0.91 0.97 0.94 0.96
256 128 0.94 0.86 0.92 0.95 0.88 0.97

Note: Shaded row indicates window size and overlap with best performance for each temporal slice.

3.3. LOOCV Experiment

Using a k-folds approach to implement LOOCV, the CNN correctly classified three of
five (60%) vestibulo-ocular cases and 10 of 12 (83%) physiological cases, using ECG and
accelerometry data from the first minute of each participants BCTT. Similar performance
was observed when using ECG and accelerometry data from the third minute of the tread-
mill protocol, with three of five (60%) vestibulo-ocular and 11 of 12 (92%) physiological
cases correctly classified. The final minute performed worse than chance in classifying 0 of
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five vestibulo-ocular cases and eight of 12 (67%) physiological cases. Comparable classifi-
cation accuracy was seen for each temporal slice when ECG data from these participants
were omitted and CNNs were trained using only accelerometry data. See Figure 5 for
receiver operating characteristic curves and related accuracy metrics for each condition,
and Table 2 for individual results.
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Table 2. Predicted class probabilities for each participant and temporal slice using LOOCV.

Accelerometry + ECG
Participant 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 # of

VO Correct
# of Phys

correctPSC V V P V P P V P P P P V P P P P P
First minute 0.01 0.01 0.29 0.84 0.00 0.09 0.65 0.39 0.62 0.00 0.49 0.93 0.04 0.22 0.54 0.00 0.00 3/5 10/12

Third
minute 0.00 0.56 0.03 0.85 0.00 0.10 0.30 0.73 0.17 0.00 0.35 0.63 0.23 0.39 0.11 0.02 0.00 3/5 11/12

Final minute 0.02 0.00 0.19 0.19 0.00 0.26 0.19 0.80 0.15 0.16 0.83 0.46 0.16 0.51 0.50 0.18 0.00 0/5 8/12
Accelerometry Only

Participant 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 # of
VO Correct

# of Phys
correctPSC V V P V P P V P P P P V P P P P P

First minute 0.01 0.08 0.30 0.89 0.00 0.06 0.36 0.36 0.22 0.00 0.91 0.70 0.01 0.52 0.54 0.00 0.00 2/5 9/12
Third

minute 0.05 0.95 0.03 0.79 0.00 0.18 0.38 0.44 0.04 0.01 0.61 0.85 0.01 0.33 0.05 0.02 0.00 3/5 11/12

Final minute 0.07 0.01 0.21 0.07 0.00 0.10 0.11 0.88 0.34 0.08 0.88 0.51 0.41 0.28 0.54 0.87 0.00 1/5 8/12

Note: Values presented are predicted probability of left out participant belonging to vestibulo-ocular class.
Predicted probabilities >0.5 indicated that vestibulo-ocular was more likely and <0.5 physiological was more
likely. Shaded cells indicate correct predictions.

3.4. Post-Hoc Results

Post-hoc analysis of the magnitude of group differences between vestibulo-ocular
and physiological PSC for the maximum PSD and MSE complexity index are presented
in Figures 6 and 7, respectively. Medium-sized effects in MSE complexity index were
observed between groups for vertical, lateral, and sagittal acceleration from the first minute,
vertical and sagittal acceleration from the third minute, and sagittal acceleration from the
final minute (Figure 6). While confidence intervals for differences in complexity index of
these features each cross zero, they hint at potentially strong effects that warrant further
investigation. Only trivial to small effects were observed between groups for maximum PSD
from accelerometry data, except for sagittal acceleration from the final minute (Figure 7).
Of note, only trivial to small effects were present between groups for ECG data for both
time series features within all temporal slices. These small differences in PSD and MSE
features of ECG data may explain why similar classification results were observed in the
LOOCV experiment when only accelerometry data were provided to the CNN.
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Figure 6. Hedge’s g effect sizes for group differences in maximum power spectral density between
vestibulo-ocular PSC and physiological PSC.

Finally, Figure 8 depicts group differences in MSE complexity index for accelerometry
data between vestibulo-ocular and physiological PSC using data from the third and final
minute to elucidate why data from the former outperformed the latter. Similar complexity
index profiles were observed between data from the third and final minute for lateral
acceleration, sagittal acceleration, and ECG features. A notable group level reduction in
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vertical acceleration complexity was detected in vestibulo-ocular PSC versus physiological
PSC using data from the third minute, whereas vertical acceleration complexity was nearly
completely overlapping between groups in data collected during the final minute. These dif-
ferences in MSE complexity index may have contributed to why data from the third minute
heavily outperformed data from the final minute in terms of classification performance.
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4. Discussion

To our knowledge, this is the first study to explore whether a deep learning approach
could accurately classify PSCs in mTBI patients using sensor data collected during BCTTs.
Utilising a LOOCV approach, moderate levels of physiological versus vestibulo-ocular
PSC classification accuracy were observed when a CNN was trained using accelerometry
and ECG data acquired during a BCTT. The third minute demonstrated the best classifica-
tion performance based on area under the ROC curve and total correct scores 14/17 for
accelerometry + ECG and 14/17 for accelerometry only. In contrast, the final minute per-
formed worse than chance. Poor performance in the final minute was likely because BCTT
duration varied for participants based on symptom exacerbation/fatigue, thus demands
experienced by each participant within this temporal slice were non-standardised. The
third minute performed slightly better at classification than the first minute, which may be
explained by greater physical load generating more symptomatic behaviour. It is worth
noting that, while we observed an overall accuracy of 82% and a physiological PSC accuracy
of 92% (11/12), the classification of vestibulo-ocular PSC was slightly better than chance at
60% (3/5). However, even with our small sample, our approach demonstrated a moderate
PPV (75%) for identifying vestibulo-ocular PSC coupled with strong specificity (92%) and
NPV (85%) to rule out vestibulo-ocular PSC. Overall, findings suggested that with further
research, adding wearable sensors during clinical tests such as the BCTT, combined with
deep learning models, may have clinical utility in assisting clinicians when classifying PSCs
in mTBI patients.

Inflated machine learning accuracy is commonly observed with small samples [58],
and this may have influenced our results, given our study’s low sample size, imbalanced
classes, and cross-validation approach. Our results are proof of concept that further work to
determine the generalisability of this approach appears justifiable. Three key considerations
should be accounted for in future investigations.

First, when optimal coupling between the BioHarness™ and the skin was achieved
(as determined by clean ECG signals), a CNN trained with only accelerometry data demon-
strated similar levels of classification accuracy as a CNN trained using both ECG and ac-
celerometry data. This observation was corroborated by post-hoc analysis of PSD and MSE
time series features, suggesting limited contribution of ECG data to classification. Some
studies have shown reliable and valid measurement of static balance in neurologically com-
promised participants using accelerometers and gyroscopes within smartphones [59,60].
If future research extended our findings that accelerometry is sensitive to both physiolog-
ical and vestibular-ocular groups, it could make clinical implementation of a wearable
sensor during exertion testing easier and more affordable. A smartphone application
could be developed to predict the most probable PSC based on data recorded using the
internal accelerometer.

Second, due to the novelty of this study, we opted to focus on mTBI patients with the
two PSCs (physiological and vestibulo-ocular) that were most prevalent in our previous
research [45]. Theoretically, distinct differences in the degree of autonomic uncoupling and
impaired sensorimotor integration could be present between these two clinical subgroups,
and such differences would allow accurate classification of these groups as suggested by
the study results. However, in clinical practice, an important subgroup is that of patients
whose symptoms and clinical examination suggest that both physiological and vestibulo-
ocular PSCs are present. Patients with mixed PSC require multi-modal treatment plans to
restore autonomic function and sensorimotor integration. While current study results are
encouraging, they do not account for this important subgroup. To have true clinical utility,
an optimal model would be capable of separately classifying physiological, vestibulo-
ocular, and mixed PSC with high accuracy. If such a model could be developed using this
third class’s wearable sensor data and expert labelling, it would provide a more objective
tool for clinicians to utilise when establishing individualised treatment plans for their
mTBI patients.
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Third, better classification was observed using a combination of accelerometry + ECG
data, as well as accelerometry data alone, from the third minute versus the first minute. Post-
hoc analysis demonstrated similar PSD and MSE profiles for wearable sensor data from both
temporal slices of data, indicating that other features and/or complex interactions between
features may explain greater classification accuracy from the third minute data. Future
work using more conventional statistical techniques and manual feature engineering could
allow inferences that may lead to useful clinical applications. For example, identification of
key features could be used to assess the effectiveness of interventions targeting underlying
impairments related to each PSC by re-administering a BCTT at follow-up appointments
to assess changes between successive timepoints. There are opportunities for parallel
development of “black box” and “traditional”/explainable approaches to clinical decision
support for mTBI. The former potentially provides decision support tools to augment
clinical management of mTBI in short- to mid-terms, particularly when access to specialist
clinicians may be restricted. However, in the long-term, the latter may unlock our ability to
monitor recovery in real-world clinical environments. Overall, the study findings showcase
that combining wearable sensors and machine learning algorithms under ecologically valid
conditions has potential to advance clinical management of mTBI.

5. Limitations

This pilot study’s sample size was a limitation, as only 17 participants had good ECG
and accelerometry data. The most plausible explanation for the signal quality issue was
suboptimal coupling between the BioHarness™ and the skin. While deployment of a
BioHarness™ is very similar to that of a commercial heart rate monitor, it appears that
additional time needs to be dedicated to ensure optimal coupling and resulting data quality.
Another limitation was that we could not evaluate whether age or sex impacted our results,
due to low sample size. These factors have been associated with differences in recovery
outcomes following mTBI [61].

The decision to use the k-folds method of implementing LOOCV was due to limited
sample size. A more common approach would have been to randomly assign 66% of
participants (and their corresponding time series data) for training the model and to test
model performance on the remaining participants. Utilising a LOOCV approach was an
appropriate compromise, since our aim was to assess potential clinical utility of how a
model trained on current data might perform if a new patient completed a BCTT wearing a
BioHarness™, while making the most of the limited data available. There was an imbalance
in the number of participants, with physiological (n = 12) and vestibular (n = 5), PSC in
this pilot study. While this class imbalance is suboptimal for analysis, as it may contribute
to overly optimistic classification accuracy, it is clinically representative of our previous
clinical findings. Vestibulo-ocular PSC was considered as the positive class in this study,
since it is less common and a predictor of worse recovery outcomes. However, physiological
PSC was only labeled as the negative class since most participants belonged to this class.
Even if results were biased towards identifying physiological PSC, this could still be viewed
as clinically meaningful, as it could assist in management decisions. To account for this
class imbalance, results depicted in Figure 5 could have been better visualised using a
Precision/Recall curve rather than a ROC curve [62]. Because of the study aim, we chose
to present ROC curves, since both classes are clinically meaningful and ROC curves are
more familiar to clinicians [63]. To address this compromise, we also reported PPV and
NPV, as PPV is associated with Precision/Recall [62], and these terms are commonly used
in medicine [64]. Finally, these preliminary findings were from a sample of athletes who
sustained mTBI, therefore the potential for these findings to be applicable to individuals
who sustain mTBI due to non-sport-related causes is unknown.

6. Future Directions

Recruitment of a greater sample would overcome these limitations outlined above.
Efforts to do so appear justified based on our pilot findings. A larger study should prioritize
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recruiting males and females, ranging in age from children to adults who have sustained
mTBI due to sport and non-sport-related causes. Additionally, patients presenting with
mixed PSC should also be included. Such a sample would enable thorough inquiry into
the generalizability of our pilot findings.

7. Conclusions

This is the first study to explore whether a deep learning approach could accurately
classify PSCs in mTBI patients using sensor data collected during exertion testing. Our
results provide proof of concept that incorporation of wearable sensors during BCTT and
machine learning techniques have potential to assist in decision making for clinicians
working with mTBI patients. More generally, this work outlines how deep learning can be
leveraged on small datasets to explore whether features within available data can classify
clinically relevant groups, before investing resources to acquire more data to understand
how the model differentiates groups.
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