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Abstract: A triboelectric nanogenerator (TENG) is a noteworthy mechanical energy harvester that
can convert mechanical energy into electricity by combining triboelectrification and electrostatic
induction. However, owing to the nature of its working mechanism, TENGs have critical limitations in
mechanical and electrical aspects, which prevent them from being utilized as primary power sources.
To overcome these limitations, several studies are turning their attention to utilizing lubricants, which
is a traditional method recently applied to TENGs. In this review, we introduce recent advances in
lubricant-based TENGs that can effectively enhance their electrical output and mechanical lifespan.
In addition, this review provides an overview of lubricant-based TENGs. We hope that, through this
review, researchers who are trying to overcome mechanical and electrical limitations to expand the
applications of TENGs in industries will be introduced to the use of lubricant materials.

Keywords: triboelectric nanogenerator; energy harvesting; lubricant liquid; output enhancement;
mechanical lifespan

1. Introduction

As the number of portable electronics and Internet of Things (IoT) devices has increased
drastically, the need for on-site energy generation has been in the spotlight to power these
devices individually and extend their battery life. Energy-harvesting technologies can convert
ambient energy, such as solar [1–3], wind [4–8], wave [9–12], and radio frequency [13–15],
into electricity that can provide sufficient energy for small electronic devices. Among these
energy-harvesting technologies, harvesting mechanical energy has great potential to effectively
power portable and small electronics because it is not affected by external environment such
as weather conditions. In order to harvest mechanical motion, energy harvesters that utilizes
electromagnetic, piezoelectric effect has been utilized [16,17]. Triboelectric nanogenerators
(TENGs) are one of mechanical energy harvesters that can generate electricity by combining
triboelectrification and electrostatic induction [18–23]. Owing to their light weight [24], high
electrical output [25,26], and availability of raw materials, recent research has focused on
developing various TENG designs and structures to effectively collect energy from multiple
mechanical sources, such as vibration energy [27–30] and rotation energy [31–34]. Currently,
TENGs charge commercial electrical devices and lithium-ion batteries used in building self-
powered systems [35–38] and are enhanced for utilization in industrial applications [39].

However, the working mechanisms of TENGs are critically limited in their mechanical
and electrical aspects, restricting the use of TENGs as primary power sources. From a
mechanical perspective, TENGs have two materials placed in contact to cause triboelectric-
ity, leading to frictional wear. Frictional wear is one of the constant limitations of TENGs
because they generate electrical output through mechanical input [40]. Due to the nature of
triboelectricity, surface friction from two or more material is necessary to generate surface

Nanoenergy Adv. 2022, 2, 210–221. https://doi.org/10.3390/nanoenergyadv2020009 https://www.mdpi.com/journal/nanoenergyadv

https://doi.org/10.3390/nanoenergyadv2020009
https://doi.org/10.3390/nanoenergyadv2020009
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nanoenergyadv
https://www.mdpi.com
https://doi.org/10.3390/nanoenergyadv2020009
https://www.mdpi.com/journal/nanoenergyadv
https://www.mdpi.com/article/10.3390/nanoenergyadv2020009?type=check_update&version=1


Nanoenergy Adv. 2022, 2 211

charge and requires consistent or periodical contact due to degradation of surface charge
over time. Particularly, various TENGs utilizing micro-/nano-structures and polymer
dielectric materials for surface charge enhancements are more vulnerable to frictional wear
owing to their poor mechanical properties [41,42]. Frictional damage on a TENG surface
leads to a decrease in electrical output due to surface structure failure as well as device
failure when mechanical damage is accumulated.

An electrical limitation is imposed when the surface charge potential of the material
is higher than the breakdown potential of air, as the surface charge is lost through field
emission and ionization of air [43–45]. Since more and more studies report higher sur-
face charge materials with surface micro and nanostructures, this electrical limitation is
becoming restriction factor for developing high power TENG [46,47]. With the introduction
of the upper limitation of surface charge due to air breakdown, there have been studies
in favor and opposing the use of this phenomenon to enhance the electrical output of
TENGs [48–50]. However, the cause of this limitation remains unresolved, as the primary
potential difference of TENGs is governed by the surface charge, which is still limited
by air breakdown. Therefore, to overcome these limitations, several studies are turning
their attention to utilizing lubricants, a traditional method recently applied to TENGs, to
overcome both limitations.

In this review, we highlight recent advances in lubricant-based TENGs that can effec-
tively enhance both the electrical output and mechanical lifespan of TENGs. The review
will focus on overviewing lubricant-based TENGs, their working mechanisms, their various
designs, and an output comparison with conventional TENGs. Especially, the reason for
lubricant based TENGs can overcome mechanical and electrical limitation of TENG, and
experimental data from various studies will be discussed. Finally, the different perspectives
regarding lubricant-based TENGs, and challenges associated with their use are discussed.

2. Lubricant-Based TENGs

When mechanical input is applied to a conventional TENG, two dielectric materials
come into contact and cause triboelectrification [51–57]. The surface charge generated by
the friction between the two dielectric materials is then transferred to the electrodes through
electrostatic induction [58–63]. Contact between the dielectric materials is inevitable during
this process, leading to frictional wear. The frictional wear gradually decreases the output
of TENG by damaging the surface structure fabricated on the surface and eventually
fails after the mechanical damage is accumulated. Therefore, utilizing lubricants between
the frictional surfaces is an effective approach to reducing the frictional force. Moreover,
lubricating oils such as transformer oil and vegetable oil are also called as dielectric liquid
which can be used as insulating material by its high breakdown voltage [64]. As the surface
charge of dielectric materials in TENGs can be released to the atmosphere, utilizing the
lubricant at TENGs can increase the electrical output. By these effects, recently, various
lubricant materials combined with mechanical designs have been introduced to overcome
the mechanical limitations of TENGs (Figure 1). As sliding motion-based TENGs are more
vulnerable to friction failure, lubricant materials were more actively utilized in these than
in other TENGs, such as horizontal contact-separation modes.

As shown in Figure 1a, a lubricating liquid can be applied to a sliding motion-based
TENG system [65]. The lubricant liquid on the TENG surface forms a thin layer that can
effectively decrease the frictional force between the electrode and polytetrafluoroethylene
(PTFE) surface. The main electrical potential difference is generated by friction between
the PTFE and polystyrene (PS) surfaces, and the TENG generates an amplified current of
over 1 mA because the dielectric liquid acts as a switch during operation. Furthermore,
field emission occurs when the PTFE contacts the electrode surface, and electrons can flow
directly from the PTFE surface to the electrode. Hence, the lubricant liquid enhanced the
electrical output of the TENG by suppressing air breakdown. Various TENGs utilizing
other lubricant liquids, such as oleic acid, have been introduced (Figure 1b). In a previous
study, oleic acid and PS were dissolved in N,N-dimethylformamide, and then spin-coated
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on the conductive polyimide (PI) surface to be paired with nylon-11 surface [66]. In this
work, the negative surface charge is generated on oleic acid and PS solution and positive
surface charge is generated on nylon surface. The surface charge of PS and nylon is induced
to the copper electrode which is underlying each material. The vertical movement between
these materials generate electric potential difference which leads to generating electrical
output. A similar structure is shown in Figure 1c, where squalene liquid was applied to the
TENG surface [67]. The squalene liquid, which was chosen to be most effective through
experiment with various liquids, provides a thin layer that can effectively lower friction
and increase the surface charge, enhancing electrical output. The main surface charge is
generated on the PI surface of the TENG and generates electrical output through horizontal
movement. It is also possible to utilize liquids such as hexadecane, as shown in Figure 1d,
where the nylon surface was coated with hexadecane to form a hexadecane-containing
sandwich structure [68]. In this work, traditional triboelectric material consisting of PTFE
and nylon was chosen to generate negative and positive surface charge, respectively. A
total of 5 mL of hexadecane was brushed to the surface to form a hexadecane-containing
sandwich structure.
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Figure 1. Various designs for lubricant-based TENGs. Schematic of lubricant-based TENG using:
(a) dielectric lubricant (Reprinted with permission from ref. [65]. 2021, Elsevier); (b) oleic acid
(Reprinted with permission from ref. [66]. 2020, Elsevier); (c) liquid lubricant (Reprinted with
permission from ref. [67]. 2020, Wiley); (d) hexadecane sandwich structure (Reprinted with permission
from ref. [68]. 2021, Elsevier); (e) rolling cylinder structure (Reprinted with permission from ref. [69].
2021, Wiley); (f) ball-bearing structure (Reprinted with permission from ref. [70]. 2022, Elsevier).

Recent research has focused on combining mechanical design with lubrication to
enhance the mechanical lifespan of TENGs. As shown in Figure 1e, a TENG coated with a
non-polar liquid lubricant consists of an outer cylinder substrate, multiple rolling electrodes,
a PTFE cylinder, and aluminum plate electrodes placed on the inner surface of the cylinder
substrate [69]. The rolling electrodes rotating inside the cylinder substrate have rolling
friction, which is considerably lower than sliding friction. The main electrical potential
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difference is generated through PTFE and rolling aluminum electrode in this study. The
electrical potential accumulated in the rolling aluminum electrode is then transferred to
the plate electrode as the rolling electrode rotates due to external mechanical input. In
addition, the entire TENG system was submerged in a liquid lubricant, which enhanced the
mechanical lifespan. With the lubricant-applied design, the aluminum surface of this TENG
had no frictional damage even after 72 h of continuous operation. In addition, as shown in
Figure 1f, a ball-bearing TENG with a semi-solid lubricant such as grease was introduced. A
commercial semi-solid lubricant (multipurpose lubricant, Super Lube®), which can be used
under a wide range of environmental conditions, was applied to the TENG surface [70].
The main electrical potential difference is generated through PTFE and steel ball located
inside the substrate casing, and through commercial semisolid lubricant, it can effectively
lower friction between each surface; additionally, rolling friction significantly lowered the
friction force compared with sliding friction.

3. Working Mechanism of Lubricant-Based TENGs

The lubricant liquid on the TENG surface can enhance the mechanical and electrical
performance. From a mechanical perspective, lubricant liquid can effectively decrease the
frictional wear of TENGs in various condition. There are four different lubrication regimes
which are called as boundary lubrication, mixed lubrication, full film lubrication and
elastohydrodynamic lubrication. Each regimes show different result of frictional damage
and it is decided by several factors such as dynamic viscosity of the lubricant liquid,
entrainment speed, normal load per the length of contact, and the contact condition [71].
Normally the contact surfaces are less damaged by the full film lubrication which is also
called as hydrodynamic lubrication. By full film lubrication, a sufficient amount of lubricant
liquid between two surfaces can form a fluid film that can minimize the frictional wear
between them [72]. Due to the fluid film, the two contact surfaces can be separated, thus the
frictional wear effectively decreases. Furthermore, through elastohydrodynamic lubrication,
the frictional wear from rolling friction can be decreased [73]. Even though rolling friction
cause less wear than sliding friction, it can also be improved by using lubricant liquid.
As both the coefficient of rolling friction by the roughness of the rolling surface and the
contact surface, and normal force, cause friction force, the wear of the rolling surface and
contact surface also occurs. Moreover, in real life, the slip between the rolling surface and
contact surface can be also occurred. If the accurate lubricant liquid is used, due to the
elastohydrodynamic lubrication, lubrication liquid can reduce the frictional damage of
various devices such as bearing or gear. Additionally, lubricant liquid can also reduce heat
from the friction and prevent the damage from the wear particles [74]. Hence, lubricant
liquid has numerous advantages to be utilized for the TENGs. Considering that TENGs,
especially those that harvest sliding motion, are constantly exposed to frictional contact,
combining a lubricated surface and low-friction mechanical design is essential for a longer
lifespan and expanding the application of TENGs to primary power sources.

Along with the mechanical advantages of applying a lubricant to TENGs, the electrical
output can be enhanced by lubricating the TENG surface. As the electrical output of
TENGs is governed by the amount of surface charge on the dielectric material, enhancing
the surface charge is an important factor in increasing the total electrical output. However,
as the air breakdown voltage is commonly known to be 3 × 106 V/m [75], dielectric
surfaces with electrical potentials higher than this value can cause field emission and air
breakdown, where electrons on the dielectric surface can escape to the air. Due to the
electrons escaping from the material surface, the surface charge of the material surface is
restricted as well. This leads to an upper limitation of the surface charge when the TENG
operates in an atmospheric environment, resulting in reduced electrical output [43]. As
more and more studies are reporting high surface charge materials and device structures to
be utilized in TENG, overcoming this restriction is becoming important [76–78]. Surfaces
under a lubricant liquid can avoid field emission and air breakdown because the lubricant
liquid tends to have a higher breakdown voltage than air [79]. As shown in Figure 2a,
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under atmospheric conditions, electrons can escape to air owing to field emission and
air breakdown, which would limit the maximum surface charge. This indicates that by
utilizing lubricant, dielectric surface can withhold more surface charge compared to when
it is exposed to air. Moreover, the liquid lubricant can be polarized due to the surface
charge, resulting in transferring the charge to the electrode by electrostatic induction. As
shown in Figure 2b, the voltage and current measured increased when the steel sphere was
sliding over a polyvinylidene fluoride (PVDF) surface and polyalphaolefin (PAO) 4 was
applied between them [80]. PAO 4 fills the microscale gap between the PVDF and steel
sphere surfaces. Hence, the air breakdown at the contact interface was inhibited, and the
triboelectric charge of PVDF was preserved because of the low polarity and high dielectric
constant of PAO 4.
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pressing air breakdown (Reprinted with permission from ref. [65]. 2021, Elsevier); (b) effect of adding
lubricant on dielectric surface and schematic of liquid lubricant suppressing air breakdown in a
microscale gap (Reprinted with permission from ref. [80]. 2022, Elsevier); (c) comparison of polar
and non-polar liquid transferring surface charge to the electrode (Reprinted with permission from
ref. [69]. 2021, Wiley); (d) accumulated charge on the dielectric material transfers to the electrode,
producing amplified output (Reprinted with permission from ref. [65]. 2021, Elsevier).

Electrostatic induction plays an important role in the working mechanism of the
TENGs for transferring the surface charge to the electrode. However, when the liquid is
in contact with the surface of the dielectric material, it forms an electrical double layer
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(EDL), which screens the surface charge of the solid material. This means that the surface
charge is reduced by EDL and surface charge cannot be transferred to the electrode by
electrostatic induction. Hence, the electrical output is suppressed as the electrical potential
difference between the electrode and dielectric material with the surface charge is reduced.
As shown in Figure 2c, when polar liquids, such as water and ethanol, come into contact
with the solid surface with the surface charge, the charge is screened by oriented liquid
molecules [81]. The characteristic distance where the charge is screened by contacting
liquid is called the Debye length (λD). When a strong polar liquid such as water comes
into contact with the dielectric surface, λD can be <20 nm [82]. Even ethanol, which has a
lower polarity compared with water, has λD around 38 nm. This indicates that a liquid with
a lower λD will screen the surface charge even with nano- to micro-scale gaps, resulting
in a substantial decrease in the electrical output by reducing the charge induced to the
TENG electrodes. This would result in a decrease in electrical output. In contrast, non-polar
liquids have a higher λD over 1 µm, which is significantly higher than that of polar liquids;
therefore, a higher surface charge can be induced on the electrode through the polarization
of the non-polar liquid molecules without electrical screening.

By lubricant liquid effectively suppressing air breakdown and inducing more charge,
it can also open a new working mechanism for TENG by introducing a combination of
lubricant suppressing air breakdown and non-lubricated surfaces inducing air breakdown.
Figure 2d shows the extended working mechanism of the lubricant-based TENG, which
utilizes the accumulated charge due to the non-polar lubricant liquid. When the PTFE
plate slides across the PS surface, negative and positive charges are generated on the PTFE
and PS surfaces, respectively, because of the triboelectric effect between the two surfaces.
As the PTFE plate comes in contact with the electrode, electrons on the PTFE surface are
emitted to the plate electrode and electrons from the counter electrode are emitted into the
air, owing to the field emission. As field emission occurs on both electrodes, it can produce
a high electrical output. In this working mechanism, the TENG is able to produce high
electrical output through a combination of lubricant suppressing air breakdown on the
solid surface, and the air-exposed surface inducing air breakdown to allow more electrons
to flow between the two plate electrodes. As the PS surface reverses its sliding motion, a
contrasting electrical output is produced, owing to the reverse field emission. As shown
in this figure, lubricant materials are being actively studied in the TENG field, and new
working mechanisms to enhance the electrical output of TENG have yet to be discovered.

4. Performance of Lubricant-Based TENGs and Relevant Parameters

Figure 3a,b show the mechanical advantages of utilizing lubricants in TENGs. As
shown in Figure 3a, the microscopic photograph suggests that the TENG electrode surface
remained undamaged in a lubricated environment even after continuous operation for
72 h [69]. This study also reports that the surface under non-lubricated environment
have shown surface damages with noticeable scratches under microscope. In addition to
reducing the frictional force and wear, the TENG surface may be subjected to less thermal
damage during operation. Figure 3b shows the photograph of the TENG surface, and the
thermal image during operation which shows the thermal condition and surface damage
of the ball-bearing TENG [70]. When a semi-solid lubricant was applied to the surface, the
TENG showed only a 1.7 ◦C increase in temperature after 55 h of continuous operation, and
there was no noticeable electrode damage except for the dent marks from the rotating ball-
bearing spheres. In contrast, when no lubricant was applied to the surface, the operating
temperature rises to a maximum of 69.2 ◦C after 1 h of operation. In addition, it showed
noticeable damage to the electrode with metal powder wear from the electrode surface
compared with a ball-bearing TENG with a semi-solid lubricant. The lower operation
temperature shows that the friction force is much less in lubricated condition compared to
non-lubricated condition. Through a lower operation temperature, the materials can have
less damage from mechanical motion as well. In terms of electrical output, Figure 3c,d show
the transferred charge and current output, respectively, depending on the presence of a
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lubricant liquid on the surface. The transferred charge and current of the lubricated TENG
were more than twice compared with those of the TENG operated in air. As mentioned in
the previous paragraphs, this is result from combination of suppressing air breakdown and
increasing the Debye length through using non-polar liquid lubricant.
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Figure 3. Mechanical and electrical performance of lubricant-based TENGs: (a) microscopic pho-
tograph of electrode surface <i> before and <ii> after 72 h of continuous operation of the TENG
(Reprinted with permission from ref. [69], 2021, Wiley); (b) photograph of the electrode surface
and the thermal image of TENG during operation (Reprinted with permission from ref. [70]. 2022,
Elsevier); (c) transferred charge; (d) current output of TENG with and without liquid lubrication
(Reprinted with permission from ref. [67]. 2020, Wiley).

To further enhance the mechanical lifespan and electrical output, future studies are
required to optimize the lubricants specialized for TENG applications. One of the important
steps for optimizing lubricant materials is a quantitative study of various liquid lubricants.
Many studies are continuing this effort to provide guideline for selecting appropriate
lubricant materials to be utilized in various applications. As shown in Figure 4a,b, a recent
study showed that liquid lubricants such as squalene, paraffin oil, and PAO 10 have higher
electrical outputs than TENG operated under dry conditions [83]. In this work, TENG
operating with liquids such as olive oil, rapeseed oil, plurial A 500 PE, PEG 200, water
have shown considerably lower electrical output. This study also reported that the relative
permittivity and viscosity of lubricant is the key factor to increase output of TENG according
to the experimental result. In addition, in other studies, lubricant liquids such as mineral
oil and silicone oil show high electrical output, whereas castor oil, water, and ethanol show
relatively low output (Figure 4c,d). Overall, various studies have shown that synthetic
non-polar liquids such as squalene, mineral oil, silicone oil, and hexadecane have a higher
electrical output, whereas polar liquids such as ethylene glycol, water, and ethanol tend
to show low electrical output. As shown in Figure 2, the polar liquids screen the surface
charge and lead to a decrease in the output. In addition, considering that organic oils such
as rapeseed, olive, and castor oils are mixtures of various compounds, they contain polar
molecules such as glycerol that would lower the electrical output of TENGs. As shown in
Figure 4e–h, a study on the electrical output and friction coefficient depending on PAO 4,
perfluoropolyether (PFPE), glycerol, and ethanol, respectively. As shown in the plots, the
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electrical output increases and friction coefficient decreases when using a non-polar liquid
such as PAO 4 and PFPE, whereas the electrical output decreases and friction coefficient
increases when using polar liquid such as glycerol and ethanol. Considering that there are
vast number of synthetic and natural oils are used for lubrication, there must be further
studies on these materials as well as effect of these lubrication materials when lubrication
materials are used for a longer extension of time.
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further decrease the friction force and enhance the electrical output. For further enhance-
ment of lubricant-based TENGs, optimization of lubricant liquids and mechanical com-
ponents should be considered at the design level, and additional quantitative studies are 
required as follows:  
(1) Optimization of lubricant-based TENG design to withhold more lubricant on the sur-

face during operation and advanced surface design considering lubrication at the de-
sign level;  

Figure 4. Electrical output depending on various liquids applied on the surface of TENGs:
(a,c) Voltage and (b,d) current output of TENGs depending on various liquids (Reprinted with
permission from ref. [69]. 2021, Wiley. And reprinted with permission from ref. [83]. 2021, Elsevier).
Measured current and friction coefficient when (e) PAO 4, (f) PFPE, (g) glycerol, and (h) alcohol was
applied on the surface of TENGSs.

5. Summary and Perspectives

This review introduces the current strategies and an overview of lubrication-based
TENGs. As the air breakdown effect limits the electrical performance and induces frictional
wear affecting the mechanical lifespan of TENGs, the use of lubricants has been actively
studied to overcome these limitations. These studies have shown that a lubricant liquid
applied to the TENG surface can effectively increase the mechanical lifespan and electrical
output by lowering the friction coefficient and suppressing air breakdown. Previous studies
have shown working mechanism of lubricant-based TENGs can generate high electrical
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output through suppressing air breakdown and non-polar liquid with high Debye length,
which would effectively transfer the surface charge through electrostatic induction. Various
mechanical designs and working mechanisms have been developed to further decrease the
friction force and enhance the electrical output. For further enhancement of lubricant-based
TENGs, optimization of lubricant liquids and mechanical components should be considered
at the design level, and additional quantitative studies are required as follows:

(1) Optimization of lubricant-based TENG design to withhold more lubricant on the
surface during operation and advanced surface design considering lubrication at the
design level;

(2) Further quantitative analysis of the relationship between TENGs and lubricant liquids,
especially on the EDL formation of lubricant liquids under high surface
charge conditions;

(3) Quantitative analysis of various lubricant liquids affecting mechanical lifespan and
electrical output of TENG, including commercial synthetic and organic oil;

(4) Long-term influence of lubricant liquids on TENG surfaces and the effect of long-term
operation on polymer surfaces.

We hope that, through this review, researchers who are trying to overcome mechanical
and electrical limitations for expanding the applications of TENGs in industries will be
introduced to the use of lubricant materials. We believe that constant research efforts and
innovations in lubricant-based TENG have great potential for utilizing TENGs as a primary
energy source for existing electronics.
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