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Abstract: Gait analysis has applications in medical diagnosis, biometrics, and development of
therapeutic rehabilitation interventions (such as orthotics, prosthetics, and exoskeletons). While
offering accurate measurements, gait laboratories are expensive, not scalable, and not easily accessible.
In a pandemic-afflicted world, where telemedicine is crucial, there is need for subject-driven data
remote collection. This study proposed a remote and purely subject-driven procedure for reproducible
and scalable collection of real-life gait data. To evaluate the feasibility of our proposed procedure, the
spatiotemporal parameters of gait were compared across two real-life terrains using a smartphone
application on a focus population of healthy middle-aged individuals. Previous research validated
smartphone motion sensors as accurate instruments for gait analysis, but required highly supervised,
controlled environments on smaller sample sizes, thereby limiting application in real-life gait analysis.
To this end, a custom-designed mobile application was developed to record lower extremity angular
velocities on 69 healthy middle-aged adults; factoring in a subject-driven data submission error rate
(DSER) of 17.4%, there were 57 usable data sets for analysis. Comparisons of spatiotemporal gait
parameters across primary outcome measures on grass versus asphalt revealed significant measurable
increases in gait duration (stride time), valley depth (max swing phase), and peak-to-valley (max
stance phase to max swing phase). These results demonstrated the feasibility of using smartphones
for a remote and fully subject-driven gait data collection. Additionally, our data analysis showed that
even in short trials, a physical environmental load has a substantial and measurable effect on the gait
of the understudied middle-aged population.

Keywords: remote gait analysis; smartphone application; wearables; spatiotemporal gait parameters;
subject-driven research

1. Introduction

The study of ambulation is termed gait analysis. Human gait is measured via the gait
cycle, which is broken down into stance and swing phases as shown in Figure 1.

During a gait cycle, the lower extremity’s angular velocity around the mediolateral
axis loosely resembles a sine wave, seen in Figure 2. Heel strike, or initial contact, occurs
with the initial increase in angular velocity from zero (starting at the initial zero-crossing).
This then builds the stance phase, where the angular velocity increases to a maximum and
then returns to zero at toe-off (the second zero-crossing). From there, the velocity continues
to increase in a negative direction until the maximal of the mid-swing and then it changes
direction again towards positive, going back up to zero, for the next ipsilateral heel strike
(the third zero-crossing). Note that the third zero-crossing of a given gait cycle is in fact the
first zero-crossing of the next gait cycle.
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Figure 1. The gait cycle—illustrating the phases of stance and swing and periods of single- and
double-limb support.

Figure 2. Graph and breakdown of angular velocity graph of the gait cycle correlated with ambulation
diagram (adapted from Grimmer, et al., 2019). Angular velocity graphed over time corresponds
to gait cycle phases; specifically, the zero-crossings denote beginning/ending of the stance and
swing phases.

Gait analysis can be performed for diagnostic, therapeutic, or identification purposes,
which makes it an effective tool for biomedical applications [1–4]. For diagnostic purposes,
gait analysis can be used as a screening tool for cognitive decline in neuromuscular deficits
(such as those relating to stroke, Parkinson’s, and Alzheimer’s patients) [1,3,5] and in some
cases, for assessing improvement/recovery [6]. Abnormal gait characteristics, especially
in the elderly, have been proven to be an accurate indicator of fall risk and other possible
physical impairments [1,3,5,7], and pathological gait can occur after a medical event or can
be a proxy for certain medical diagnoses [1,3,6].

For therapeutic purposes, gait analysis is integral in designing assistive devices such
as prosthetics, orthotics, exoskeletons, and rehabilitation [2]. In fact, the development of
such devices is dependent on easily accessible gait measurement and analysis. Developing
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strategies to create these datasets is important in artificial intelligence as a growing strategy
for controlling such devices [8]. Thus, collecting volumes of gait data both in the lab and
in real-world situations is a prominent factor in improving the function of such assistive
devices [9].

Traditionally, gait measurement has been largely conducted through gait laboratories
located in research facilities and hospital settings, using an array of cameras and force plates
to track an individual’s kinetics and kinematics for real-time or offline analysis [10,11].
These labs provide a highly accurate means of recording and analyzing gait; however,
they are suboptimal for widespread applications. Due to being costly to establish and
maintain, traditional gait labs take up dedicated indoor laboratory space and require
trained personnel to operate, as shown in Figure 3, and are not scalable for applications
requiring a large volume of subjects [8]. These factors make gait labs generally difficult
to access, especially by the public, smaller research groups, or those located in remote
settings [2]. Additionally, the environment within gait labs is highly fixed, providing little
opportunity to observe or reproduce gait in real-life conditions such as various walking
terrains during the activities of daily living.

Figure 3. Gait analysis in the Neuromuscular Biomechanics Laboratory at the University of Delaware
for gait analysis. The lab includes floor-mounted gait pad with wall-mounted sensors, computers
for data acquisition, sensors applied to patients, and other fixed features. Key: (1) IR cameras—
eight camera motion capture systems, (2) harness—overhead safety harness and support system,
(3) markers—reflective, (4) treadmill—instrumented split-belt treadmill embedded in the floor, and
(5) Computer motion capture.

In the context of the COVID-19 pandemic, remote subject-driven measurement allows
for ongoing study, while traditional labs may be limited due to direct researcher-to-subject
exposure. Subject-driven gait data collection also allows for ongoing daily measurement
in various real-world environments and, thus, larger volumes of data accumulation (that
would otherwise be limited by gait lab access).

The inability of gait labs to provide opportunities for scalable, prolonged, remote, and
self-guided gait analysis combined with the miniaturization and widespread availability
of sensor technology resulted in the development of nascent mobile applications for gait
analysis [1,4,9,12]. The inherent limitations of traditional gait labs led to the development
of state-of-the-art field-based measurement methods, which are key to observing gait in a
more natural and native form accurately, especially in environments where gait adaptation
is prevalent. Thus, remote gait analysis involves mobile sensor-based systems in the
field and outside of the lab. Field-based measurements are advanced by prevalence and
miniaturization of inertial measurement units (IMUs), which allow for direct measurement
of kinematics [1–3,10,13,14]. While certainly more versatile than a fixed-site gait lab, stand-
alone IMUs may not be optimal candidates for scalable data collection. They require
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extensive effort to distribute, reclaim, and extract data from each sensor, and therefore,
lead to a prolonged and costly data collection and data-harvesting process [9,10]. Beyond
IMUs, other forms of community-based gait measurement outside of a gait lab have been
validated, including the GAITRite walkway mat, multi-camera motion tracking, the aTUG
chair, and scanning laser rangefinders (SLR) [7,15,16]. Each of these field-based tools has
its own inherent advantages/limitations (for example, GAITRite system shows precision
but is time consuming) [7] or requires researcher involvement for setup or usage [14–16].
Smartphones, equipped with an array of IMU motion sensors, such as gyroscopes and an
accelerometer, have thus become an easier, more-scalable, less-costly, and less-obtrusive
investigation tool [17].

As a tool for gait recording, smartphones possess an impressive array of benefits.
Perhaps most obviously, they are readily available, as many individuals carry a smartphone
throughout the day. In addition, smartphones have the advantage of real-time data process-
ing, visualization, and data transmission, which eliminates the aforementioned harvesting
cost and effort associated with the stand-alone IMUs [3,4]. Another benefit is the ability
to function as an adaptable multimedia device; they can easily be used to relay simple
instructions for how to properly record one’s gait without the need for supervision by a
laboratory technician or other professional. These factors make the smartphone an ideal
candidate and wearable technology as a remote tool for scalable, widespread, simple, and
accurate gait measurement [2].

Preceding research has validated the use of a smartphone as an instrument of ac-
curately recording gait and has proven its accuracy in comparison to more traditional
methods of gait measurement [2,5,18]. Angular velocity, measured by smartphones and
stand-alone IMUs, has both been validated as a measure of gait and has been shown to
be reliable to delineate the different parts of the gait cycle [11]. However, most previous
investigations have focused on the implementation of smartphone gait measurement in
a controlled, supervised, and indoor laboratory setting [2,3]. The few studies that have
been trialed outdoors have been conducted in controlled and supervised flat walking
environments [2,3]. Mounting of the smartphone on the subjects (by researchers) has been
measured most often either on the chest (in a harness), in a shoulder bag, on the lower back,
or at the hip (in pocket) [2,10,18].

The subject group for previous studies was determined either by proximate availability
(young college-age adults in proximity to the research lab) or risk factors (i.e., elderly
being assessed for fall risk) [1–3,11,18]. However, looking at the entire available sample
pool (irrespective of proximate or risk factors), one notes that the middle-aged group,
40–60 years old, is understudied. As this group is highly adoptive of smartphone usage,
there exists a large subject population from which to draw, and such a large pool allows
for the generation of large volumes of data, determination of general population baselines,
and also serves as longitudinal comparison against near-future trials in this same group
(“pre-elderly” vs. elderly). Furthermore, studying a healthy population enables researchers
to define the walking profile upon a given surface before testing it on at-risk populations.

Improved knowledge of the specific effect of terrain on gait is important, as it expands
gait analysis outside of a controlled laboratory setting into daily life, where it would
certainly be more useful in applications (such as exoskeletons) aiming to approximate real
life gait. The effects of passive terrain change, i.e., differing overland surfaces, on gait has
not yet been fully defined. Increased gait parameters (specifically step time) have been
noted when transitioning from a stable, level surface to a less stable surface. Previous
research has shown this in both real-world walking (in contrast to indoor laboratory
walking) [19] and irregular hard surfaces (in comparison to level, hard surfaces) [20].
Previous research in this field has been limited to examining the effects of cognitive load
on gait or physical obstruction on gait [2,3,19,20], but very little research has looked at
the effects of the physical environmental load itself, and no research has examined hard
versus soft terrain in the environment. Thus, to better measure gait parameters in a real-life
setting, comparison across differing outdoor surfaces is necessary.
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Here we proposed a remote and purely subject-driven procedure for reproducible and
scalable collection of real-life spatiotemporal gait data across two real-life terrains using a
smartphone application in a middle-aged study group.

We hypothesized that using a smartphone for a subject-driven comparison of gait
cycle metrics on asphalt terrain to the same on grass terrain will lead to significantly higher
spatiotemporal gait parameters (specifically, gait cycle duration, measured by lower limbs
angular velocity) on grass terrain compared to asphalt.

2. Materials and Methods
2.1. Participants

Eighty subjects were recruited, and 79 participants were enrolled in this study, of
which 69 completed the trials using the app and submitted their data sets. During a defined
15-day period, these subjects completed data collection on their own and submitted the
data for offline review. Of these, preliminary review of the data showed that, though
collected and properly transmitted, incomplete data were recorded and saved in 12 of the
69 datasets. All 12 incomplete sets were excluded for incomplete submission of all required
trials, resulting in complete data sets from 57 participants. After data collection, a power
analysis was run significance α = 0.05, power of 0.8, and a medium effect size (d = 0.5);
this power analysis revealed that a minimum of 34 subjects would be needed under those
parameters. The number of subjects in each stage from recruitment to data collection to
data validation is shown in Figure 4. This study group had an average age of 49.68 years
old with a standard deviation of 4.12 years and a range of 40–56 years old, as depicted
in Figure 5. The data analyzed were composed of 26 males and 31 females as noted in
Figure 6 (57 total subjects). All participants were able to walk in a straight line for 20 steps
without the aid of another person or a walking apparatus. All participants provided written
informed consent for their participation in the study and the use of anonymized data in the
analysis. Exclusion criteria included a physical disability impeding one’s ability to walk or
otherwise modifying one’s gait; a history of neurological disorders; or a history or presence
of ulceration, amputation, or pain in the lower extremities.

Figure 4. Data flowchart.



Biomechanics 2022, 2 240

Figure 5. Age distribution plot.

Figure 6. Demographics table.

2.2. iPhone Application

To record and upload each participant’s motion data, we developed and distributed
an iPhone application, named GaitTrack, for this experiment, as seen in Figure 7. GaitTrack
was installed via Apple’s TestFlight distribution system and can transmit the collected data
via email, making it intuitive for participants to transmit their recordings. The GaitTrack
app uses the iPhone’s built-in gyroscope to record the angular velocity of the device along
the XYZ axes, sampled at 50 Hz. Due to its more pronounced features in comparison to
the other axes, Y axis (mediolateral angular velocity) has been widely used in previous
research for gait event detection in wearable applications and was the data stream used for
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this study. The X- and Z-axis data were also recorded by the GaitTrack app and archived
for future analysis purposes.

Pressing the start button to initiate a recording began a 3-s delay timer, allowing the
subject ample time to mount the phone without recording this mounting maneuver as
signal noise. After an additional 3 s, the app played an audible “start” sound, notifying
the participant to begin walking, as the recording of motion data had begun. The app
timestamped each trial recording separately, making it easy to reconstruct the order and
thus the conditions of each trial should there be an issue in transmission.

Figure 7. Screenshots of GaitTrack app developed for this study. Left panel—main data collection
screen; middle panel—list of trials completed prepped for either transmission or deletion; right
panel—about screen with details on the app for participants.

2.3. Data Collection

The subjects completed the recording trials individually without researchers’ interven-
tion collecting purely subject-driven gait measurement using GaitTrack. Data collection
instructions were emailed to each participant and included downloading, installing, and
then utilizing GaitTrack. Remote support was provided (if needed) for the installing and
using the application, but not for collecting trial data.

Throughout the experiment, participants wore their preferred clothes and shoes, given
that they could accommodate a hip-mounting (right pocket, termed hip in this study) and
ankle-mounting (right sock, termed ankle in this study) location for their phone. Subjects
were instructed to mount the iPhone in a constant position with the top of the device
facing downward and the screen facing outward (down-&-out). The International Society
of Biomechanics (ISB) and previous research using a smartphone for gait measurement
established a standard [5] for orienting the axes around human joints to report joint motion.
Following this standard, a phone would be placed such that the top of the device is facing
upward, “up-&-out”; we chose to instruct participants to orient it at a “down-&-out”
position, knowing that we could add a correction factor to return the vector data to the ISB
standards. The down-&-out method was chosen to more closely mimic normal smartphone
usage. More importantly, it eliminated the risk of inadvertently stopping the recording mid-
trial if skin contact accidently hit the Stop button of the GaitTrack screen. Figure 8 shows a
subject mounting their phone in the specified orientation at both the hip and ankle locations.
The mounting locations were selected because they (1) provide an accurate measurement of
velocity at the ankle and hip; (2) require no training, support, or equipment to set up; and
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(3) most closely approximate locations that are readily reproducible by subjects. By using
mounting locations and orientations that are readily reproduced by subjects, we aimed to
increase scalability and trial completion rates and facilitate self-implementation.

Figure 8. Images of subject mounting smartphone at hip and ankle locations.

After properly configuring the GaitTrack app for data collection, participants were
instructed to locate an unsloped and straight surface (asphalt or concrete), mount the phone
in the correct orientation, and walk for 20 straight steps on the surface at a natural pace
with the phone mounted on the hip (in pocket). Subjects were instructed to complete
12 trials of outdoor overground walking under 2 conditions, six trails on a flat asphalt
surface, and then six trials on grass. A complete documentation of the instructions given
to participants can be found at http://tiny.cc/GaitData (accessed on 30 December 2021).
A 15-day data collection period for all subjects was defined to minimize seasonal weather
and atmospheric variations to the data as the trials were, by necessity, performed outdoors.
Asphalt condition began with the phone mounted at the hip location (in the right front
hip pocket), switched to the ankle location (in the right sock), and alternated as such twice
more for a total of six asphalt trials; this entire process was then repeated on grass to yield
12 trials alternating between hip and ankle; this alternating method was done to ensure that
measured differences across mounting locations were not the result of shifting gait over
during the duration of the trials. Each trial contained 20 steps (10 complete gait cycles).

In this manner, each participant’s dataset contained asphalt hip, asphalt ankle, grass
hip, and grass ankle. For each trial, subjects walked at a self-selected speed in a straight line,
avoiding turns to maintain consistently oriented angular velocity vectors. Once recorded,
GaitTrack transmitted the trial via email for offline analysis. Thereby, we received 69 total
datasets. After scanning those for data completeness, the clean datasets, 57, were uploaded
to a remote, cloud-based data server for secure storage to preserve the original copy of the
data, including the X, Y, and Z-axis data, and to be screened and processed to ensure the
validity, file integrity, and presence of exactly 12 complete, properly recorded, and correctly
transmitted trials per subject.

2.4. Data Processing

A custom-written program in MATLAB (Mathworks, Natick, MA, USA) was used for
data extraction purposes as shown in the data flowchart in Figure 4. The program begins
by inverting the Y-data (multiplied by −1) so that its direction follows the established ISB
standard and allows for comparison of the results with those of existing literatures. The
data were then passed through a moving-average instance of MATLAB’s “filter” function

http://tiny.cc/GaitData
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(a 1-D digital filter), to remove signal noise, resulting in a signal that could be analyzed
automatically with a higher degree of accuracy, as seen in Figure 9.

Figure 9. Processing in MATLAB. Data after moving average filtering (as per Grimmer, et al., 2019).
The eight target gait cycles were automatically identified and highlighted in red by the function;
any data outside of this were not considered in the extraction of gait parameters. Blue dots—initial
zero-crossings denoting start of stance phase.

Using the filtered angular velocity data, the program identified both (a) the prominent
peak and valley and (b) zero-crossings in each gait cycle (the first zero-crossing being
negative-to-positive and second zero-crossing going from positive-to-negative). The func-
tion trimmed the ends of each file to remove mechanical signal noise, which was created by
mounting/dismounting the smartphone (either at the beginning or the end of each record-
ing). To avoid irregularity caused by acceleration and deceleration, the first and last gait
cycles were not used for the analysis, resulting in eight gait cycles per trial. Each trial was
then graphed and visually checked for adequate representation to increase standardization
of the data. When necessary, the period of eight gait cycles was shifted forward or back-
ward to minimize data noise at either end of the trial and to best capture the representative
consecutive eight gait cycles from the data set.

The primary and secondary parameters (outcome measures) were then calculated
as follows:

Primary parameters/outcome measures (full cycle):
Cycle duration time, defined as the time difference between two consecutive heel strikes

(zero-crossings when mediolateral angular velocity goes from negative values, i.e., counter-
clockwise rotation, to positive).

Secondary parameters/outcome measures (full cycle)
Valley depth: defined as the absolute magnitude of angular velocity during swing.
Peak-to-valley, the difference between the magnitude of the highest peak in stance and

the lowest valley in swing.
Sub Peak-to-valley: defined as the largest peak-to-valley distance on each subinterval

(eight gait cycles) of one full trial.
Secondary parameters/outcome measures (intra-cycle)
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Stance time, defined as the time difference between the first zero-crossing, heel strike,
to the second zero-crossing, toe off (where mediolateral angular velocity goes from values
positive to negative).

Swing time, defined as the time difference between the second zero-crossing, toe off, to
the third zero-crossing (from negative to positive).

All the measured parameters are depicted in the gait cycle in Figure 10 and are listed
in Figure 11. The outcome measures are divided into two sub-groups: full-cycle and
intracycle measures.

Figure 10. Gait cycle with measured parameters—this graph shows a visual representation of the
parameters on a simplified graph of the gait cycle like that observed in recorded data.
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2.5. Statistical Analysis

All statistical analyses were conducted using SPSS (version 28, SPSS Inc., Chicago, IL,
USA). The two groups in the study were the two different terrains: grass and asphalt, with
the dependent variables being the measured parameters (duration, valley depth, peak-to-
valley, sub peak-to-valley, stance duration, and swing duration). Within each parameter, we
assessed the normality for each group of the 57 mean values using histograms, QQ plots,
and Shapiro–Wilk tests. From the 24 parameter mean values per subject, 12 comparative
pairs were derived to compare identical measurements, with each parameter on asphalt
terrain being compared to the same parameter on grass (see Figure 11). Either a Paired t-test
(when both sets of mean values were parametric) or Wilcoxon Signed-Ranks test (when
one or both sets of mean values were nonparametric) was run to identify differences in
these comparative data sets. The relationship between sex, age and duration measures was
statistically analyzed using Pearson’s correlation coefficient. Regardless of the statistical
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test used above, significance was defined as having an unadjusted alpha significance
value < 0.05, following statistical guidelines.

3. Results

In this study, 57 usable datasets were collected and analyzed from subjects between
40 to 60 years old with an average age of 49.68 years old (SD = 4.12 years).

Due to the nature of purely subject-driven data collection, there was some loss of
data. Of the 69 participants who completed the study and submitted data, 12 data sets
were incomplete, which resulted in 57 complete sets usable for analysis. (Review of the
group data both with and without the 12 sets revealed no significant change to the group’s
demographic data). To capture this previously unreported data subset, we termed this the
participants’ data submission error rate (DSER), defined as the number of invalid data sets
divided by number of total data sets collected and reported as a percentage. In this current
study, the DSER was 12/69, or 17.4%.

Of the 24 parameter values, we analyzed the direct comparison between the 12 datasets
from asphalt to each corresponding dataset from grass (from Figure 11), since these compar-
isons allowed direct asphalt to grass comparison for a given variable and mounting condition.

A boxplot representing the distribution of cycle duration values, a primary outcome
measure, is shown in Figure 12. At first glance, the distributions appear to be similar
due to the minimal variations, however, zooming in with statistical analysis reveals their
difference to be statistically significant, with grass having larger values than asphalt across
both mounting locations.

Across the 12 parameter comparisons between the different terrains, there was a
trend towards higher measurements across all spatiotemporal parameters for grass when
compared to asphalt as shown in Figure 13. Of the 12 comparisons, 8 were full-cycle
comparisons and 4 were intra-cycle comparisons.

In the full-cycle parameters comparisons (cycle duration, valley depth, peak to valley,
and sub peak to valley), six of the eight showed a statistical difference between asphalt and
grass (p < 0.05). When the smartphone was mounted at the hip, all four comparisons of the
gait analysis parameters were significant. With the smartphone mounted at the ankle, two
of the four comparisons were significant, while a third had p = 0.055.

Figure 12. Boxplot of cycle duration. Shows the distribution of cycle duration parameter values
at both mounting sites across both terrains compared. The asterisks (*) on either side of the dia-
gram represent statistical significance (p < 0.05), with grass being higher than asphalt across both
mounting sites.
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Below are the eight full-cycle comparisons between a given parameter on asphalt
and its grass counterpart and which statistical test was used for each pair. Six of the eight
comparisons show statistical significance (p < 0.05). The raw mean values and statistical
significance are presented in Figure 13.

1. With the smartphone placed at the hip:

a. Paired Samples t-Test indicated that the cycle duration on grass was significantly
higher than that for asphalt (t = −3.483, df 56, p = 0.001).

b. Wilcoxon Signed-Ranks test indicated that the magnitude of shank angular ve-
locity during the swing period, i.e., the valley depth, for grass (mean rank = 30.87)
was significantly more than for asphalt (mean rank = 24.94), Z = −2.999,
p = 0.003.

c. Wilcoxon Signed-Ranks test indicated that the range of shank angular velocity,
i.e., peak-to-valley distance, for grass (mean rank =30.85), was significantly
higher than for asphalt (mean rank = 24.65), Z = −3.238, p = 0.001.

d. Wilcoxon Signed-Ranks test indicated that the subinterval peak-to-valley dis-
tance for grass (mean rank = 30.16) was significantly higher than for asphalt
(mean rank = 25.08), Z = −3.977, p < 0.001.

2. With the smartphone placed at the ankle,

a. Paired Samples t-Test indicated that the magnitude of the cycle duration on
grass was significantly more than that for asphalt (t = −4.787, df 56, p < 0.001).

b. Paired Samples t-Test indicated that the magnitude of the valley depth on grass
was more than that for asphalt (t = −1.963, df 56, p = 0.055). However, these
differences were not statistically significant.

c. Paired Samples t-Test indicated that the peak-to-valley distance on grass was
higher than that for asphalt (t = −1.629, df 56, p = 0.109). However, these
differences were not statistically significant.

d. Paired Samples t-Test indicated that the subinterval peak-to-valley distance on
grass was significantly higher than that for asphalt (t = −3.123, df 56, p = 0.003).
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Shown below are the four comparisons between a given intra-cycle temporal param-
eter, stance, and swing time, on asphalt and its grass counterpart, which were used to
confirm the integrity of the gait cycle across terrains. Three of the four comparisons showed
statistically insignificant results (p > 0.05).

3 With the smartphone placed at the hip,

a. Paired Samples t-Test indicated that stance duration on grass was more than
that for asphalt (t = −1.428, df 56, p = 0.159). However, these differences were
not statistically significant.

b. Wilcoxon Signed-Ranks test indicated that the swing duration on grass (mean
rank = 29.77) was more than for asphalt (mean rank = 27.77), Z = −1.712,
p = 0.087. However, these differences were not statistically significant.

4 With the smartphone placed at the ankle,

a. Paired Samples t-Test indicated that stance duration on grass was significantly
more than that for asphalt (t = −4.728, df 56, p < 0.001).

b. Wilcoxon Signed-Ranks test indicated that the swing duration on grass (mean
rank = 25.40) was more than for asphalt (mean rank = 33.00), Z = −0.512,
p < 0.608. However, this difference was not statistically significant.

The correlation matrix for the primary outcome, cycle duration, is shown in Figure 14.
There is no statistically significant correlation between age and the reported measures of
cycle duration (hip–asphalt, ankle–asphalt, hip–grass, and ankle–grass). Of the measured
parameters shown for cycle duration, each of them showed a statistically significant and
strong correlation with each other. There were statistically significant correlations between
age sex and duration over asphalt for both hip and ankle, 0.27 and 0.32, respectively. Similar
relationships were not found over asphalt.
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Figure 14. Correlation matrix for cycle duration. Each scatterplot depicts the values compared across
the measurements in each given row and column, with the decimal value in each box representing the
correlation coefficient. (p < 0.05 significance denoted by red graphics within each box). Lines in each
plot represent the line of best fit. Column charts show the distribution of each given measurement.
For the bar chart displaying distribution of subject sex: 0 represents female, 1 represents male.

4. Discussion

The prominence of remote data collection and telemedicine has been growing; this
has been accelerated recently during the COVID-19 pandemic. Here we presented one of
the very first efforts to devise a remote scalable and fully subject-driven gait data collection
procedure. To this end, we designed an iPhone application capable of collecting angular
velocity and transmitting the data to the researchers via email. In comparison to existing
literature, a large number of middle-aged subjects were recruited and enrolled. Data were
collected by the subjects without real-time researcher assistance, and thus we expected
some subject errors leading to incomplete datasets. This study was overpowered, such
that we were able to detect a baseline DSER in this group, remove those datasets from
the analyzed data, and still have enough subjects to meet the requirements of the power
analysis (minimum of 34 subjects).

To assess the viability for this procedure, we collected data on the effect of two
different real-life terrains, asphalt, and grass. Our results showed a significant increase of
our primary outcome measure, cycle duration, in softer and uneven terrains, such as grass,
versus those of more even and firm terrains, such as asphalt, in the middle-aged population.
At the ankle, the mean cycle duration was longer on grass (mean 1.122, SD 0.119) than
on asphalt (mean 1.073, SD 0.113), t = −4.787, p < 0.001. Similarly, at the hip, mean cycle
duration was also greater on grass (mean 1.099, SD 0.108) than on asphalt (mean 1.064,
SD 0.112), t = −3.483, p = 0.001.

The smartphone was validated as a tool sensitive enough to measure gait differences
when under cognitive load [2,18] and when comparing gait lab data to outdoor flat surface
data [19]. Thus, most studies using a smartphone to conduct gait analysis measuring
load have focused on cognitive load but rarely on physical environmental load. Based on



Biomechanics 2022, 2 250

similarities to lab surfaces and previous outdoor studies, asphalt walking can be defined as
normal walking [10]. It is on this outdoor surface that past research has added cognitive
load [19] and some obstacles [20]. While previous research has generally focused on
differences in even-surface walking, this is the first work to demonstrate the capability
of smartphones in recording gait differences, while comparing an even and hard asphalt
surface to an irregular and soft grass surface; therefore, the evidence allows us to comment
on direct physical environmental load effects. The irregular surface acts as a physical
environmental load, which has not been studied in gait studies with or without remote
wearable technology.

In this study, we demonstrated that physical environmental load caused changes
in gait that were measurable by a smartphone when self-mounted & self-recorded by
a subject under real-life circumstances. These differences were not only detectable but
significant and indicative of broader gait adaptation patterns. Specifically, duration (cycle
time), valley depth (maximum shank angular velocity swing phase), and peak-to-valley
(the maximum changes of shank angular velocity during a gait cycle) were all found to
be greater on grass when compared to asphalt, and significance was noted in six of the
eight different comparisons of asphalt to grass for these parameters. In past research
on different types of gait, different postural and gait stabilization strategies have been
documented as a gait response [21], and these strategies were likely the reason for the
gait changes we detected here across terrains. The subjects responded to the surface
change with a more cautious and more tentative approach, reflected as longer gait duration,
while implementing proximal muscle-stabilization strategies, which is reflected in the
increased valley depth. Identifying the strategies implemented in response to different
terrain becomes important when developing and implementing controllers in the assistive
devices and exoskeletons.

Given that we detected a longer overall stride duration difference with no concomitant
statistically significant difference in the swing duration difference between the two terrains,
the increased angular velocity measured at the hip means that it is undergoing faster motion
in the same time interval and therefore rotating farther. In the recorded data, hip extension
during the stance is followed by a more pronounced valley depth on grass, which would
confirm the more extended initial contact for the hip, which then results in a greater angular
velocity when moving from extension into flexion, measured in valley depth during the
swing phase. Similar results in the increased peak-to-valley distance (total velocity change
from mid-stance to mid-swing) would confirm the greater hip extension and resultant
greater hip flexion speed. In addition, these increased differences are measured at both
the hip and ankle (not just one), likely indicating that the two results are both of the same
origins. Since this increased movement effect is detectable at both the proximal location
(hip) and distal location (ankle), we can conclude that they are a result of muscle adaptation
above the proximal location. Note that both sensors are downstream from the muscle
adaptation and thus would be similarly affected by the upstream adaptation. In this case,
the muscle adaptation at and above the hip is the above-mentioned proximal muscle
stabilization strategy (the postural gait adaptation).

This study is the first to have fully patient-mounted and patient-collected data in-
dependent of any researcher presence, which allows it to serve as a proof of concept
for scalability. While smartphone applications for gait analysis are not new, widespread
adoption of such applications by subjects has not been implemented. Rather, smartphone
applications have been used in researcher-driven data acquisition [1,2,5,12,19,20]; even
then, their deployment in research has generally involved small sample sizes participating
in a controlled laboratory environment. One previous study did incorporate a multime-
dia presentation with instructions to improve implementation; however, it was used by
subjects in a guided lab environment first with the researcher, not the subject, running
the trials in the lab and then at home later [2]. This greatly increases the input of usable
complete data; however, it also creates an inherent limit on widespread data acquisition in
a real-life environment, where the availability of the researcher and lab is a limiting factor.
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To obtain the required data for designing control algorithms of assistive and rehabilitative
devices such as prosthetics, exoskeletons, and robots, large volumes of data will be needed.
The volume of data is even more important for machine learning algorithms, which are
getting more and more prominent in rehabilitation technology [22]. Thus, a subject-driven
data collection method would greatly enhance data acquisition in the large volumes from
participants day-to-day environments.

In previous research, torso positions were studied using both smartphones and mobile
sensors, while shank mounts were studied using mobile sensors [11]. Ankle mounting
of the smartphone is less common but was selected as it better mimics real-life subject-
driven usage (placing the smartphone in a sock as opposed to strapping to the shank).
While all smartphone measurements include degrees of signal noise, we did note that sock
mount data were more variable and showed more signal noise than the hip, even after
filtering. We hypothesize a few possible reasons for this. Firstly, socks too short to secure
the entirety of the smartphone may have resulted in more motion at the mounting site
itself, such that the combined mount site motion plus the ankle motion may have resulted
in a noisier signal. The difference in sock lengths across subjects may have amplified this
effect in some subjects and nullified it in others. While sock mounts were certainly much
easier for subjects than traditionally strap-mounted shank mounts (important since we are
aiming for a simple subject-driven mount), it may be that there is too much variability at
that mounting location to provide meaningful data. However, if the smartphone data is
to be used for robotics or prosthetic programming, then terminal extremity data will be
equally essential as hip or torso data. Further data analysis of the ankle-mounted data
with specific comparison to the hip-mounted data on similar terrain would allow for more
refined programming and optimal data collection. Therefore, we suggest that future studies
should still consider the ankle as a mounting site, but perhaps consider a more uniform
stabilization method for the ankle mount.

This is the first study in mobile gait analysis to study a middle-aged subject group
(ages 40–60 years old, average age 49.68), whereas previous studies focused on either young
adults or the elderly [1–3,10,11,18]. Recruiting subjects was made easier (the participation
rate was greatly enhanced) by the nature of wearable technology, the app user interface,
and transparent information about peer participation. This was a group that had not
been studied before and showed significant enthusiasm for the study as evidenced by
participation rates. Data from this specific subject population are comparable, but not
identical, to that of the previously studied groups on flat, even surfaces, and can also be
used for future longitudinal studies in this same group (pre-elderly vs. elderly). In addition,
testing gait on uneven or irregular surfaces for the first time is best done in the non-elderly
population until the safety profile of the irregular surface gait can be better defined.

One issue noted with this subject-driven data collection model was the number of
incomplete data sets produced, i.e., DSER. This is in direct contrast to previous research
done in gait analysis with the researcher present and thus with data verification inherent
to the collection process. While 69 participants completed the study and submitted data,
only 57 datasets showed a complete usable data set, which represents a 17.4% DSER
in data acquisition. This is likely due to some combination of either user error and/or
an underdeveloped app user interface. Previous research on purely subject-driven data
collection is extremely limited and does not document incomplete submission of data. This
specific type of error (by some subjects in data collection and submission) is a unique issue
with remote subject-driven studies.

In our extensive literature search, we were not able to identify any other similar
reports of subject-driven remote gait data collection and, therefore, we believe this reported
participants data submission error rate (DSER) to be the first report of such data loss in
a subject-driven gait study. This study now provides, for the first time in gait analysis
research, a delineation of error rates for a study that is fully subject-driven, as opposed to
researcher-supervised. Lacking any previous frame of reference, it is not yet possible to
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comment on acceptable DSER levels. However, future studies may be able to yield lower
DSER rates.

To standardize subject-driven mounting, the smartphone was positioned in a manner
that is easy to mount, with the screen facing “down & out” on the right side, and used a
correction factor to return the vectors to standard ISB orientation for study purposes. This is
the first study to specifically position the smartphone in this manner to more closely mimic
normal smartphone usage while avoiding the risk of skin contact between the ankle and the
on-screen stop button, inadvertently ending the data recording mid-trial. As smartphones
are used for more purposes and as those uses are user-driven (rather than researcher-
driven), this kind of accommodation will improve the reliability and reproducibility of
acquired data.

The study certainly has limitations. For the data acquisition, due to the nature of this
study, there was no researcher supervision. This resulted in significant offline effort to
review the data (each individual trial) to ensure the data formatting and orientation were
accurate before running the data through MATLAB. We noted that, for a few participants,
there were usage errors that led to errors in recording and/or transmission, the DSER.
We were able to identify these few data sets and exclude them, but, ideally, in future
follow-up work the DSER could be lowered by improving the app interface, possibly
adding multimedia instruction, providing live data verification, or by adding two-way
communication between the sender and receiver, among other solutions. In this manner,
data could be verified real-time within the app at the time of data acquisition and before
transmission, and this may improve the participants’ DSER. Another limitation of our study,
and of similar studies, is the short walking distance, which required the determination
of specific representative gait cycles and trimming of the recorded motion data (while
mounting or unmounting the smartphone) at the beginning and end of each trial. Longer
walking distances may increase the size of the data set and provide additional information at
later periods in the walking trials. Including some additional aspects of gait, such as turning
and incline walking, would provide additional rich material for analysis and comparison.

5. Conclusions

This study assessed the feasibility of subject-driven remote gait analysis, while gauging
the effect of real-world terrains on gait on an understudied middle-aged population.

This study found that physical environmental load on an irregular terrain, such as
grass, is indeed measurable and detectable outside the lab in remote gait data collection
via a smartphone. We showcased smartphones’ capability in remotely collecting fully
subject-driven gait data without direct researcher involvement in the data collection. In
doing so, we documented a new emerging research challenge in remote gait analysis: the
data submission error rate (DSER).

This new information has implications for future studies with wearables; subsequent
work with different real-life walking conditions; and engineering assistive walking devices,
such as exoskeletons.
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