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Abstract: Articular cartilage, as a hydrated soft tissue which covers diarthrodial joints, has a pivotal
role in the musculoskeletal system. Osteoarthritis is the most common degenerative disease that
affects most individuals over the age of 55. This disease affects the elasticity, lubrication mechanism,
damping function, and energy absorption capability of articular cartilage. In order to investigate the
effect of osteoarthritis on the performance of articular cartilage, the mechanical behavior of human
knee articular cartilage was experimentally investigated. Progressive cyclic deformation was applied
beyond the physiological range to facilitate degradation of the tissue. The relaxation response of
the damaged tissue was modeled by means of a fractional-order nonlinear viscoelastic model in the
framework of finite deformations. It is shown that the proposed fractional model well reproduces the
tissue’s mechanical behavior using a low number of parameters. Alteration of the model parameters
was also investigated throughout the progression of tissue damage. This helps predict the mechanical
behavior of the osteoarthritic tissue based on the level of previous damage. It is concluded that,
with progression of osteoarthritis, the articular cartilage loses its viscoelastic properties such as
damping and energy absorption capacity. This is also accompanied by a loss of stiffness which
deteriorates more rapidly than viscosity does throughout the evolution of tissue damage. These
results are thought to be significant in better understanding the degradation of articular cartilage and
the progression of OA, as well as in the design of artificial articular cartilages.
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1. Introduction

Articular cartilage (AC), as a hydrated soft tissue which covers diarthrodial joints,
has a pivotal role in the musculoskeletal system. It reduces friction at the surface of
joints, minimizes contact stresses by distributing loads [1,2] and facilitates transmission of
cyclic loads without damage under normal physiological loading. AC is actually a matrix,
saturated with water and mobile ions. The matrix contains chondrocytes embedded
in the extracellular matrix (ECM). The mechanical properties of AC mostly depend on
the ECM, which consists of collagen fibers (primarily type II collagen) and negatively
charged proteoglycans (PGs)—responsible for tolerating tensile and compressive loadings,
respectively [3,4]—while chondrocytes are responsible for ECM maintenance.

Osteoarthritis (OA) is the most common degenerative disease in individuals over
the age of 55 [5,6]. OA is a multifactorial disease; however, its progression is described
by depletion of PGs and break down of collagen fibrils, leading to changes in the me-
chanical properties of the AC. OA affects the elasticity, lubrication mechanism, damping
function, and energy absorption capability of the tissue. Osteoarthritic damage is a chemo-
mechanical process where the mechanical properties of the tissue strongly depend on the
OA grade [7,8]. Nonetheless, as there is no effective treatment for OA, it is highly important
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to investigate alteration of the main constituents of the tissue throughout the progression
of disease in order to estimate their functionality at various OA grades. This can also be
helpful in the development of artificial cartilages.

Many studies have been conducted in order to develop constitutive relations for
the mechanical behavior of articular cartilage. The prevailing theories account for the
biphasic (solid–fluid) and triphasic (solid–fluid–ionic) structure of the cartilage. Mow
et al. demonstrated the ionic nature of the cartilage where synovial fluid contributes to
the mechanical response by being drawn into the porous matrix [9]. Other research has
focused on interaction between the collagen matrix and the lubricating synovial fluid which
permeates the joint capsule. This interaction includes frictional drag and compressibility
of the matrix. For more details, one can refer to [10–12], among others. Though these
models are physiologically comprehensive, they mostly do not fit the experimental results
well [13–15].

AC exhibits a time-dependent mechanical response, meaning that reaching equilib-
rium under an external loading may take from a few minutes to hours, depending on the
mode of loading [13]. This time-dependent behavior, also called viscoelasticity, is thought
to be caused by both the fluid content and solid matrix of the tissue [16]. Stress relaxation
is one of the important characteristics of viscoelastic materials. A variety of experimental
methods are available to quantify viscoelastic properties. Moreover, viscoelastic mechanical
models can be used to describe the viscoelastic behavior (e.g., stress relaxation and creep) of
the tissue. Most viscoelastic models make use of spring-dashpot combinations to represent
the time-dependent behavior of AC. As AC exhibits a nonlinear mechanical behavior, such
models rarely provide a good fit to experimental data unless they include a few springs and
dashpots [17,18]. Smyth et al. employed fractional calculus to model the stress-relaxation
of AC in small strain regime [19]. They made advantage of fractional calculus to reduce the
number of required model parameters.

Researchers have modeled the fibril network alone by means of spring-dashpot com-
binations [20–22]. Wilson et al. proposed a poroviscoelastic fibril-reinforced model which
focuses on the morphology of the collagen fibers and their influence on stress and strain
distribution [21]. Later, Julkunen et al. showed a profound agreement between the ex-
perimental data and Wilson’s model in stress-relaxation [23]. Stender et al. proposed an
anisotropic constitutive model to account for the development of damage in the AC [24].
They did not consider the viscoelastic behavior as well as the effect of fluid flow in the
AC. Hosseini et al. focused on a fibril-reinforced viscoelastic biphasic model to predict the
progression of induced damage in AC, as well as the relationship between damage to fibrils
and PGs [25]. Korhonen et al. investigated the effects of collagen network degradation, as
well as PG depletion, on the stress-relaxation response by applying a poroelastic model [26].
Experimental investigations demonstrate that excessive mechanical loading can lead to
degradation of ECM [27–29]. Khajehsaeid and Abdollahpour investigated deformation-
induced degradation of human knee articular cartilage by applying excessive deformations
experimentally. They studied the evolution of the mechanical properties throughout the
progression of tissue damage and concluded that modeling the alterations of mechanical
properties can be an effective method for predicting degradation of AC under excessive
loading [8]. Recent works have proposed degeneration algorithms to study the effect of
OA-induced changes on the mechanical behavior of AC [30,31]. They simulate collagen
degradation by decreasing the stiffness of the collagen network.

In this work, the stress-relaxation response of human knee articular cartilage was
experimentally investigated. To facilitate degradation of the articular cartilage, progressive
cyclic deformation was extended beyond the physiological range. The nonlinear relaxation
response of the damaged tissue was modelled in the framework of finite deformations. To
reduce the number of required material parameters, a fractional-order nonlinear viscoelastic
model is proposed. Alteration of the model parameters was also investigated throughout
the progression of damage in order to predict the mechanical behavior of the degraded
tissue based on the level of previous damage.
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2. Materials and Methods
2.1. Experiments

To conduct experimental observations on the viscoelastic behavior of osteoarthritic
cartilage, 14 samples were harvested from removed knee cartilages of 11 patients under-
going total knee arthroplasty; 6 males (60 ± 3 years old) and 5 females (60 ± 2 years old).
Specimens with dimensions 30 × 10 × (3 ± 1) mm (as shown in Figure 1) were cut from
parts of the femoral cartilage that appeared almost healthy to the orthopedic surgeons. The
specimens were stored in phosphate buffered saline (PBS) and processed penicillin at 4 ◦C.
As tests were performed just 15 h after surgery, freezing was not required. Prior to testing,
the specimens were kept at 20 ◦C for 30 min to reach swelling equilibrium.

Figure 1. (Left) Dimensions of the test specimens; (right) specimen under uniaxial tension.

As excessive mechanical loading can lead to breakdown of the cartilage network and
depletion of the PGs, we aimed to emulate OA-associated damage via excessive loading of
the tissue. It has been demonstrated that alteration of the tissue’s constituents may lead
to OA, which can be reflected in the mechanical properties of the tissue. Most studies
focus on compressive tests of AC; however, in this study, to achieve larger deformations
and accumulated damage in testing, degradation of cartilage was investigated through
cyclic tensile tests. This provides an opportunity to study the alteration of the viscoelastic
properties throughout OA/degradation progression.

Therefore, the specimens were subjected to progressive cyclic uniaxial tensile tests
with constant speed of 5 mm/min, resulting in a constant strain rate of 8.3 × 10−3 s−1.
The tests were conducted using an STM-2 (SANTAM) Servo Electromechanical Universal
Tensile Testing Machine. Upon completion of the loading step, the specimens were allowed
5 min to relax prior to unloading. After each load-hold-unload cycle, each specimen was
kept in PBS for 20 min to fully recover prior to the next cycle.

2.2. Modeling

In order to study the stress-relaxation response of AC and alteration of its viscoelastic
properties, one needs to model the tissue behavior by means of viscoelastic models. The
standard linear viscoelastic models include either parallel combination of Maxwell elements
or serial combination of Kelvin elements. For example, for a model consisting of n Maxwell
elements, as shown in Figure 2, we have:

σ = E0ε −
n
∑

i=1
Eiεi

v

τi
.
εi

v + εi
v = εi, εi

v(0) = 0
(1)

where σ is the total stress applied to the model and εi
e and εi

v are elastic and viscous strains
in the i-th element, respectively. In (1), τι = ηι/Eι is called the relaxation time for the i-th
element, and E0 stands for the instantaneous stiffness of the model (i.e., the stiffness at
extremely high loading rate):

E0 =
n

∑
i=1

Ei (2)
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Figure 2. A viscoelastic model consisting of parallel Maxwell elements.

The above model exhibits a solid-like behavior if at least one Maxwell element does
not include any dashpot, but only a spring with stiffness E∞. To model the viscoelastic
behavior of AC, one needs to employ at least 3 Maxwell elements needing at least 5 model
parameters (3 coefficients and 2 relaxation times associated with the Prony series) to be
determined from experimental tests [32]. This number of parameters often cannot be
uniquely identified by only one experiment. Therefore, it is advantageous to reduce the
number of model parameters as much as possible, provided that the model is still able to
reproduce the material behavior accurately enough.

In this study, a fractional-order nonlinear viscoelastic model is proposed to character-
ize the stress-relaxation behavior of AC by a reduced number of model parameters. The
fractional-order viscoelastic models employ fractional dashpots instead of the ordinary
dashpots of classic viscoelastic models.

As shown in Figure 3, considering a single chain in (1) and replacing εv by ε − εe one
obtains a constitutive equation of the standard Maxwell element:

σ = Eεe

E
.
ε =

.
σ + σ

τ εe(0) = ε
(3)

Figure 3. The classic and fractional Maxwell elements.

In order to obtain a fractional Maxwell element, a fractional dashpot replaces the
ordinary one. The differential equation of the fractional dashpot is written as follows:

σ = ητα dα

dtα
ε, 0 < α < 1 (4)
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where η is the viscosity associated with the fractional dashpot. The obtained fractional
Maxwell element shown in Figure 3 is characterized by the following constitutive equations:

σ = Eεe

τα dα

dtα σ + σ = Eτα dα

dtα ε 0 < α < 1
(5)

In (4) and (5), dα

dtα corresponds to a fractional derivative of order α which is defined
according to the Reimann–Liouville definition:

dα f (t)
dtα

=
1

Γ(1 − α)

d
dt

(∫ t

0

f (ϑ)
(t − ϑ)α dϑ

)
(6)

where Γ is the Gamma function:

Γ(θ) =
∞∫

0

xθ−1e−xdx (7)

The stress-relaxation response of the fractional Maxwell element for a unit step defor-
mation ε(t) = u(t) is defined as [33]:

σ = E
∫ ∞

0
Eα

[
−
(

t
τ

)α]
dt, 0 < α < 1 (8)

where the kernel function Eα is the α—order Mittag-Leffler function:

Eα(ξ) =
∞

∑
k=0

ξk

Γ(1 + αk)
(9)

As discussed earlier, in order to yield a solid-like behavior, we need to add at least one
spring in parallel, as shown in Figure 4. The constitutive equation of the obtained model is
written as follows [34]:

σ = E0ε − E1ε1
v

τα dα

dtα ε1
v + ε1

v = ε, ε1
e(0) = ε 0 < α < 1

(10)

Figure 4. The fractional-order linear viscoelastic model.

This approach can be extended to finite deformations as well. Following the method
proposed in [35], (1) can be rewritten in the framework of finite deformations as follows:

σ = ∂W0
∂ε − Q1

τ
.

Q1 + Q1 = ∂W1
∂ε , Q1(0) = 0

(11)

where Wi are the strain energy functions associated with the nonlinear springs, σ and ε
refer to any conjugate finite stress and strain tensors, Q1 is a stress-like internal variable,
and W0 = W1 +W∞ is the instantaneous stored strain energy. Following a similar approach
for the fractional model presented in (10), and using the Cauchy stress σ and the deforma-
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tion gradient F as conjugate tensors, one obtains the model shown in Figure 5, with the
constitutive Equation (12).

σ = J−1F ∂W0
∂F − Q1, J = det F

τα dα

dtα Q1 + Q1 = J−1F ∂W1
∂F , Q1(0) = 0

(12)

Figure 5. The fractional-order nonlinear viscoelastic model.

In modeling the loading and unloading behavior of a viscoelastic material, it is
important to choose an appropriate strain energy function capable of reproducing the
nonlinear mechanical behavior of the material under study [36–38]. As most strain energy
functions are defined in terms of invariants of the left Cauchy–Green deformation tensor
B = FFT, the differentiations in (12) should be written with respect to B or its invariants
equivalently [39,40]:

σ = 2J−1B
(

3
∑

k=1

∂W0
∂Ik

∂Ik
∂B

)
− Q1

τα dα

dtα Q1 + Q1 = J−1B
(

3
∑

k=1

∂W1
∂Ik

∂Ik
∂B

)
, Q1(0) = 0

(13)

In (13), Ik are invariants of B. Separating the effects of deformation and time is a
common practice in the theory of viscoelasticity [41,42]. Thus, the general solution of
(11)–(13) can be written as follows:

σ(ε, t) = σins(ε) h(t) (14)

where σins(ε) is the contribution of the deformation and h(t) tands for the effect of deforma-
tion rate (time). Solution of the fractional constitutive equation represented in (10) may not
be straightforward for an arbitrary deformation history. It can be analytically determined
only for simple deformation histories. For example, the stress-relaxation solution of (10)
for a unit step deformation was obtained in [43]:

σ(t) = E0

(
1 −

(
1 − E∞

E0

)(
1 − Eα

[
−
(

t
τ

)α]))
(15)

Specializing the above equation for α = 1 one obtains the expression for the stress-
relaxation function corresponding to the standard linear solid, noting that Γ(1 + k) = k!:

σ(t) = E0

(
1 −

(
1 − E∞

E0

)(
1 − e−

t
τ

))
= E∞ + (E0 − E∞)e−

t
τ , t > 0 (16)

For an arbitrary deformation, the deformation history ε(t) must be introduced to the
following relation [43]:

σ(t) = E0

ε(t)−
0∫

t

ε(t − ξ) . L−1
(

1 − E∞/E0

1 + (τs)α

)
(ξ)dξ

 (17)
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where s is the Laplace variable and L−1 is the inverse Laplace transform which can be
calculated as:

L−1
(

1 − E∞/E0

1 + (τs)α

)
=

(
1 − E∞

E0

) ∞

∑
k=1

(−1)k+1τ−1 (t/τ)αk−1

Γ(αk)
(18)

In Mittag-Leffler notation we can write:

L−1
(

1 − E∞/E0

1 + (τs)α

)
=

(
1 − E∞

E0

)(
− d

dt

[(
Eα

[
−
(

t
τ

)α])])
(19)

The same procedure can also be adopted to (12) for finite deformations. In case of
finite deformations, one may choose the neo-Hookean energy W = 1

2 µ(I1 − 3) because of
its simplicity to solve for the Cauchy stress in a step deformation, where µ is the shear
modulus of the material. Using (13) and (15):

σ(t) = J−1µ0

(
1 −

(
1 − µ∞

µ0

)(
1 − Eα

[
−
(

t
τ

)α]))
B (20)

where µ0 and µ∞ are the instantaneous and the asymptotic shear moduli of the model,
respectively. For an isotropic incompressible material (J = 1), subject to uniaxial tension, B
can be written as follows:

B =

 λ2 0 0
0 λ−1 0
0 0 λ−1

 (21)

In (21), the relation λ1 = λ, λ2 = λ3 = λ1/2 was adopted. Due to the stress-free
conditions in the transverse directions (σ22 = σ33 = 0), the first component of the Cauchy
stress is calculated by means of (20) and (21):

σ11 = µ0

(
1 −

(
1 − µ∞

µ0

)(
1 − Eα

[
−
(

t
τ

)α]))(
λ2 − λ−1

)
(22)

For a ramp deformation (i.e., constant strain rate), the relation ε(t) =
.
εt should be

used in conjunction with (17) to determine the corresponding stress response in terms
of time. However, if one is interested only in the relaxation stage, the normalized stress
σ(t)/σmax may be easier to investigate. According to (14), the normalized relaxation stress
will be a function of time only as the deformation is kept constant during the relaxation
stage. So we have:

σ11(t)
σmax

11
=

µ0

(
1−
(

1− µ∞
µ0

)(
1−Eα

[
−( t

τ )
α
]))

(λ2−λ−1)

µ0(λ2−λ−1)
= 1 −

(
1 − µ∞

µ0

)(
1 − Eα

[
−
( t

τ

)α
])

(23)

In (23), τ, α, and µ∞/µ0 are the parameters associated with the nonlinear model
presented in Figure 5. The model tries to reproduce the stress-relaxation data by a minimum
number of parameters which can be determined by means of available experimental data.

3. Results

Deformation histories of the specimens are shown for the female and male specimens
in Figure 6. At strain amplitudes of less than (average) 12.5% for female specimens and
15% for male specimens, no significant change was observed in the stress-strain behavior,
revealing no permanent damage in the tissue. In order to study the impact of degradation
on the viscoelastic properties of AC, only the cycles with strain amplitude more than
12.5% for females and 15% for males are reported in this study. In this study, we focus on
the stress-relaxation response of AC and the alteration of its viscoelastic properties. The
(average) stress-relaxation results are shown in Figure 7. In order to focus on the early
stage of relaxation, only the initial 200s of the relaxation tests are shown.
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Figure 6. The deformation histories of the (a) female, and (b) male specimens.
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Figure 7. Stress-relaxation response of the (a) female, and (b) male specimens.

The stress-relaxation response of the AC tissue was reproduced by means of the
fractional-order viscoelastic model presented in (13), (20), and (23); the results are shown in
Figures 8 and 9 for the female and male specimens, respectively.

Figure 8. Results of the fractional model in comparison with the experimental data for the female
specimens.
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Figure 9. Results of the fractional model in comparison with the experimental data for the male
specimens.

The optimization toolbox of MATLAB was utilized to identify the model parameters
by minimizing an appropriate cost function. The obtained parameters are reported in
Tables 1 and 2 for the female and male specimens, respectively.

Table 1. The model parameters obtained for the female specimens.

Strain (%) µ∞/µ0 α τ(s)

15 0.775 0.53 60
30 0.735 0.59 49

35 (Predicted) 0.661 0.61 39
40 0.602 0.65 27

Table 2. The model parameters obtained for the male specimens.

Strain (%) µ∞/µ0 α τ(s)

17.5 0.683 0.53 48
25 0.652 0.60 42

32.5 0.621 0.63 38
40 0.580 0.69 27

45 (Predicted) 0.572 0.71 24

Using the proposed fractional-order nonlinear viscoelastic model, the material pa-
rameters were identified. Figure 10 show alteration of the parameters with the maximum
applied strain amplitude, where it was observed that the evolution of parameters was
almost linear through the degradation process. The OA grade regions in Figure 10 are
defined based on the amount of maximum I1 experienced previously by the tissue [8].
Choosing another measure for the deformation threshold might shift the areas slightly.
Two predicted curves are also provided in Figures 8 and 9 for the tissue with prior 35%
and 45% deformation, respectively.
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Figure 10. Alteration of the parameter (a) τ, (b) α and (c) µ with OA progression. The safe region, as
well as the OA grades, are shown as the applied strain increases.
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It should be noted that, within the physiological range (shown as the safe region
in the figure), the material parameters are unaltered as the tissue does not experience
unrecoverable microstructural changes or permanent alteration in its mechanical properties.
In this study, we focused on the stress-relaxation response of AC and the alteration of its
viscoelastic properties, while the stress-strain response of osteoarthritic AC was thoroughly
studied in an authors’ recent work where tissue degradation, as well as alteration of the
mechanical properties, were linked to OA [8].

4. Discussion

It was observed that the proposed fractional-order nonlinear viscoelastic model well
reproduces the AC stress-relaxation response by means of only three parameters. Alteration
of the parameters with the maximum applied strain amplitude was also investigated. Be-
yond the physiological threshold, the excessive mechanical loading leads to unrecoverable
degradation of the tissue [8]. The tissue degradation affects its mechanical properties which
can be related to the grade of OA [44]. It should be noted that the physiological deformation
threshold is an average value for the examined samples which not only depends on the
sex, age, ethnicity, and location of the specimen, but may also depend on the deformation
rate [45].

The results shown in Figure 10 help predict behavior of the OA tissue, meaning
that once the physiological threshold is exceeded, the behavior of a degraded tissue is
predictable based on the maximum applied previous deformation. This is thoroughly
discussed in [8] where a relation was proposed between the maximum deformation of
the tissue and its damage. This allows prediction of the amount of damage and grade of
OA associated with a mechanical loading beyond the physiological range. Figure 10 also
shows that the relaxation time (τ) decreases with increase in the maximum deformation
ever experienced, which is in fact related to damage of the tissue. This can be explained by
a significant decrease in the PG content (decrease in the number of PG–collagen bonds) and
the consequent availability of more space in the ECM for fluids to flow out of matrix more
easily and rapidly, resulting in a lower relaxation time [46]. In addition, some studies have
connected the reduction in the relaxation time to the destruction of the collagen network
according to the theory of polymer dynamics. June et al. found that, after enzymatic
digestion by bacterial collagenase and hyaluronidase, changes in the stress relaxation of
AC become faster [47,48]. Thus, we can conclude that, through the progression of OA, the
AC tissue relaxes more rapidly after a loading cycle, and this is assumed to be a sign of loss
of viscoelastic properties such as damping and energy absorption capacity.

In general, the viscoelastic behavior of AC is associated with a flow-independent
mechanism, e.g., resistance of the collagen fibrils in tension and PGs in compression, as
well as a flow-dependent mechanism, e.g., the frictional drag force of interstitial fluid
flow. Elasticity of the tissue mostly comes from resistance of the collagen fibrils, as well as
PGs. This is why, for a degraded tissue, the mechanical behavior approaches a fluid-like
behavior, which is exhibited in the increase in α [49–52]. The loss of stiffness is also reflected
in the decrease in µ∞/µ0. This reveals that the tissue elasticity deteriorates more rapidly
than its viscosity does throughout the damage evolution/OA progression.

The present study only considers low loading rates. The rate of loading may also
affect the results. This is assumed to not only alter the physiological threshold but also the
microstructural mechanisms of degradation. This could be the subject of a future study.

5. Conclusions

In this work, the stress-relaxation behavior of human knee articular cartilage was ex-
perimentally investigated through progressive cyclic deformation beyond the physiological
range to facilitate degradation of the tissue. A fractional-order nonlinear viscoelastic model
was proposed for the damaged tissue in the framework of finite deformations. The pro-
posed model well reproduced the tissue’s stress-relaxation behavior using a low number of
parameters. Alteration of the model parameters was also investigated which helps predict
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behavior of the osteoarthritic tissue. This means that once the physiological threshold is
exceeded, the mechanical behavior of the degraded tissue is predictable based on the level
of previous damage. It was concluded that, with progression of OA, the AC tissue loses
its viscoelastic properties such as damping and energy absorption capacity. This is also
accompanied by a loss of stiffness, which deteriorates more rapidly than viscosity does
throughout the damage evolution. These results are thought to be significant in better
understanding the degradation of articular cartilage and the progression of osteoarthritis,
as well as in the design of artificial articular cartilages
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