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Abstract: Lithium-ion batteries (LIBs) dominate the market of rechargeable power sources. To meet
the increasing market demands, technology updates focus on advanced battery materials, especially
cathodes, the most important component in LIBs. In this review, we provide an overview of the
development of materials and processing technologies for cathodes from both academic and industrial
perspectives. We briefly compared the fundamentals of cathode materials based on intercalation
and conversion chemistries. We then discussed the processing of cathodes, with specific focuses
on the mechanisms of a drying process and the role of the binders. Several key parameters for the
development of thick electrodes were critically assessed, which may offer insights into the design of
next-generation batteries.
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1. Introduction

The challenge of climate change is pushing countries all around the world to realize
an energy transition from traditional fossil fuels to clean energy resources [1,2]. To realize
this transition, various energy storage systems were developed in recent decades. Among
them, a lithium (Li)-ion battery (LIB) is one of the most successful systems and it promoted
the revolution of electronics, wearables, transportation, and grid energy storage [3–5]. With
the development of electric transportation from road to sea and air (Figure 1a), the future
will clearly be electric. This transition is not only driven by the progress in energy- and
electronic-related technologies, but also by the rapidly falling prices of LIBs [6,7]. In 1991,
the cell price of LIBs was high as ca. 5000 $ kWh−1, but in 2020, it was 101 $ kWh−1, as
shown in Figure 1b [7]. As predicted by us, the price of LIBs will continue falling all the
way to ca. 30–40 $/kWh by around 2040–2050 [8], which, in addition to expected cycle
stability gains, is expected to provide more opportunities for the development of LIBs
towards broader potential applications.
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A LIB cell mainly consists of two electrolyte-filled electrodes (cathode and anode),
a porous separator membrane also filled with the same liquid electrolyte, and a sealing
case. Among these components, the cathode usually has the highest weight fraction and
often plays a dominant role in attainable cost and many cell performance characteristics,
especially those that are related to battery weight, safety, and calendar life. Conventional
intercalation cathodes such as lithium iron phosphate (LiFePO4, LFP), lithium cobalt oxide
(LiCoO2, LCO), lithium manganese oxide (LiMn2O4, LMO), and lithium nickel cobalt man-
ganese (or aluminum) oxide (NCM or NCA) are widely used in current LIBs [9]. However,
the relatively low energy density and specific energy of these materials could be a barrier
for some applications. Additionally, the increasing prices, the limited resources, various
challenges with environmentally friendly mining and the toxicity of nickel (Ni) and cobalt
(Co) minerals bring additional challenges for large-scale applications. Conversion-type
cathodes such as sulfur (S), metal (e.g., iron, Fe) fluorides (FeF3, FeF2), and oxyfluorides
could be alternatives because of their higher specific energy and lower cost [10–12]. In the
past two decades, great efforts were devoted to different cathode materials. However,
both conventional and much more so conversion-type cathodes still suffer from various
issues [10]. In addition to cathode materials themselves, improvements in electrode pro-
cessing technologies are also crucial to cell performance and cost [13–15]. The development
of advanced processing technologies calls for critical considerations of the fabrication
procedures, such as mixing, drying, pressing, and lamination [13]. Additionally, the use of
advanced binder systems is important for the fabrication of high-performance cathodes,
with considerable impacts on their mechanical and electrochemical properties. To design of
a cathode electrode with optimal performance, basic parameters such as the defects and
crystallinity of cathode particles, particle size and distribution, electrode architecture, and
porosity and tortuosity should be taken into consideration [16–18].

This review aims to provide a comprehensive overview of materials and processing
technologies currently utilized in LIB cathodes. We discuss the main features and issues
of cathode materials of both intercalation and conversion types. We then delve into the
processing technologies and binder systems for cathode electrodes, and analyze the key
parameters that determine the electrodes’ performance. The discussion also covers the
mechanical properties of cathodes from particle to electrode levels. We present these
discussions from both academic and industrial perspectives, which will enable students,
researchers, engineers, and others to gain a thorough understanding of the fundamentals
involved in LIB cathodes.

2. Cathode Materials

Current LIBs are mainly built on intercalation chemistry, which enables the inter-
calation/extraction of Li ions in/from bulk electrode materials for thousands of cycles.
Conventional intercalation cathodes mainly include LFP, LCO, LMO, NCM, and NCA.
Among them, LCO, LFP, and NCM were particularly widely used in the battery market for
electronics (mostly LCO) and electric vehicle (EVs) (mostly LFP, NCM and NCA). However,
these materials are still limited by the attainable energy density, specific energy, and cost.
Conversion cathode materials could be the solution, considering that conversion-type
anodes (e.g., silicon (Si)) were successfully commercialized in recent years and their pro-
duction and market penetration are growing rapidly. The replacement of conventional
cathodes by conversion-type cathodes, such as sulfur, metal fluorides, and oxyfluorides can
largely increase the specific energy and reduce the cost of the LIB cells. However, there are
still significant limitations needed to be overcome before the scale-up and broad adoption
of conversion-type cathodes takes place. Figure 2 illustrates the crystal structures of typical
intercalation and conversion cathode materials.
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2.1. Intercalation Cathodes

Currently, intercalation cathodes are widely used in LIBs due to their high potentials
(versus Li/Li+), long cycle life, and good structural stability in air. Layered LCO, spinel
LMO, and olive LFP were widely studied in the past few decades. The first-generation
commercial LIBs were built on LCO in 1990s. However, the limited energy density and
high cost of Co are the major issues that hinder their further applications. In addition, there
are major issues with Co supply chain [22,23]. The use of LFP or LMO could overcome
supply chain limitations and reduce the cost of cathode materials, but cell energy would be
reduced as well. In addition, LFP (and to a lesser extent LMO) cathodes are not economical
to recycle [24]. Yet, in many cases, cost, supply chain and safety are still the major concerns.
As such, LFP was recently more and more used in EV batteries despite its low energy density.
Ni-based layered transition metal oxides such as NCM and NCA could provide higher
energy density than LFP and LMO, but cost less than LCO, which enables them to be used
in state-of-the-art EVs with a longer driving range. In recent years, researchers explored
ultrahigh-Ni layered NCM/NCA, Li- and/or Mn-rich NCM, and phosphate polyanion
cathodes and pushed their energy density and cycle stability to satisfy the requirements
for practical applications [25–27]. In general, intercalation cathodes could undergo a capacity
degradation due to surface phase transition, the dissolution of transition metals, gas release, or
microcracking [12,28,29]. To address these challenges, researchers proposed various strategies,
including the use of single crystalline materials (which do not crack), doping, protective surface
layer formation, and advancing applications of electrolyte additives that better passivate the
cathode surface, among others [12]. For example, using single-crystal LiNi0.6Co0.2Mn0.2O2
(NCM622) for LIB pouch cells can achieve significantly better cycle performance with a capacity
retention of 83% after 3000 cycles, compared to polycrystalline NCM622 [30]. The introduction
of various dopants, such as 1 mol.% molybdenum (Mo), for example, to Ni-rich layered oxide
cathodes enabled a higher voltage and higher energy density, such as 880 Wh kg−1

cathode for
1000 stable cycles in layered Co-free NCM901 [31]. Despite these advances, it may be difficult to
further improve their energy density of these materials by a significant degree, considering the
theoretical limitations from intercalation chemistry.

2.2. Conversion Cathodes

As alternatives to current intercalation cathodes, conversion-type cathodes featur-
ing sulfur (S) and metal fluorides can make use of conversion reactions during charg-
ing/discharging and achieve multiple electron transfers, which enables higher specific
capacity and energy to be attained. Figure 3 compares the specific energy for a cell using dif-
ferent cathodes coupled with a conventional graphite (C) anode (Figure 3a), next-generation
Si anode (Figure 3b), or Li metal anode (Figure 3c). Compared to conventional intercalation
cathodes, the conversion-type cathodes such as Li2S, CuF2, and FeF3 higher specific ener-
gies, especially when coupled with Si (Figure 3b) or Li metal anodes (Figure 3c), such as
Li2S-Si, CuF2-Si, Li2S-Li, and CuF2-Li systems. In previous reviews, researchers critically
discussed the pros and cons of different conversion cathodes [10,32,33].
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Despite their high energy densities, conversion cathodes currently suffer from a much
faster capacity degradation during cycling compared to intercalation cathodes. In many
cases, conversion cathodes can be only charged/discharged for few hundreds of cycles or
less, especially in high areal capacity loadings or at elevated temperatures. The decreased
cycle stability could be attributed to several issues, such as the dissolution of active species,
the large structural changes, and side reactions [12]. For example, in a Li-S cell, the
dissolution of polysulfide intermediates could result in a shuttle effect, which seriously
affect the cell performance [34]. Additionally, the lack of stable interphase on cathodes
could also limit their electrochemical stability, in contrast to a SEI layer formed on anodes
during first few cycles [35–37]. As such, the stabilization of cathodes and interphases
is essentially important to the development of next-generation LIBs. Effective strategies
could cover the development of cathode coatings, the addition of advanced electrolytes
or additives, the functionalization of separators/interlayers, or the use of multifunctional
binders. We critically discussed these strategies in an article [12].

3. Electrode Processing

Conventionally, the manufacturing of cathode electrodes is based on a slurry-based
process, which starts from mixing active and inactive materials (binders, conductive addi-
tives) with a suitable solvent to form a uniform slurry, then coating the slurry onto a current
collector (Al for cathodes) foil and drying, then calendaring (densifying) the electrode to
attain high packing density and high volumetric capacity, then electrode cutting suitable
shapes, assembling the electrodes and membranes into a cell, and then finally conducting
a formation cycle (initial charge and discharge, often at elevated temperatures to accel-
erate the process), degassing and testing for capacity retention and quality, as shown in
Figure 4 [38]. In a slurry-based process, the drying process (removing a slurry solvent)
is the key that often defines electrode behavior and a significant factor to total electrode
fabrication costs. The drying step often involves multiple transport mechanisms (such
as diffusion, convection, and migration) and is dependent on the involved volumetric
sources/sinks (such as phase change, chemical bonding, gravity) and driving forces (such
as local temperature, concentration, and pressure) [39]. In the following subsections, we
mainly discuss the conventional slurry-based process, the role of the polymer binders, and
the recently introduced solvent-free dry electrode process.
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3.1. Drying Process

In the slurry-based process, the drying process is one of the complicated and decisive
procedures, which influences the porous structure formation and the distribution of cathode
particles, binders, and conductive additives in the electrodes. A typical drying process
can be typically classified to two stages, including surface solvent evaporation and pore-
emptying evaporation [40]. As shown in Figure 5, the surface solvent evaporation is a
dominant and fast solvent removal process [41], which could enable over the removal of
over 90% solvent with a half of time period in the total drying process [42].
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Figure 5. Schematics of drying process including surface solvent evaporation and pore-emptying
evaporation stages. The blue arrow symbolizes solvent evaporation.

In the beginning, the solution is dilute and different components suspend in slurry,
resulting a sufficiently large and constant temperature enclosure. In ambient environ-
ment, the partial pressure of the solvent remains constant and contributes to constant
evaporation rate [43]. Most of the solvent evaporation happens from the liquid surface of
the solid-solvent slurry and the film shrinkage further processes until the active material
consolidation finishes. Through a gravity force and due to a high evaporation rate, heavy
active material particles approach each other and finally sediment to form a compact active
material skeleton with tiny pores, in a process called film consolidation [41], where the
thickness of consolidated film then remain fixed through the remaining solvent evaporation.
In this case, the relatively light mass of conductive additives (e.g., carbon black) make it
barely influenced by gravity and so the additives typically remain relatively uniformly
distributed in slurry through the solvent diffusion.

In the second stage, the pore-emptying evaporation, the remaining solvent residue
inside the pores is fully evaporated, finally forming a completely dry electrode coating
on the current collector. However, because the evaporation rate significantly drops from
previous constant evaporation rate to a much lower number, the removal of last 10 percent
of solvent could take nearly the same time as the removal of first 90 percent of the solvent
in the first stage [42,43]. The mechanism of the pore-emptying evaporation is more com-
plex. In this case, the consolidation of active materials, the thickness of the coating, the
dimensions, and the porous structure of coating are already fixed. The microstructure of
the coating is only tweaked by the re-distribution of conductive additives and the binder
polymer. Subject to a settled porous structure made by the backbone of active material, the
evaporation triggered diffusion often induces slight (local) movement of the binder mixed
with conductive additive and smaller active material particles and typically deposit them
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at narrow pathways between bulky (largest) active material particles. The long-distance
migration of binder and conductive additives are no longer available due to a relatively
small evaporation rate and greatly increased friction forces.

3.2. The Role of Binder

Despite being an inactive component and occupying a small portion of the electrodes,
the polymer binder typically plays a vital role in the electrode fabrication and performance.
In conventional electrode design, the selection of a binder and its solvent could determine
the required fabrication procedures. Overall, polymer binders make use of physical or
chemical bonding interactions to build a porous and mechanically stable structure for
electrodes, which need to withstand various stresses involved in battery fabrication and
charging and discharging cycling [44–46]. The binder also helps to support the uniform
dispersion of active materials. It is crucial to understand the adhesion mechanisms of
binders to optimize its performance in various cell form factors and designs. In general,
the adhesion mechanisms could cover macroscopic theory and molecular level theory.
In both theories, the pre-binding procedure are similar. In a slurry stirring (or a dry
powder blending), the polymer binder particles experience dissolution, diffusion, and
penetration contacting with active materials and conductive additives (typically carbon
black, CB) [47]. The binding process, “hardening”, is commonly triggered by diverse
physical reaction mechanisms (such as the solvent evaporation after electrode casting or
the cooling process after melting binder in dry electrode process) causing actual physical
or inter-molecular adhesion between various particles and the current collector [47]. In a
macroscopic theory, the mechanical interlocking, electrostatic force is accounted to strong
adhesion force between two objects, which are ubiquitous in our daily life. The molecular
level theory of binding mechanism could be more intricate and difficult to observe, but
more convincing for scientists. For example, the chemical intermolecular interaction (such
as the hydrogen bonding and Van der Waals forces), the interdiffusion of polymer chain,
the chemical adsorption all occur on a molecular level [48,49]. Nevertheless, the chemical
intramolecular interaction (such as the covalent bonding, the metallic bonding, and the
ionic bonding) between the binder and the particles are exceptional. An integration of a
whole electrode system only within the scope of the intramolecular level interactions may
be unrealistic, but it, nonetheless, inspires researchers to search novel-electrode designs.

Today, polyvinylidene fluoride (PVDF) is widely used as a binder in LIB electrodes due
to its strong binding via a Van der Waals force and large commercial production. However,
to prepare cathode slurry, some organic solvents, typically featuring toxic and expensive
N-Methyl-2-pyrrolidone (NMP) must be used. The use of the PVDF/NMP binder system
suffers from several drawbacks, including the poor electrical/ionic conductivity of the
formed electrodes, costly drying process, the evaporation of toxic solvent, degradable
structure, poor mechanical properties (especially when swollen in a binder), and weak
protection for active material under high temperature or high voltage [50]. In recent
years, researchers extensively explored novel binder systems to overcome those issues.
Table 1 presents selected representatives of these binders and the cycle performance of
their-based cathodes. Mixing PVDF with other NMP-tolerable polymers was explored
to improve the dispersion of slurry components [51–54]. Recently, Yoo et al. reported
a novel organosilicon binder which does not suffer from binder self-aggregation, which
can reduce electrode tortuosity and enhance the electrode integrity by forming a binder
web with both covalent and hydrogen bonding [55]. At a reasonably high mass loading
(~8 mg/cm2; approximately half of commercial loadings), the prepared LCO electrodes
can retain around 92% capacity after 100 cycles, which is insufficient for commercial
applications, but promising, nonetheless.
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Table 1. Selected binder systems for cathodes and their cycle performance in Li-ion cells.

Binder Solvent Cathode Cycle Number Retention Ref.

PVDF NMP NCM111 200 @0.5C 86.3% [56]

PVDF-HFP NMP NCM523 330 @1C 50% [51]

Organosilicon binder NMP LCO 100 @0.5C 92% [55]

PMMA NMP LFP 120 @1C 86.3% [57]

(Hex:OE)PProDOTs NMP NCA 200 @C 87.9% [58]

Fluorinated
Polyimide NMP NCM 100 @0.2C 89% [59]

PVDF-PS NMP NCM532 400 @1C 90% [52]

Cellulose nanofibers water LFP 150 @2mA cm−2 90% [48]

P(MVE-LMA) water LNMO 400 @1C 92% [60]

Lignin alkaline water LNMO 1000 @1C 94.1% [61]

Alginate water LMO 120 @1C 97.7% [62]

Pullulan water NCM523 500 @0.33C, 1C 83.33% [63]

Guar gum water LNMO 250 @20 mA g−1 95.2% [64]

Li-PAA water LVP 300 @1C 97.4% [65]

Sodium alginate water CuF2 50 @0.05C 68.23% [66]

rGO-Chitosan aqueous acetic
acid (1.5%) S 1000 @1C 84% [67]

CMC/acrylic
emulsion

water/isopropyl
alcohol NCM523 100 @0.33C 97.3% [68]

Aqueous solvent-based binders recently gained particularly strong interest, as us-
ing water in slurries can reduce the cost for electrode manufacturing and recycling, and
additionally enable formation of a more homogenous slurry with active materials. Unfortu-
nately, aqueous solvent-based binders typically also initiate new challenges, such as the
dissolution of lithium and transitional metal ions from active materials in contact with wa-
ter [69], corrosion of the Al current collector, cracking during electrode handling and drying
(as aqueous binders may be more brittle), bubble formation, and delamination due to rapid
solvent evaporation and significant binder shrinkage upon electrode drying [70–72]. Some
possible solutions were suggested to address these challenges during aqueous processing,
such as adding a buffer solution to mitigate a high pH at the slurry, using a carbon coated
current collector, and controlling the solvent evaporation condition, among others [73].
The most common aqueous solvent-based binders are biomass polymer, which means their
structures are more designable through chemical reaction to serve their multifunctional
nature. Most recent studies on biomass-based binders such as cellulose nanofibers [48],
lignin [61], guar gum [64], chitosan [67], carboxymethyl cellulose (CMC)/acrylic emulsion
polymer [68] are listed in Table 1.

Binders not only provide a compact skeleton for active material but also can enhance
electrochemical performance by mitigating some unpleasant side reaction in electrochem-
ical reaction. In conversion cathodes (such as S, Se, metal sulfides, and fluorides), such
approaches attracted increasing attention [12]. Yet, as previously mentioned, the success-
ful utilization of conversion cathode in industrialization is hindered by multiple existing
challenges, such as the shuttle effect by dissolution of lithium polysulfide, the blockage of
conversion reactions by side products, among others [10]. Novel functional binders may be
able to overcome those discussed drawbacks of conversion cathodes, as was demonstrated
in the case of sodium alginate [66] and chitosan [67].
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3.3. Dry Electrode Process

The PVDF/NMP binder system is not only expensive for high volume manufacturing
but is also environmentally harmful. Although studies showed that water-based binder sys-
tems may potentially replace PVDF/NMP, they only became successfully commercialized
for anode materials [47,49,74,75]. Their use still remains challenging for cathodes, because
of the current collector corrosion, active particle deterioration, gas formation at elevated
temperatures and voltages, and cracking of the electrodes (mostly thick electrodes) during
drying process, to name a few [72,76]. In addition to the conventional slurry-based process,
processing electrode through a solvent-free dry method may become very lucrative [77],
because it can skip multiple costly procedures in battery manufacturing, such as the slow
and expensive solvent evaporation [78–80]. As illustrated in Figure 6, the dry process
enables a “powder-binder” electrode manufacturing to avoid the use of NMP or other sol-
vents. In some designs, the dry process may begin with mixing and either dry spraying of
active material, binder, and conductive additive onto a current collector [80], which allows
binder particles and conductive particles to be decorating the surface of active material
without causing significant agglomerates. The hot-roller pressing process is applied to
melt the binder particles and allows the binder to wet the surface of active material and
agglomerate with conductive additives [78,80]. The voids between active materials are
partially filled with conductive framework of the melted binder mixed with conductive
additives. Other investigated methodologies such as extrusion and 3D printing (with hot
pressing) could also work for dry processing of electrodes [77,81,82], although agglomerates
of hard cathode particles may induce excessive wear and tear to extrusion equipment and,
thus, should be avoided at all costs. As well as fabrication of conventional LIBs, recent
studies indicate that dry electrode process have great potential for the manufacturing of
all-solid-state batteries (ASSBs) [83–87].
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4. Key Parameters for Cathode Electrodes

Increasing the thickness of cathode electrodes is a promising way to enhance pack
energy. However, today, the design of thick electrodes over 80 µm is still challenging. This is
because thicker and denser electrodes may slow down ion transport, reduce the utilization
of battery materials, limit electrolyte infiltration and lower electrochemical performance,
particularly rate capability [88–91]. Dense structures with highly compressed electrodes,
thick coatings, and high concentrations of small particles can limit ionic conductivity due to
the high tortuosity of pore networks and longer ion diffusion pathways [92–96]. Using thick
electrodes can also lead to larger Li+ concentration gradients, increasing resistance and
reducing performance. To achieve optimal performance in energy/power densities, thick-
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ness, and loadings, it is desirable to consider some key parameters (Figure 7), including the
defect and crystallinity, particle size and distribution, tortuosity, and electrode architecture.
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4.1. Defect and Crystalinity

Crystallographic defects, such as vacancies, interstitials, dislocations, grain boundaries,
and others, widely exist in cathode crystals and could seriously affect the physical and
(electro)chemistry performance of the cathodes [97]. Usually, these defects could result
in accelerated structural and electrochemical degradations. Conventional cathodes such
as NCM are composed of nanoparticles-aggregated secondary microspheres, which are
known to suffer from fast capacity degradation and thermal instability due to the fast
dissolution of grain boundary regions (the internal surfaces between the nanoparticles),
further accelerated by concentrated stresses originating from different volume changes
along different directions of these nanoparticles, the processes somewhat analogous to a
stress-induced corrosion [98,99]. The cathode performance can be significantly improved
by defect engineering, such as introducing twin boundaries into spinel cathodes [100] or
pumping surface defects into bulk lattice [101].

Recent studies showed that single-crystal cathode materials (with grain sizes signifi-
cantly larger than those in polycrystalline microspheres) have a noticeably better stability.
Single-crystalline cathodes are able to work at higher voltages and offer a longer cycle
life compared to polycrystalline cathodes [30,102,103]. When comparing polycrystalline
and single-crystalline NCM cathodes, the differences in the degree of particle cracking,
active surface areas, and Li diffusion rates become clearly visible [104]. Single-crystalline
NCM could avoid cracks after cycling, the observed cracking of secondary particles in poly-
crystalline NCM, which could result in liquid electrolyte infiltration in the active cathode
materials, lowering the charge-transfer resistance and increasing the apparent diffusion
coefficient [104]. However, single-crystal cathodes could still undergo capacity fading due
to the spatially inhomogeneous Li concentrations in single-crystal cathodes during cycling
and the nonuniform stress induced by the coexistence of two phases [105].
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4.2. Particle Size and Distribution

To achieve optimal performance, it is essential to optimize the architectural parameters
in electrode design, particularly particle size and distribution, which play a vital role
in determining the solid-state diffusion length of Li ions, electrode surface area, and
porosity [106–112]. In general, smaller particles have a shorter solid-state diffusion length,
which can lead to a lower overpotential and faster C-rate operation. On the other hand,
the larger surface area of smaller particles results in a higher proportion of passivation
layers (e.g., CEI) which could cause capacity loss over time. In contrast, a larger size of
particles results in a longer solid-state diffusion path, which is regarded as one of the
primary limiting factors for LIBs based on thin electrodes [109,113], in spite of their higher
tap density and higher volumetric energy.

Primary particles mainly affect the solid-state diffusion of Li ions while secondary
particle size distribution (PSD) affect the attainable electrode density and the electrolyte
diffusion through the electrodes [111,114]. The polydispersity index (PDI) and PSD are
critical factors to electrode performance [96,110,115,116]. Avoiding too large and too small
particles and attaining a medium-narrow PSD (with some smaller particles filling some
of the voids between the larger ones, but not blocking such voids) enables better packing
density and sufficiently fast improved electrolyte access, resulting in higher capacity and
more consistent performance. In contrast, too broad PSD with excessively coarse particles
could lower the attainable electrode smoothness and, thus, effective packing density,
while a large portion of very small particles may block the pores and hinder electrolyte
access, resulting in a lower capacity, poor rate, and less consistent performance. Primary
particles are prone to heterogeneity in reaction kinetics due to variations in size and shape
distribution, and secondary particles are more prone to cracking and detachment from
the carbon/binder domain (CBD), leading to increased heterogeneity in the electrode
microstructure [117–124]. Achieving a relatively uniform distribution of particles with
controlled size is challenging and can result in heterogeneous reactions within the electrode.
In practical electrode assemblies, active materials are embedded in the CBD, which can
further complicate the charge distribution scenario [125,126]. CBD detachment and non-
uniform voids distribution can induce a mismatch between ionic conductivity and electronic
conductivity, compromising the effective utility of active particles. Heterogeneity at the
CBD level can lead to a non-uniform percolated pore network and ionic transport resistance,
which becomes worse after calendaring and can cause high current flux locally [119]. These
issues can lead to reduced battery performance and durability.

A uniform size distribution and particle network and optimization of the space-
controlled composition and porosity within the composite electrode (e.g., near a current
collector vs. A separator) is expected to enhance electrochemical performance, reduce
polarization, and result in better cycle stability [115,118,127,128]. Electrodes with vertically
oriented particles or vertically oriented pores can improve rate performance without sac-
rificing gravimetric energy density [129–131]. The planar shape coupled with horizontal
orientation and wide size distribution of active particles, on the other hand, not only may
slow down Li-ion transport, but also result in a heterogeneous distribution of current and
nonuniform lithiation between particles and along the through-thickness direction [132].
A mixture of small and large particles would be beneficial for attaining higher packing
density and, thus, higher volumetric energy density in stationary energy storage. How-
ever, there are trade-offs to consider when optimizing particle size and distribution [133].
For instance, increasing either overall electrode density (by using particle size mixtures) or
increasing areal capacity loading can generally degrade rate performance, but these could
be counter-balanced by reducing electrode tortuosity, thus enhancing electrolyte wetting
and minimizing effective through-electrode ion diffusion paths. Therefore, particle size,
size distribution, particle shape, particle orientation within the electrode as well as the
electrode pore size, pore orientation, and pore tortuosity must all be carefully considered
during electrode design to ensure optimal performance.
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4.3. Tortuosity

Tortuosity refers to the extent to which the path of the pore is convoluted and twisted,
thus impeding the diffusion of ions within the electrode. Tortuosity is another important
factor that impacts the ionic conductivity of an electrode, because the effective ionic conduc-
tivity (Deff) is usually influenced by porosity (ε), tortuosity (τ), and intrinsic ion conductivity
(D) of the electrolyte, that is Deff = D(ε/τ) [134]. A higher porosity can enhance the mass
transport but leads to lower volumetric capacity and, additionally, could lead to a lower
mechanical strength, electrode cracking, or delamination. In the electrode design, minimiz-
ing tortuosity is essential to improve ion transport in thick electrodes because effective ionic
conductivity is inversely proportional to tortuosity [90,126,135,136]. The transmission line
model analysis (TLM) is used to measure ionic resistance and determine McMullin number
and tortuosity through electrochemical measurements [135]. Decreasing these values in
dense and thick electrodes can decrease ion diffusion time, reduce overall impedance Z,
and improve rate performance under high current densities. Low-tortuosity pore design is
an effective approach to enhance ion transfer kinetics in thick electrodes. Achieving both
fast ion and electron transport pathways is essential for optimal thick electrode design since
thick electrodes with high areal capacity may cause mass transport limitations at elevated
C-rates. However, there is a trade-off between porosity and tortuosity, and achieving a
balance between the two is crucial for optimal battery performance.

4.4. Electrode Architecture

High-performance thick electrodes require the design of the overall architecture of
cathode electrodes by considering the active material crystallinity, particle size, shape
and surface area, the distribution, size, and shape of the conductive additives and the
binder, and the resulting electrode porosity and tortuosity. For example, the difference
in the porosity distribution in top and bottom layers of the electrode could affect the key
electrode features such as physical, mechanical, chemical, and electrochemical properties.
Pore engineering is a promising approach to improve the performance of battery electrodes
by designing a microstructure with vertically oriented pore arrays [94,137]. Techniques
such as high-temperature sintering, laser patterning, and density gradient electrodes were
explored to create low-tortuosity pore structures that balance porosity and tortuosity [138–144].
However, manufacturing of thick or even ultra-thick electrodes (>100 um) with (ultra)high
mass loading is still difficult [91,145,146]. There are challenges to overcome, such as
low volumetric capacity and lack of scalability in some of the explored approaches, and
balancing ion transport and energy density, which can be affected by the potential decrease
in energy density associated with high porosity. Therefore, careful control of porosity
and tortuosity variation from the surface closer to separator to the contact closer to the
current collector through electrode design and fabrication methods is crucial to facilitate
ion transport, electrolyte infiltration, and ultimately improve battery performance [147,148].
In addition, heterogeneity can cause localized overcharging and Li plating, leading to rapid
deterioration of the battery’s microstructure and long-term performance. To address these
issues, various techniques such as designing pore structures, using binder-free electrodes,
attaining patterned electrodes, and 3D conductive skeletons could be further explored to
help reduce heterogeneity, porosity, and tortuosity, thus improving battery performance
and durability.

5. Conclusions

The development of next-generation LIBs calls for more considerations on cathode
materials and electrode-processing technologies. In this review, we discussed the advances
and challenges in current cathode materials, binders, and processing technologies. We com-
pared conventional intercalation cathodes and conversion cathodes to demonstrate their
current issues and future potentials. To meet the practical demands, it is derisible to design
thicker cathode electrodes with high packing energy and fast charging/discharging rates.
We discussed several key performance parameters from crystal/particle to electrode levels.
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From a practical fabrication prospective, however, one should additionally consider the
mechanics of cathode materials and fully formed electrodes with mechanical tests con-
ducted, such as tensile, compression, bending, and nail-penetration (or blunt-rod) tests,
which will be important for the evaluation of both high-yield mass production and the
battery safety. Additionally, commutating methods such as finite element analysis (FEA)
calculations and simulations, and/or machine learning/artificial intelligence (AI) should
be also taken into consideration [149–151]. Further technology developments on both
advanced cathode materials and cathode fabrication processes will be critical to promote
the rapid development of battery industry.
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