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Abstract: Smoothness is a hallmark of skilled, coordinated movement, however, mathematically
quantifying movement smoothness is nuanced. Several smoothness metrics exist, each having its
own limitations and may be specific to a particular motion such as upper limb reaching. To date,
there is no consensus on which smoothness metric is the most appropriate for assessing cycling
motion in children with cerebral palsy (CP). We evaluated the ability of four preexisting metrics,
dimensionless jerk, spectral arc length measure, roughness index, and cross-correlation; and two new
metrics, arc length and root mean square error, to quantify the smoothness of cycling in a preexisting
dataset from children with CP (mean age 13.7 ± 2.6 years). First, to measure the repeatability of each
measure in distinguishing between different levels of un-smoothness, we applied each metric to a set
of simulated crank motion signals with a known number of aberrant revolutions using subjects’ actual
crank angle data. Second, we used discriminant function analysis to statistically compare the strength
of the six metrics, relative to each other, to discriminate between a smooth cycling motion obtained
from a dataset of typically developed children (TD), the control group (mean age 14.9 ± 1.4 years),
and a less smooth, halted cycling motion obtained from children with CP. Our results show that
(1) ArcL showed the highest repeatability in accurately quantifying an unsmooth motion when the
same cycling revolutions were presented in a different order, and (2) ArcL and DJ had the highest
discriminatory ability to differentiate between an unsmooth and smooth cycling motion. Combining
the results from the repeatability and discriminatory analysis, ArcL was the most repeatable and
sensitive metric in identifying unsmooth, halted cycling motion from smooth motion. ArcL can hence
be used as a metric in future studies to quantify changes in the smoothness of cycling motion pre-
vs. post-interventions. Further, this metric may serve as a tool to track motor recovery not just in
individuals with CP but in other patient populations with similar neurological deficits that may
present with halted, unsmooth cycling motion.

Keywords: roughness index; spectral arc length; cycling rhythm; cycling biomechanics; cerebral
palsy; smoothness

1. Introduction

Cerebral palsy (CP) is a non-progressive disorder of movement and posture that results
from an injury to the infant or fetal brain, resulting in impaired sensorimotor coordination
and/or regulation of muscle tone [1]. Individuals with CP typically present with reduced
muscle strength [2] muscle tone abnormalities, co-contraction of agonist and antagonist
muscle groups [3–5], and poor selective voluntary motor control [6]. Recumbent stationary
cycling is a safe and practical exercise modality for those lacking the dynamic postural
control and strength necessary for exercising in an upright position. Cycling has shown
therapeutic benefits in patients with stroke [7,8] and children with CP [9].

Muscle co-contraction and altered motor control characteristics of children with CP,
however, contribute to irregular and halted progression of cycling crank revolution result-
ing in poor smoothness of cycling. Smooth movements are an attribute of a well-developed
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motor control [10]; accordingly, smoothness of upper limb movement is used as a marker
of motor recovery in patients with stroke [11]. Thus, the need for quantification of move-
ment smoothness to assess motor learning and recovery has resulted in various metrics
to quantify different aspects of a movement’s profile [12]; nonetheless, the utility of such
measures are mixed even when unsmooth movements are obviously present [13].

Although smoothness is regarded as a hallmark of skilled and coordinated movement,
and despite the importance of cycling interventions in rehabilitation, there are limited
studies on quantifying the smoothness of cycling, especially in the CP population. Thus, to
track motor recovery in children with CP following cycling training protocols, a sensitive
metric to quantify cycling smoothness is essential. To find such a metric, we evaluated
three conventional, one recently proposed in our previous work, and two new metrics
proposed here, with our CP cycling data set.

While smoothness is an intuitive concept, it requires a precise mathematical and nu-
merical method for its quantification. Balasubramanian et al. [14] introduced a systematic
approach to identify an appropriate smoothness metric for assessing sensorimotor impair-
ment and motor learning. Intuitively, a desirable metric will measure the shape of motion
independent of its duration and amplitude [13,14]. In addition, Balasubramanian et al.
suggested that a reliable metric must be sensitive to changes in movement parameters
within the physiological range, and it must be robust and computationally inexpensive
for practical implementation [14]. Therefore, we compared the ability of the following
six potential metric candidates that have the desired characteristics to quantify cycling
crank angle smoothness: dimensionless jerk [13]; spectral arc length metric (SALM) [14];
roughness index (RI) [15]; cross-correlation (Xcorr) [16]; arc length (ArcL); and root mean
square error (RMSE).

Jerk, the time-derivative of acceleration, has been used to quantify smoothness, as a
measure of motor control, in patients with Parkinson’s Disease [17,18], Huntington’s Dis-
ease [19], and post-stroke populations [20]. Being independent of amplitude and duration
of motion, unlike most other jerk-based measures, dimensionless jerk (DJ), proposed by
Hogan et al. [13], and its logarithmic version, proposed by Balasubramanian et al. [12]
have shown more sensitivity, reliability, and robust assessment in comparison to the other
jerk-based smoothness metrics.

SALM is the arc length of the envelope of the speed profile in the frequency domain.
It demonstrated promising results in quantifying the smoothness of upper extremity reach-
ing motion in children with CP [21,22]. SALM was used successfully to classify upper
extremity motion in-patient with neurological disorders (n = 10) into five levels of motor
impairments [23].

The capability of DJ and SALM in measuring the smoothness of upper extremity
motion was evaluated against other smoothness measures in individuals with stroke [12]
and CP [22]. Balasubramanian et al. compared the number of peaks, local maxima, in
the speed profile of the motion, root mean squared jerk, normalized mean absolute jerk,
DJ, speed ArcL, and SALM [12]. They measured the smoothness of the upper extremity
reaching motion in two post-stroke survivors and one healthy adult, and in simulated data,
finding that SALM is the most robust metric in the presence of noise, inter-submovement
intervals, and motion arrest. SALM was the most sensitive metric in quantifying improved
smoothness of arm motion in stroke population; speed profile ArcL and DJ were the closest
competitors to SALM Quijano-González et al. [22] and Rincón Monteset et al. [21] evaluated
DJ, SALM, and numbers of motion peaks in distinguishing upper extremity motion of
children with CP (n = 3 for Rincón Montes et al., n = 10 for Quijano-Gonzalez et al.) and
typically developing peers. Both studies demonstrated the SALM and DJ could differentiate
between CP and TD motion and for affected and less-affected sides in subjects with CP,
with SALM showing more sensitivity. Logarithmic DJ and SALM surpass the number of
local peaks in the speed profile, in all of the aforementioned studies; thus, the number of
peaks method was not included in our evaluation.
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Speed profile’s ArcL, i.e., the arc length of the speed signal, also showed a high level
of sensitivity and reliability in comparisons by Balasubramanian et al. [12]. We included a
modified version of the speed ArcL in our comparison; instead of measuring the arc length
of the speed profile as proposed by Balasubramanian, we used the crank angle’s arc length,
i.e., the arc length of the position profile.

Chen et al., pioneers in measuring cycling smoothness in rehabilitation applications,
proposed the roughness index, RI, for quantifying the smoothness of cycling in post-stroke
survivors. The RI uses the curvature of the instantaneous crank speed, revolution per
minute (RPM), to measure the cycling smoothness [15]; the lower the RI indicates the
greater smoothness of the cycling motion. The RI metric was mostly used to characterize
cycling in the population with stroke [15] or to quantify the effects of the functional electrical
stimulation [24], visual feedback [25], or maximal workload [26] on cycling performance.

XCorr was used as a measure of the similarity between the two signals [27,28] by
comparing the ideal crank rotation in a cycling system to the observed crank rotation in the
sagittal plane. When used as a smoothness metric, the higher the XCorr factor, the greater
the similarity of the subject’s crank motion to the ideal crank motion. In a study conducted
by Sansare et al. [16], XCorr could successfully differentiate the cycling smoothness of
children with CP and typical development (TD (p < 0.0001). To further evaluate this metric,
XCorr is included in our comparison to assess its performance in comparison with the
described metrics. We also propose another intuitive metric called RMSE, which is the root
mean square error (RMSE) between the subject’s crank motion and the ideal crank motion.

The objective of this study was to compare the repeatability and sensitivity of six
different smoothness metrics in distinguishing between different levels of un-smoothness
in cycling data from children with CP. To this end, we followed a two-fold approach; first,
to measure the repeatability of each measure in distinguishing between different levels of
noise, as representations of un-smoothness. Second, we used discriminant function analysis
to statistically compare the strength of the six metrics relative to each other to discriminate
between a smooth cycling motion obtained from a dataset of typically developed children
(TD), and less smooth, halted cycling motions obtained from children with CP.

2. Materials and Methods
2.1. Participants

CP group: the CP data set is from a larger study. Thirty-one ambulatory adolescents
with CP (mean age 13.7 ± 2.6 years, 6 females) with gross motor function classification
system (GMFCS) [29] levels II-IV were recruited through the outpatient CP clinic at Shriners
Hospital for Children, Philadelphia, and local referral sources. Institutional Review Board
approval and informed consent and assent were obtained. All subjects with CP underwent
screening by a physical therapist for the inclusion and exclusion criteria specified in Table 1.
There were no criteria for the weight of participants. The result of the cycling intervention
is previously published by our group [30]. Here, we used the crank angles collected from
one of the cohort groups in the study, only to assess the capabilities of the aforementioned
metrics in quantifying smoothness when subjects did not cycle smoothly.

Control group (TD): The data from TD controls were obtained from a pre-existing
dataset of healthy, typically developing children (mean age 14.9 ± 1.4 years, 7 females).
TD datasets were obtained from a larger study [31]. The inclusion criteria were (1) age
(13–19 years); (2) the ability to maintain a sitting position; (3) a minimum of 15◦ of plan-
tarflexion range of motion [31].

2.2. Data Collection

A commercially available recumbent sport tricycle (www.kmxkarts.co.uk) fitted with
shank guide orthoses to control for excess hip adduction and abduction movement, was
used for the CP group (Figure 1A) [32]. The TD group used a semi-recumbent, free-standing
Restorative Therapies, Inc. bicycle (Baltimore, MD) attached to a therapy bench (Figure 1B).
Despite the different cycling systems for CP and TD groups, anthropometric differences

www.kmxkarts.co.uk
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of individuals within and across groups were minimized by standardizing positioning in
both cycling setups (Figure 1C). Additionally, the force transducer pedals used for the TD
group by Johnston et al., [31] also used on the recumbent tricycle used for the CP group
in Sansare et al. [16,30], which further standardized foot and shank positioning across the
two datasets. The bicycle crank and spindle assembly for both systems were instrumented
with sensors to indicate crank position and cadence. Both groups cycled for three trials of
15–30 s, depending on their capabilities. Data were analyzed using customized software
(MATLAB The Mathworks, Inc., Natick, MA, USA). Note that, here we used the TD dataset,
from Johnston et al. [31], as the representative dataset of smooth cycling, and the CP
dataset, from Sansare et al. [30], was used as the representative dataset of unsmooth cycling.
The crank angle data from the CP group were visually less smooth when compared with
those of TD group. The focus of this paper is comparison between six different types of
smoothness metrics and not comparison between CP versus TD groups. The result of
cycling intervention on CP and comparison between CP and TD groups were published in
Sansare et al. [30], and Johnston et al. [31], respectively.

Table 1. Inclusion criteria.

Inclusion Criteria Exclusion Criteria

Ages 10–18.
Diagnosis of spastic CP.

Lower-extremity orthopedic surgery or traumatic
fracture within the past 6 months.

GMFCS II, III, or IV.
Adequate range of motion of the hips,
knees, and ankles to allow pedaling.
Visuoperceptual skills and
cognitive/communication skills to follow
multiple-step commands for attending to
exercise and data collection.
Ability to communicate pain or discomfort
with testing and training procedures.

Lower-extremity joint pain during cycling.
Spinal fusion extending to the pelvis.
Hip, knee, or ankle joint instability or dislocation.
Lower-limb stress fractures in the past year.
Symptomatic or current diagnosis of cardiac
disease as assessed by the American Heart
Association guidelines for cardiac history.
Current pulmonary disease or asthma and taking
oral steroids or hospitalized for an acute episode in
the past 6 months.
Severe spasticity in legs (score of 4 on the Modified
Ashworth Scale).
Severely limited joint range of motion or
irreversible muscle contractures that prevented
safe positioning on the cycle.
Diagnosis of athetoid or ataxic CP.
Less than six months following Botox injections to
the leg muscles.

2.3. Data Analysis

We discarded the first and the last revolution of the crank angle to minimize the
effects of acceleration and deceleration, respectively. Crank angle data were low-pass
filtered at 5 Hz (4th order Butterworth) and plotted against time, resulting in a sawtooth
waveform indicating the angle of the recumbent cycle’s crank as the trial progressed.
Five Hz frequency was chosen by Frequency power analysis of the crankIS. There is a
discontinuity in the crank angle as it crosses from 360◦→0◦ (Figure 2A [16]), i.e., as it
transitions from the end of one revolution to beginning of the next revolution. To eliminate
this discontinuity, we converted the crank angle to a linear form by concatenating the angle
data in series. The resultant angle-in-series data (crankIS) thus consists of a time series
representing the angular progression of the crank from zero to N ×360◦, where N is the
number of revolutions (Figure 2B [16]). To quantify the deviation of each subject’s crankIS
from the theoretically smooth crank angle, the ideal crank angle (crankIDL), was defined
as the straight line that connected the beginning to the end of angle-in-series data points.
This straight line accounted for the subject-specific cycling duration; however, note that
this ideal scenario is not practically achievable as there are acceleration and deceleration
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segments in subjects’ crank-in-series, no matter how smooth they are, resulting in an S-
shape trajectory for any subject. The first derivative of the crankIS was used to measure the
instantaneous RPM (crankRPM). See Table 2 for the summary of the terms.
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Figure 1. Recumbent cycling setup. (A) the set-up for the CP group. (B) semi-recumbent set-up
used in the TD group. (C) Adjusted components in both set-ups based on subject anthropometrics.
(1) Seat-to-pedal distance = 85% of the distance from the greater trochanter to the base of the calca-
neus. (2) Seat-to-greater trochanter distance = 15% of the distance from the greater trochanter to the
base of the calcaneus. (3) Crank arm length = 30% of tibial length. The seat back of (C) emulated
the angle of the recumbent cycle seat of (A) and was placed comfortably behind the subject while
maintaining the seat to greater trochanter distance.
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Figure 2. Schematic representation of crank angle smoothness. (A) Depicts crank angle (plotted
against time in seconds) for 3 representative revolutions from a child with CP, each color depicting
one revolution from 0◦ to 360◦, thick vertical black lines indicate the discontinuity between 360◦ and
0◦ at the end of each revolution. (B) Depicts the concatenation of the three revolutions resulting in a
time series, crankIS, representing the angular progression of the crank from zero to 3 × 360. The dash
line is the hypothetical smoothest progress of crank, crankIDL [16].
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Table 2. Summary of the terms.

crankIS A line form by concatenating the angle data of each revolution in series

carnkRPM The instantaneous RPM of crankIS

crankIDL That connected the beginning to the end of angle-in-series data points

crankSim The simulated crankIS using the aberrant revolutions of CP subjects

2.4. Smoothness Metrics

DJ. To measure DJ, the crank-in-series jerk, the third derivative, was squared and integrated
over time. The dimension of this integration is length squared over the 5th power of time.
Thus, to become dimensionless, DJ was defined by Equation (1) [13]:

DJ =
(
∑N×360◦

n=0 crank
...
RPM(n)

)
D5/A2 (1)

where N is number of revolutions, D is the duration, and A is the amplitude of crankIS. To
smooth the jerk signal, it was low passed filtered (fc = 5 Hz, 4th order Butterworth) using
MATLAB’s zero-phase digital filter, filtfilt. The filtering was in addition to the preprocessing
of the crankIS.
SALM is defined as the arc length of the crankRPM ‘s envelope in the frequency domain,
i.e., the envelope is its Fourier spectrum magnitude [14]. The frequency range to measure
SALM is defined based on the target motion using user-defined parameters [14].
ArcL is defined as the length of the crankIS curvature. The result of preliminary statistical
analysis showed there was no significant difference between measuring ArcL of the speed
profile, crankRPM, as suggested by Balasubramanian et al. [12], and measuring ArcL of
crankIS, in our application. Therefore, we chose the simpler approach, ArcL of crankIS. This
metric was then normalized to the length of the crankIDL, calculated using the Pythagorean
theorem.
RI was defined as the curvature of the six-order polynomial curve fitted to the crankRPM,
using the Equation (2) [15]:

RI =
N×360◦

∑
n=0

|dcrankRPM/ds| (2)

where s is the crank angle.
XCorr was defined as the maximum of the cross-correlation of the crankIS and crankIDL.
To make XCorr dimensionless, the maximum of cross-correlation was normalized to the
maximum of crankIDL’s autocorrelation, the cross-correlation of the signal with itself. The
results were expressed as a smoothness metric. Further detail on XCorr can be found in
study by Sansare et al. introducing this metric [16].
RMSE was defined as the RMSE between the crankIS and the crankIDL.

For all the aforementioned metrics the lower the outcome the smoother the cycling.

2.5. Simulated Signals Using Real Aberrant Cycles

To objectively quantify the increasing level of un-smoothness, three aberrant revolu-
tions from CP subjects’ crank angles were used to generate crankIS simulations. A physical
therapist visually inspected the CP subjects’ crank angles and extracted three revolutions
that consistently represented aberrant patterns in multiple subjects. These patterns showed
different levels of un-smoothness, (Figure 3). The chosen revolutions were interpolated
to 12 k samples. Six simulated signals were then generated by randomly replacing the
revolutions of a crankIDL (N = 6 revolutions, A = 2160◦, 10 rpm, and 2 kHz sampling
frequency) with the three aberrant revolutions (Figure 3). We call these simulated signals
crankSims. The detailed description of crankSims is as follow:
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crankSim1: aberrant revolution #1 (Figure 3) randomly replaced a revolution in
the crankIDL. crankSim2: aberrant revolution #1 randomly replaced two revolutions in
the crankIDL. crankSim3: aberrant revolution #1 randomly replaced two revolutions in
crankIDL and revolution #2 randomly replaced one revolution. crankSim4: aberrant revolu-
tions #1 and #2 randomly replaced 2 revolutions, each. crankSim5: aberrant revolutions #1
and #2 randomly replaced two revolutions in crankIDL each, and revolution #3 randomly
replaced one revolution. crankSim6: aberrant revolutions #1, #2, and #3 randomly replaced
2 revolutions of crankIDL, each.

The repetition of aberrant revolutions in the crankSim 2, 4, and 6, is to evaluate the
sensitivity of the metrics to an equal amount of increasing un-smoothness using the same
aberrant revolution used in the previous crankSim, i.e., crankSims 1, 3, 5.

The crankSims are depicted in Figure 4.
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To evaluate the repeatability of the metrics in differentiating between various levels of
un-smoothness, we shuffled the order of revolutions of each crankSims five times, resulting
in five sets of crankSims. We used each of the six metrics to then compute the smoothness of
the crankSims of each set, depicted with different colors in each panel of Figure 5. Therefore,
we have five values for each crankSims, and ideally, the shuffling should result in a similar
smoothness value calculated by each metric.
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Figure 5. The repeatability of the metrics in differentiating between various levels of un-smoothness,
each color represents the output of each metric (XCorr, RMSE, RI, SALM, ArcL, and DJ) in quantifying
the un-smoothness level of each set of crankSims, crankSims1 to 6.

2.6. Statistical Analysis

We evaluated the diagnostic (discriminant) validity of the six different smoothness
metrics for evaluating cycling smoothness in two groups: children with CP and those with
typical development TD. Dependent variables were the six different metrics: DJ, SALM,
ArcL, RI, Xcorr, and RMSE.

Data were analyzed using a one-way between-subjects multivariate analysis of vari-
ance (MANOVA). Secondary analyses used a direct-entry (simultaneous) discriminant
function analysis (DFA) to evaluate the relative strength of each dependent variable (DJ,
SALM, ArcL, RI, Xcorr, and RMSE) in discriminating between the TD and CP cycling
smoothness in comparison to each other. In essence, DFA results in a discriminant function
that uses a combination of the dependent variables to maximize the separation between
the two groups, in this case, the CP and TD cycling smoothness. The structure matrix from
the DFA will be interpreted using the loadings, which are the correlations between each
smoothness metric and the discriminant function. A larger loading implies a larger absolute
correlation between the discriminant function and the variable and in turn implies a larger
contribution to the discrimination between TD and CP cycling smoothness. Loadings above
0.71 are considered excellent, 0.71–0.63 are very good, 0.63–0.55 are good, 0.55–0.45 are fair,
and below 0.45 are poor [33]. By ranking the metrics by their loadings, we were able to
rank the metrics by their ability to distinguish between different smoothness levels during
cycling. Finally, to cross-validate our results and to evaluate the accuracy of the DFA in
predicting group membership, we performed a classification analysis after the DFA. That
is, the classification analysis compared the “predicted group membership” based on the
results from the DFA with the actual group membership as CP or TD to give a percentage
of the correct classifications. Using the same sample that was used for the DFA for the
classification analysis, however, might introduce a bias. To avoid this bias, the jack-knife
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procedure [34], which resamples the data by sequentially leaving one observation out
during each iteration of resampling, was used.

3. Results

Figure 5 demonstrates the repeatability of each metric. In the case of a metric with
acceptable repeatability, first, we expect the colored lines to be very close to each other,
i.e., show low variability at a similar level of un-smoothness resulting from shuffling the
revolutions; in an ideal scenario, colored lines would overlap entirely, i.e., the metric
outputs similar values for all five shuffling of each specific crankSims. Second, because the
un-smoothness level increases by adding more aberrant cycles, we expected the output of
each metric to increase, preferably linearly. ArcL, RMSE, and DJ satisfy both of the above
expectations, i.e., each colored line has a similar value at each crankSims and shows an
increase in the smoothness from crankSims 0 to 6 (Figure 5). DJ showed more variability
between shufflings, in comparison with ArcL and RMSE; it could not maintain the desired
linear ascending trend for crankSim2. Overall, ArcL demonstrated a linear increase in
smoothness value as the crankSims became more unsmooth and the shuffling resulted in
almost identical ARcL values. XCorr, RI, and SALM, however, showed a high level of
variability at each crankSims and were unsuccessful in following the ascending trend.

Distributional statistics are presented separately for each group (Table 3). The MANOVA
was significant (Pillai’s Trace = 1.00, F = 16611.935, df [6,34], p < 0.001), showing that the
smoothness metrics were significantly affected by the membership in the CP or TD group.
While the assumption of multivariate homogeneity among the covariance matrices was not
satisfied, this problem was circumvented through the use of Pillai’s trace [35].

Table 3. Cycling smoothness metrics for the CP and TD groups.

CP TD

Cycling Smoothness M SD M SD

DJ 0.031 0.119 0.007 0.010

SALM −2.871 0.428 −11.900 0.374

RI 5523.579 14,136.316 2.281 1.156

ArcL −0.008 0.006 −0.997 0.001

XCorr 0.039 0.058 0.006 0.003

RMSE 120.165 155.602 4.298 1.804

Follow-up comparisons to MANOVA using DFA revealed a discriminant function that
was statistically significant (Wilks Λ < 0.001, χ2 = 325.642, df [6], p < 0.001). The DFA results
were interpreted using pooled within-group correlations from the structure matrix (see
Table 4). Loadings above 0.71 are considered excellent, 0.71- 0.63 are very good, 0.63–0.55
are good, 0.55–0.45 are fair, and below 0.45 are poor. In essence, the metric with the highest
loading implies that this metric has a greater ability to discriminate between a CP and TD
cycling pattern [32]. Using these criteria established by Comrey et al. [33], the pattern of
correlations showed good loading from ArcL and DJ (0.576 and 0.545, respectively), while
the remaining four metrics showed poor loadings. Because ArcL and DJ have the most
contributions to the discriminant function, these variables have the most discriminatory
abilities among the six smoothness metrics in identifying differences between different
smoothness levels during cycling.
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Table 4. Regression analysis summary for variables measuring cycling smoothness depicting the
loadings for each metric in decreasing order, i.e., the metrics as listed from top to bottom as highest to
lowest in their discriminatory ability between CP and TD cycling smoothness. Loadings above 0.71
are considered excellent, 0.71–0.63 are very good, 0.63–0.55 are good, 0.55–0.45 are fair, and below
0.45 are poor.

Variable Within-Group Correlation

ArcL 0.576
DJ 0.545

RMSE 0.086
SALM 0.064
Xcorr 0.061

RI 0.045
Note: ArcL = arc length, SALM = spectral arc length of instant speed, RMSE = root mean square error from ideal
cycling, XCorr = cross-correlation method, RI = roughness index, and DJ = dimensionless jerk.

The validity of our DFA analysis in discriminating between the TD and CP cycling
patterns was evaluated through a classification analysis. The classification rate of 100%
demonstrated that all participants in the CP and TD groups were correctly classified into
either group based on the DFA results. This demonstrates the high accuracy of the DFA in
predicting group membership.

4. Discussion

The objective of this study was to find the best metric to quantify CP cycling smooth-
ness, using four previously proposed metrics, DJ, SALM, RI, and Xcorr, and two newly
proposed metrics by our group, ArcL, and RMSE. To do so, first, we used a set of simulated
signals, crankSims, with different levels of known un-smoothness by adding aberrant cycles.
Thereby, we could visually inspect each metric’s capability in differentiating between differ-
ent levels of un-smoothness in a repeatable manner. The result of our analysis showed ArcL,
DJ, and RMSE have the highest repeatability, i.e., less variability at each crankSim value, and
can maintain an ascending trend. Secondly, to statistically quantify each metric’s sensitivity
in discriminating between a smooth and less smooth cycling motion, we performed DFA
on the six metrics. Our results show that ArcL, with loading of 0.576 (within the good
range), and demonstrating robustness in the repeatability evaluation, was the best metric in
identifying unsmooth, halted cycling motion from smooth cycling. DJ, on the other hand,
despite similar good loading, 0.545, did not show the same level of repeatability as ArcL.

ArcL vs. SALM. A desirable smoothness metric would be computationally inex-
pensive [14]. One of the outstanding characteristics of the ArcL is that it is not only
computationally inexpensive but is also easily comprehendible and implementable. As the
unsmoothness level increases, the length of the arc to reach the final crank angle, N × 360◦,
also increases. In the study by Balasubramanian et al. [12], the speed profile ArcL was also
a reliable and sensitive metric to quantify upper extremity motion in healthy adults and
the stroke population; however, SALM was outperforming their metric. Quijano-Gonzalez
et al. also found that SALM was also the best metric to quantify upper extremity motion
in the CP population [21]. One reason for the altered ranking of ArcL outperforming
SALM in our study to the aforementioned studies is the nonexistence of submovement
intervals in the crankIS motion signal we used. Balasubramanian et al. demonstrated that
the sensitivity of the speed profile’s ArcL decreases as the inter-submovement intervals
increases in the intermittent upper extremity motion [12]. This sensitivity may also be
the case for the position-based ArcL metric tested in our study. The manner in which we
developed the crankIS, enabled us to eliminate the crank angles’ submovements and to
produce a continuous motion, which might contribute to the superior performance of the
ArcL in quantifying cycling smoothness.
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Temporal organization sensitivity. Balasubramanian et al. concluded that any metric
could not be used on an entire rhythmic movement to estimate smoothness, because
a candidate metric may be sensitive to the temporal organization of the motion [14];
e.g., changing the speed of a submovement and the length of the interval between each
submovement can lead to disparate values for the similarly smooth signals. Note that,
although cycling is continuous motion, the crank angle consists of multiple 0–360◦ crank
rotations. Depending on the sensor used, e.g., if an absolute encoder is used, these rotations
segment the motion into submovements, which together form a sawtooth signal. By
generating the crankIS data for each trial, we eliminated sawtooth intermittency to alleviate
the effect of the temporal organization by producing a continuously progressive crank
angle signal. Alternatively, if an incremental encoder without a reference point is used
to collect the crank angle signal, we will have this continuously progressive angle signal
with the need for extra processing steps required for generating crankIS. CrankIS permits
generating the three smoothness metrics, ArcL, XCorr, and RMSE. These three metrics
have the capability of analyzing the entire movement sequence to capture smoothness in
its entirety.

XCorr. Other metrics such as SALM and RI have been used to characterize smoothness
of movement in upper limb motion. Xcorr showed promising results in differentiating
between CP and TD cycling smoothness in the study by Sansare et al. [16]. Despite Xcorr
showing merit in detecting smoothness levels when used independently, when the smooth-
ness metrics were compared against each other, the ArcL accounted for the most between-
group variance in the data and hence, was identified as the most sensitive measure.

Context-specific metrics. Because most cycling systems, like the one used in this study,
have one degree of freedom, we could assume a subject-specific ideal scenario (crankIDL)
for our cycling intervention, which matched the duration and number of revolutions
of each subject. The crankIDL became closer to the physically achievable scenario after
the elimination of the initial (acceleration) and the final (deceleration) revolutions. The
existence of this ideal scenario enabled us to propose the XCorr and RMSE metrics. The
ideal scenario might be difficult to assume in other contexts, such as gait smoothness, which
limits the application of XCorr and RMSE. Additionally, in gait applications, ArcL may
be more challenging to compute, as the increase in the prominence of peaks and valleys
in some motion signals (e.g., shank angular velocity during gait) may be characteristics
of desired motion, while it also increases the arc length of the signal. Thus, it would be
hard to isolate the contribution of unsmooth motion from the more pronounced peaks
and valleys in the signal. In contrast, SALM and DJ can be more universally used in
various applications.

Limitations. Aside from the limited number of subjects included in our comparison,
one of the major limitations of this study is that it only informs us about the ability of the
metrics to distinguish between CP and TD cycling, where the differences in the smoothness
levels might be more obvious compared to more subtle differences that might occur pre-
and post-intervention. Even though the differentiation between CP and TD was not the
objective of quantifying cycling smoothness, this differentiation was used because it is
known that TD cycling is smoother than that of CP; this could be used as a benchmark to
assess the strength of each metric to correctly detect such differences. Furthermore, because
we recruited children aged 10–19 years, i.e., those at prepuberty, puberty, or postpuberty,
it is possible that some developmental changes due to puberty stages may contribute to
potential inter-group differences. Lastly, the habitual physical ability of the TD group may
be higher than the CP group, and this may also contribute to some inter-group differences.
While both these factors, i.e., changes due to puberty and habitual physical activity may
affect cycling smoothness, it is beyond the scope of this study to address these contextual
factors in-depth.
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Implications, applications, and future directions. Despite the development of sev-
eral smoothness metrics in recent years, there was a lack of a study that compared their
performance on cycling motion. By analyzing the repeatability of the metrics on simu-
lated data and the discriminatory ability of the metrics on CP and TD datasets, this study
provides the first step in identifying a repeatable, sensitive metric for analyzing cycling
smoothness in children with CP. Additionally, the results of this study can be extrapolated
to other clinical populations (e.g., stroke) that have similar impairments such as spasticity,
muscle co-contraction, and muscle weakness that might lead to unsmooth and halted
cycling motion. While ArcL demonstrated the most promising repeatability and sensitivity
with our dataset, future studies should look at its sensitivity in discriminating more subtle
changes in smoothness such as pre- versus post-intervention improvements.

5. Conclusions

In our comparison of six metrics (DJ, SALM, RI, XCorr, which are previously proposed,
and RMSE, and ArcL, which are proposed in this study), when visually inspected using
simulated crank angles, ArcL, i.e., the length of the crank angle signal, demonstrated a
high level of repeatability and sensitivity in differentiating decreasing levels of smoothness.
DJ, a jerk-based metric, was the closest competitor. Both metrics, ArcL and DJ, showed a
good level of sensitivity in differentiating TD and CP cycling. The proposed prepossessing
technique in combination with ArcL may be used in future studies to quantify various
levels of improvement in motor control post-cycling interventions.
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