Next Issue
Volume 3, March
Previous Issue
Volume 2, September
 
 

Nanoenergy Adv., Volume 2, Issue 4 (December 2022) – 5 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
42 pages, 76541 KiB  
Review
Heart Energy Harvesting and Cardiac Bioelectronics: Technologies and Perspectives
by Massimo Mariello
Nanoenergy Adv. 2022, 2(4), 344-385; https://doi.org/10.3390/nanoenergyadv2040018 - 06 Dec 2022
Cited by 4 | Viewed by 5108
Abstract
Nanogenerators are a recently emerging technology which is able to cost-effectively harvest energy from renewable and clean energy sources at the micro/nano-scale. Their applications in the field of self-powered sensing systems and portable power supplying devices have been increasing in recent years. Wearable [...] Read more.
Nanogenerators are a recently emerging technology which is able to cost-effectively harvest energy from renewable and clean energy sources at the micro/nano-scale. Their applications in the field of self-powered sensing systems and portable power supplying devices have been increasing in recent years. Wearable and implantable electromechanical/electrochemical transducers for energy harvesting represent a novel alternative to chemical batteries for low-power devices and to exploit the energy conveyed by human biomechanics. The human heart, in particular, is a compelling in vivo source of continuous biomechanical energy and is a natural battery which can power implantable or wearable medical devices. This review describes the recent advances in cardiac wearable/implantable soft and flexible devices and nanogenerators for energy harvesting (piezoelectric nanogenerators, triboelectric nanogenerators, biofuel cells, solar cells, etc.), as well as cardiovascular implantable electronic devices in a more general sense, as components of more complex self-sustainable bioelectronic systems for controlling irregular heartbeats or for interventional therapy for cardiac diseases. The main types of soft heart energy harvesters (HEHs) and heart bioelectronic systems (HBSs) are covered and classified, with a detailed presentation of state-of-the-art devices, and the advances in terms of materials choice, chemical functionalization, and design engineering are highlighted. In vivo bioelectronic cardiac interfaces are outlined as well as soft devices for in vitro cardiac models (patch and organoids). Cutting-edge 3D/4D bioprinting techniques of cardiac tissue are also mentioned. The technical challenges for the practical application and commercialization of soft HBSs are discussed at the end of this paper. Full article
Show Figures

Figure 1

28 pages, 6480 KiB  
Review
Overview of Advanced Micro-Nano Manufacturing Technologies for Triboelectric Nanogenerators
by Xinlong Huang, Youchao Qi, Tianzhao Bu, Xinrui Li, Guoxu Liu, Jianhua Zeng, Beibei Fan and Chi Zhang
Nanoenergy Adv. 2022, 2(4), 316-343; https://doi.org/10.3390/nanoenergyadv2040017 - 25 Nov 2022
Cited by 1 | Viewed by 2493
Abstract
In the era of the Internet of Things, various electronics play an important role in information interaction, in which the power supply is an urgent problem to be solved. Triboelectric nanogenerator (TENG) is an emerging mechanical energy harvesting technology that can serve as [...] Read more.
In the era of the Internet of Things, various electronics play an important role in information interaction, in which the power supply is an urgent problem to be solved. Triboelectric nanogenerator (TENG) is an emerging mechanical energy harvesting technology that can serve as a power source for electronics, which is developing towards high performance, miniaturization and integration. Herein, the advanced micro-nano manufacturing technologies are systematically reviewed for TENGs. First, film preparation such as physical vapor deposition, chemical vapor deposition, electrochemical deposition, electrospinning and screen printing for triboelectric layers are introduced and discussed. Then, surface processing, such as soft lithography, laser ablation, inductively coupled plasma and nanoimprint for micro-nano structures on the surface of triboelectric layers are also introduced and discussed. In addition, micro-electromechanical system fabrication for TENG devices such as acoustic and vibration sensors, is introduced, and their current challenges are analyzed. Finally, the challenges of the advanced micro-nano manufacturing technologies for the TENGs are systematically summarized, and further development is prospected. Full article
Show Figures

Figure 1

13 pages, 3259 KiB  
Article
Continuously Interconnected N-Doped Porous Carbon for High-Performance Lithium-Ion Capacitors
by Qing Wang, Xin Jiang, Qijun Tong, Haijian Li, Jie Li and Weiqing Yang
Nanoenergy Adv. 2022, 2(4), 303-315; https://doi.org/10.3390/nanoenergyadv2040016 - 01 Nov 2022
Cited by 7 | Viewed by 1556
Abstract
Lithium-ion hybrid capacitors (LICs) possess the fascinating characteristics of both high power density and high energy density simultaneously. However, to design highly compatible cathode materials with a high capacity and anode materials with a high rate performance is still a major challenge because [...] Read more.
Lithium-ion hybrid capacitors (LICs) possess the fascinating characteristics of both high power density and high energy density simultaneously. However, to design highly compatible cathode materials with a high capacity and anode materials with a high rate performance is still a major challenge because of the mismatch of dynamic mechanisms, greatly limiting the development of LICs. Herein, we report an N−doped porous carbon (N−PC) with a continuously interconnected network as the cathode, matching the dynamic mechanism of the uniquely pseudocapacitive T−Nb2O5 anode without diffusion-controlled behavior. This heteroatom-grafting strategy of the cathode can effectively control the dynamic process to adjust the ion transport efficiency, shortening the gap of kinetics and capacity with the anode. For the energy storage application, the as-prepared N−PC cathode demonstrates an appreciable capacity of 62.06 mAh g−1 under a high voltage window of 3 V to 4.2 V, which can exceed the capacity of 25.57 mAh g−1 for porous carbon without heteroatom doping at the current density of 0.1 A g−1. Furthermore, the as-developed lithium-ion capacitor possesses an outstanding electrochemical performance (80.57 Wh kg−1 at 135 W kg−1 and 36.77 Wh kg−1 at 2.7 kW kg−1). This work can provide a new avenue to design cathode materials with a highly appreciable capacity and highly compatible kinetic mechanism, further developing high-performance lithium-ion capacitors. Full article
Show Figures

Graphical abstract

12 pages, 4272 KiB  
Article
ZIF-67-Metal–Organic-Framework-Based Triboelectric Nanogenerator for Self-Powered Devices
by Sachin Barsiwal, Anjaly Babu, Uday Kumar Khanapuram, Supraja Potu, Navneeth Madathil, Rakesh Kumar Rajaboina, Siju Mishra, Haranath Divi, Prakash Kodali, Raju Nagapuri and Thirmal Chinthakuntla
Nanoenergy Adv. 2022, 2(4), 291-302; https://doi.org/10.3390/nanoenergyadv2040015 - 21 Oct 2022
Cited by 16 | Viewed by 5275
Abstract
Energy harvesting from the ambient environment can be a beneficial and promising source for powering micro- and nanodevices. Triboelectric nanogenerator (TENG) technology has been proved to be a simple and cost-effective method to harness ambient mechanical energy. The performance of the TENG device [...] Read more.
Energy harvesting from the ambient environment can be a beneficial and promising source for powering micro- and nanodevices. Triboelectric nanogenerator (TENG) technology has been proved to be a simple and cost-effective method to harness ambient mechanical energy. The performance of the TENG device mainly depends on the careful selection of the material pair. So far, metals and polymer materials have dominated TENG technology. Recently, there have been few reports on metal–organic framework (MoF)-based TENGs. MoFs are very interesting and offer excellent chemical and thermal stability, besides their unique properties, such as tunable pore size and high surface area. Herein, we report a zeolitic imidazole framework (ZIF-67)-based TENG device for self-powered device applications. We used ZIF-67 as one tribolayer, and PET and PMMA as opposite tribolayers. The output performance of the TENG device fabricated with the PMMA/ZIF-67 pair showed values of 300 V, 47.5 µA, and 593 mW/m2 of open-circuit voltage, short-circuit current, and power density, respectively. To the best of our knowledge, these are the highest reported values so far for ZIF-67-based TENG devices. The fabricated TENG device lit up 250 LEDs and was employed to explore different self-powered device applications. Full article
Show Figures

Graphical abstract

22 pages, 5074 KiB  
Review
Perspective on Porous Piezoelectric Ceramics to Control Internal Stress
by Xiang Zhou, Kechao Zhou, Dou Zhang, Chris Bowen, Qingping Wang, Junwen Zhong and Yan Zhang
Nanoenergy Adv. 2022, 2(4), 269-290; https://doi.org/10.3390/nanoenergyadv2040014 - 26 Sep 2022
Cited by 9 | Viewed by 2645
Abstract
Due to the unique electromechanical energy conversion capability of ferroelectric materials, they have been at the forefront of materials science for a variety of applications such as sensors, actuators and energy harvesting. Researchers have focused on exploring approaches to achieve improved ferroelectric performance, [...] Read more.
Due to the unique electromechanical energy conversion capability of ferroelectric materials, they have been at the forefront of materials science for a variety of applications such as sensors, actuators and energy harvesting. Researchers have focused on exploring approaches to achieve improved ferroelectric performance, and to ensure that the available material systems are more environmentally friendly. This comprehensive review summarizes recent research progress on porous ceramics and highlights the variety of factors that are often ignored, namely the influence of porosity on the Curie temperature, and applications of porous ferroelectric materials with adjustable Curie temperature. Finally, the development trends and challenges of porous ferroelectric materials are discussed, aiming to provide new insights for the design and construction of ferroelectric materials. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop