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Abstract: The scientific community recognizes coffee grounds (Coffea arabica) as an important biologi-
cal residue, which led to using the Eversa® Transform 2.0 lipase as an in silico enzymatic catalyst
for coffee grounds’ free fatty acids (FFA). Molecular modeling studies, including molecular docking,
were performed, which revealed the structures of the lipase and showed the primary interactions
between the ligands and the amino acid residues in the active site of the enzyme. Of the ligands tested,
6,9-methyl octadienoate had the best free energy of −6.1 kcal/mol, while methyl octadecenoate and
methyl eicosanoate had energies of −5.7 kcal/mol. Molecular dynamics confirmed the stability of
the bonds with low Root Mean Square Deviation (RMSD) values. The MMGBSA study showed that
methyl octadecenoate had the best free energy estimate, and CASTp identified key active sites for
potential enzyme immobilization in experimental studies. Overall, this study provides efficient and
promising results for future experimental investigations, showing a classification of oils present in
coffee grounds and their binding affinity with Eversa.

Keywords: coffee grounds; Eversa® Transform 2.0 lipase; molecular docking

1. Introduction

Coffee has a global consumption of more than 10 million kilos per year, being consid-
ered one of the most popular hot drinks in the world [1]. Soluble coffee production has a
1:2 ratio of coffee grounds generation and wet coffee grounds. That is, the large consump-
tion of this food generates excessive biological waste with high energy potential [2,3]. These
residues can be separated and processed, generating new products with the possibility
of generating added value. Some bioactives that can be obtained from coffee bagasse are
lignin, cellulose, and hemicellulose, which are highly viable for producing biomass and
obtaining biofuels. In addition to this generation of value, these bioactives do not compete
with the coffee food chain, which is another advantage related to their study [4,5].

The rapid growth of non-renewable fuel exploitation, such as oil, is a significant
concern. If economic growth continues at its current rate, energy demand will increase
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tenfold by 2050 [6]. Consequently, using renewable fuels like bioethanol and biodiesel is
highly encouraged, and the potential of coffee grounds for biofuel production should not
be overlooked [7].

For free fatty acids (FFA) obtained from coffee bagasse to be used as biofuels, the FFA
need to undergo a catalysis process (being esterified or transesterified) to become viable
for use [8,9]. This catalysis can be obtained chemically or enzymatically [10,11]. However,
chemical catalysts are limited by their longer reaction time and corrosive nature, making
enzymatic catalysts a more favorable option [12,13]. Although enzymatic catalysts still
have a high cost, the scientific community has worked to reduce this cost by various means,
such as reactor design, reaction and enzymatic engineering, use of alternative cofactors,
and use of low-cost enzymes, among others. One of the ways that has been most studied
for this cost reduction is the process of immobilizing enzymes in non-soluble supports to
form a biocatalyst that can be recovered and reused, making the process more efficient and
sustainable [14,15].

Numerous studies have been conducted in the field of enzymatic catalysts to reduce
the cost of the process, both by immobilizing the enzymes and obtaining more accessible
enzymes. In this regard, Eversa® Transform 2.0 lipase (EVS) is a more cost-effective alter-
native as it is produced by Thermomyces lanuginosus and synthesized from the genetically
modified strain of Aspergillus oryzae [16,17]. Its enzymatic component, carboxylic acid ester
hydrolysis (EC 3.1.1.3), has emerged as a promising candidate for producing biolubricants
and biofuels [18,19].

A factor to consider in reducing the cost of enzymatic catalysts for fatty acids is achiev-
ing optimal compression of the process and stability in binding the enzyme’s active site
with the fatty acids being used [20,21]. Achieving optimal compression involves examining
systems at the atomic and molecular levels, which requires the study of computational
chemistry and bioinformatics [22]. Understanding the affinity of the compounds, their
enantioselectivity, or possible catalytic deactivations provides valuable data for designing
an effective FFA catalysis strategy during experimental processes [23].

Techniques such as docking and molecular dynamics (MD) can be used to analyze
the catalytic efficiency of a given lipase in various esterification and transesterification
processes, providing an understanding of the interaction between the enzyme, substrate,
and solvent without the need for expensive materials [24,25]. By gaining this understanding
and using more affordable enzymes along with coffee grounds and biomass with biological
potential that would otherwise be discarded, the production of biofuels has the potential to
become both practical and cost-effective [26,27].

This study aims to evaluate the potential of Eversa® Transform 2.0 lipase to catalyze the
seven fatty substances extracted from coffee grounds, including hexadecanoic acid, methyl
hexadecanoate, methyl octadecanoate, methyl docosanoate, methyl eicosanoate, methyl
octadienoate, and methyl octadecenoate, through molecular docking and dynamic simula-
tions. Molecular docking was used to calculate and identify the ligands’ conformational
positions in the lipase’s catalytic site, as well as the nature and amount of intermolecular in-
teractions. Molecular dynamics was used to evaluate the stability of the enzyme–substrate
complexes. The in silico results could lead to the better and more efficient production of
biofuels from coffee grounds.

2. Materials and Methods

2.1. Homology Modeling

First, four-step comparative modeling of the Eversa® Transform 2.0 (São Paulo, SP,
Brazil) lipase protein [20] was performed.

2.1.1. Identification and Selection of Protein-Fold

In order to identify a related protein to the amino acid sequence of EVS (CAS number
9001-62-1 from Sigma-Aldrich (São Paulo, SP, Brazil)), we used the BLAST program (Basic
Local Alignment Search Tool (Public domain, Bethesda, MD, USA)) [28] and its PDB
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database for comparative analysis. This led us to identify a hydrolase enzyme, expressed
by the Escherichia coli-Pichia pastoris shuttle, from the organism Aspergillus oryzae with the
code 5XK2 in the Protein Data Bank as the target protein.

2.1.2. Alignment of Target and Mold Sequences

Alignment between the sequences was performed using the Modeller software (ver
10.4, San Francisco, CA, USA) [29].

2.1.3. Model Construction and Optimization

The model was constructed using the Modeller 10.4 software (ver 10.4, San Francisco,
CA, USA) [29], resulting in a new protein named EVS that was evaluated for function,
target, and stereochemical parameters [30].

2.1.4. Protein Validation

The model was validated at the stereochemical, conformational, and energetic levels.
The three-dimensional structure of the generated model was evaluated for possible stere-
ochemical quality using the PROCHECK software (ver 2023, Hinxton, Cambridgeshire,
CB10 1SD, UK), which included the validation of the model by the Ramachandran plot [31].

2.2. Protein Preparation

The protein generated by EVS homology was subjected to correcting charges and
adding hydrogen atoms using the AutoDock Tools software (ver 1.5.7, California, CA,
USA) [29].

2.3. Obtaining the Ligand

The lipid composition structures of Coffea arabica oils (Figure 1) were generated using
ChemDraw 3D software (ver 18.1, New Jersey, NJ, USA) and then minimized with an RMS
gradient of 0.0001 using an MM2 force field [32]. The structures were further optimized
using Avogadro® software (ver 1.2, Pittsburgh, PA, USA) [33], using the Merk molecular
force field (MMFF94) with a convergence limit of 10 × 10−7 and 500 interaction cycles
before being converted to PDBQT format [34].
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2.4. Molecular Docking and Visualization of Calculations

The process of molecular coupling simulation was performed using the AutoDock Vina
code (ver 1.2, California, CA, USA) [35] with rigid proteins and flexible ligands. A lattice
configuration with enzyme active site parameters was set up for both calculations [36,37].
The software was used to evaluate the energy profiles of the ligand-receptor interactions.
The PyMol software (ver 2.5, California, CA, USA) was used to visualize the anchored
positions [38].

AutoDock Vina was used to calculate the stability of the enzyme substrate using
statistical parameters such as RMSD (Root Mean Square Deviation) with a cut-off value
of 2.0 Å [37] and affinity energy, with a cut-off value of −6.0 kcal/mol [38]. The intensity
of the hydrogen bonds (H-Bond) was assessed by the distance between the donor and
acceptor atoms, classified as Strong bonds (2.5–3.1 Å), Average bonds (3.1–3.55 Å), and
Weak bonds (greater than 3.55 Å) [39]. The affinity energy was also used to assess the
stability of the formed complexes.

To find immobilization binding sites, CASTp 3.0 was used to identify and measure
accessible surface pockets [40]. Several criteria had to be met for the selected immobilization
to be accepted: the site had to be distant from the active catalytic center of the enzyme so
as not to affect the catalytic activity; the size of the site/pocket should be large enough to
accommodate the selected affinity binding; and finally, the surface properties of the site
region had to be significantly different from those of the active site.

2.5. Molecular Dynamic

Molecular dynamics (MD) simulations were carried out using the NAMD program [41–43].
The optimal conformations obtained from molecular docking were solvated in water using the
TIP3P model, with the CHARMM36 force field, and ions were added to neutralize the overall
system charge. The system was then energy-minimized using the Steepest Descent method
and subjected to NVT and NPT equilibration under Langevin conditions [44]. Production
simulations were conducted for a duration of 100 ns. The quality of the structures obtained
in MD simulations was evaluated using the following parameters with NAMD (Nanoscale
Molecular Dynamics):

• Potential energy (kcal/mol) [45];
• Protein–ligand interaction energy (kcal/mol);
• The root mean square deviation of the atomic positions of proteins, binders, and the

distances between them (RMSD, Å), and the root mean square deviation of the atomic
positions of proteins, ligands, and the distances between them (RMSD, Å);

• Hydrogen bonds were evaluated using Visual Molecular Dynamics (VMD) [46];
• The mean square fluctuation of the minimum distances between proteins and ligands

was observed in MD (RMSF, Å) [47]. The plots were generated using the Qtrace
program.

• In this study, MD simulations were used to evaluate the stability of a viral protease
enzyme with various ligands containing different amounts of α-helix and β-sheets [48].
The long-range interactions were calculated using the SPME method and a Langevin
thermal bath at 310 K. The conformational changes of the protein during the MD
simulations were described using root mean square deviations (RMSD).

MM/GBSA Calculations

Based on the MD log file of the NAMD software (ver 2.14, Illinois, USA) [43], the
MM/GBSA was calculated by MolAICal (ver 1.3, Gansu, China) [49] and estimated using
Equations (1)–(3).

∆Gbind = ∆H − T∆S ≈ ∆EMM + ∆Gsol − T∆S (1)

∆EMM =∆Einternal + ∆Eele + ∆Evdw (2)
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∆Gsol =∆GGB + ∆GSA (3)

where ∆EMM, ∆Gsol, and T∆S represent the gas phase MM energy, the solvation-free
energy (sum of the polar contribution ∆GGB and the nonpolar contribution ∆GSA), and the
conformational entropy, respectively [48]. ∆EMM includes the van der Waals energy ∆Evdw,
the electrostatic energy ∆Eele, and the ∆Einternal bond, angle, and dihedral energies. If there
are no bond-induced structural changes in the process of MD simulations, the entropy
calculation can be omitted [49].

3. Results and Discussion

3.1. Immobilization Locations

To identify binding pockets suitable for immobilization, the CASTp tool was used to
locate accessible surface pockets [40,50]. Seven pockets located away from the catalytic
triad—equivalent to the enzyme’s active site—were selected for immobilization, as shown
in Figure 2. This approach helps to prevent interference with the biocatalytic process. This
strategy minimizes interference with the enzyme’s catalytic activity compared to other
immobilization methods. Moreover, immobilizing the enzyme at sites distant from the
active site may enhance its stability, extend its lifespan, and reduce the cost of biocatalyst
replacement.
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3.2. Protein Modeling

The protein structure quality was assessed using the Ramachandran plot (Figure 3),
which displays the distribution of amino acid residues in different regions of the protein
structure based on their backbone torsion angles. Most residues (91.5%) were located in
the favorable regions (red region), indicating a high-quality protein structure. A small
percentage of residues (6.5%) were found in additionally allowed regions (a, b, l, p regions,
yellow), while an even smaller percentage (1.6%) were in the generously allowed parts (~a,
~b, ~l, ~p regions, light yellow). Only a minority of residues (0.4%) were located in the
unfavorable regions (empty region), which could be attributed to using templates for the
protein structure prediction and some residues at the ends of the protein. These results
support the reliability of the protein model obtained.
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In addition, performing a structural alignment of the predicted protein with other
known proteins enabled the identification of both conserved and variable regions in the
protein’s primary sequence. Analyzing structurally equivalent residues in different proteins
made it possible to determine which protein regions are crucial for their structure and
function. This approach was utilized to identify essential residues in the lipase protein
under investigation [51].

3.3. Interaction between Substrate and Lipase

Molecular pairing studies were performed to validate the approaches used to explain
the observed results for EVS. Consistent with the van der Waals forces reported in the
literature, hydrogen bonds were favorable with binding affinities indicated by molecular
coupling studies [52]. Therefore, for immobilization purposes, Eversa® Transform 2.0
lipase was structurally studied by molecular modeling with a lipase binding survey using
AutoDock Vina to predict its affinity, orientation, and environmental surfaces [53].

The EVS catalytic site is a triad represented by residues Ser 153, His 268, and
Asp 206 [54], of which the serine residue acts as a nucleophile on the substrate carbonyl
group for esterification bioreactions only within the substrate pocket [55]. Only substrates
of suitable molecular forms can occupy these subsites and undergo catalysis, such as the
carboxylic acids and esters on the coffee grounds oil composition.

The estimated binding affinity between the anchored composition oil and the enzyme
ranged from −5.1 kcal/mol to −6.1 kcal/mol (Table 1). This lower binding energy indicates
that the substrate and lipase combination was more stable and suitable for esterification.
Figure 4 shows the simulation results in 2D.
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Table 1. Oil composition and molecular docking results.

Sample Energy (kcal/mol)

CID985 hexadecanoic acid −5.6
CID8181 methyl hexadecanoate −5.4
CID8201 methyl octadecanoate −5.6
CID13584 methyl docosanoate −5.4
CID14259 methyl eicosanoate −5.7

CID5284421 6,9-methyl octadienoate −6.1
CID5364509 methyl octadecenoate −5.7
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canoate; (D) methyl docosanoate; (E) methyl eicosanoate; (F) 6,9-methyl octadienoate; (G) methyl
octadecenoate.

The molecular docking study revealed that all other derivatives interacted with at
least one of the catalytic triad residues except for the methyl compound octadecenoate.
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Specifically, they were close to the carboxylic acid region of Ser 153 and His 268, which,
according to the literature, slightly enhances the esterification reaction’s ester formation [56].
The content framed in red is the amino acid residues that are part of the catalytic triad. For
this reason, they were stated prominently (Figure 4).

The Near Attack conformations (NACs) refer to conformations consistent with the
attack of the catalytic site on the electrophilic carbon of the acyl group [57]. Usually, in
a NAC, the distance between the oxygen of the Ser 153 residue (EVS) and the carbonyl
carbon is about 3 Å, and the same atoms with the carbonyl oxygen molecule tend to form
an angle of approximately 60◦, but up to 90◦ [58]. Therefore, the hexanoic acid compound
exhibited a strong NAC.

Therefore, to delve deeper, this article examines the interactions between various
chemical compounds and a particular enzyme. The immobilization of the enzyme is crucial
in enhancing its stability and effectiveness for specific applications. The catalytic triad is a
fundamental enzyme component that enables its biochemical function.

The results suggest that the catalytic triad will remain active after immobilization, and
some oil compositions interact better with the enzyme than others. Specifically, 6,9-methyl
octadienoate and methyl octadecenoate showed binding affinities of −6.1 kcal/mol and
−5.7 kcal/mol, respectively. In the case of 6,9-methyl octadienoate, hydrogen bonding
at Tyr 29, as well as conventional hydrogen–carbon interactions at Tyr 92, Ser 91, and the
catalytic triad residues Ser 153 and His 268 were observed, indicating possible esterification
reactions. Hydrophobic interactions were also noted at Phe 265, Val 269, and Leu 283. For
methyl octadecenoate, two polar hydrogen–carbon interactions with Leu 283 and His 274,
and apolar interactions with Tyr 29, Ile 94, Tyr 92, and Phe 265, were observed, but no
interactions were seen with the catalytic triad. These interactions stabilize the enzyme
and enable it to function, including hydrogen bonding, hydrogen–carbon interactions, and
hydrophobic interactions, as depicted in Figure 5 and Table 2.
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Figure 5. Interactions between 6,9-methyl octadienoate (A) and methyl octadecenoate (B) with Eversa
amino acid residues.
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Table 2. Interactions between amino acid residues and the lipid composition of coffee grounds.

Sample
Residue

Tyr 29 Tyr 92 Ile 94 His
152

Ser
153

Leu
263

Phe
265

His
268

Val
269

Trp
270

His
274

Leu
283

Leu
285

CID985 3.99
(HI)

5.38
(HI)

2.27
(HB)

5.02
(HI)

4.41
(HI)
4.72
(HI)
4.97
(HI)

5.16
(HI)

4.27
(HI)

CID8181 5.50
(HI)

4.33
(HI)
4.07
(HI)

5.42
(HI)
5.45
(HI)

4.82
(HI)
4.18
(HI)
4.67
(HI)

5.34
(HI)

4.16
(HI)

CID8201 3.75(CH)

4.54
(HI)
5.05
(HI)

3.72
(CH)

4.85
(HI)
4.92
(HI)

4.64(HI)
5.14(HI)

3.96
(HI)
5.31
(HI)

3.78
4.45

CID13584 5.40
(HI)

4.15
(HI)
4.55
(HI)
5.08
(HI)

4.63
(HI)
4.55
(HI)
5.19
(HI)

5.31(HI) 3.55(CH)

3.71
(PA)
4.83
(HI)
4.89
(HI)
4.98
(HI)
5.04
(HI)

4.73
(HI)

4.32
(HI)

4.19
(HI)
4.56
(HI)

CID14259 3.44 5.32

3.74
4.96
5.16
5.31

3.73 4.89

CID5284421 3.29 3.65
4.83
5.34
5.18

3.54 4.94
5.18

3.97
4.38
5.28
5.50

CID5364509 5.30 3.96 5.09
4.53
4.73
4.88

3.79 4.75

3.4. Molecular Dynamics

A model of a thermodynamic system consisting of a solute and a solvent can be
constructed using a protein–ligand–solvent–ion complex. This complex involves various
intermolecular forces and heat exchange between the molecules and ions. According
to the laws of thermodynamics, the interactions between these molecules and the heat
transfer process are influenced by various energy changes, as previously reported in the
literature [59].

To gain a deeper insight into the behavior of protein–ligand complexes, molecular
dynamics simulations were performed using NAMD [43]. These simulations aimed to eval-
uate potential global conformational changes and protein stability after each conformation
and to obtain information on the mechanism of interaction between the complexes at the
molecular level. Previous studies by Bylehn et al. (2021) and Du et al. (2016) have also used
this technique to gain valuable insights into the structure and function of protein–ligand
complexes [59,60].

The simulations’ outcomes can have significant implications for various scientific and
industrial fields, including drug development, biotechnology, and materials science. They
can assist in developing drugs and therapeutics and optimizing chemical processes to
enhance reaction efficiency, making them valuable tools for research and development [61].
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3.4.1. RMSD Analysis

Soon after the molecular docking, the coffee bean oil composition was selected because
it had the best binding energies to perform the molecular dynamics study according to the
catalytic site of Eversa (Figure 6).
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Figure 6. Root Mean Square Deviation (RMSD), concerning the initial confirmation of the ligand–
enzyme complex versus the simulation time (ns) in the production simulations step of the MD
with the ligand–enzyme complex versus the simulation time (ns) in the production simulations step
of the MD with coffee ground oil composition/Eversa lipase. (A) hexadecanoic acid; (B) methyl
decanoate; (C) methyl eicosanoate; (D) methyl hexadecanoate; (E) 6,9-methyl octadienoate; (F) methyl
octadecanoate; (G) methyl docosanoate.

The simulations showed that Eversa maintained an average RMSD value of around
3.1 Å throughout the 100 ns production stages, while 6,9-methyl octadienoate showed
a stable average RMSD value of 2.0 Å throughout the simulation. Hexanoic acid and
methyl hexadecanoate showed excellent stability with an average RMSD value below
2.0 Å. However, some acids showed stable values with RMSD above 2.0 Å, consistent with
previous studies such as Cavallari et al. (2006) [59]. The dotted red line signifies the average
RMSD over the entire trajectory.
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The conformational changes of the protein observed during MD simulations were
characterized using the mean square deviations (RMSD) formula, as shown in Equation (4).
The equation uses ri(t) and ri(0) to represent the coordinates of the i-th atom at times t and
0, respectively, while N denotes the number of atoms in the region of interest.

RMSD =

[
1
N

N

∑
i=1

[
ri(t)− ri(0)

2
]]1/2

(4)

3.4.2. RMSF Analysis

Based on the RMSD analysis, the stability of the protein–ligand complexes was con-
firmed. However, to better understand the conformational changes observed during the
molecular dynamics (MD) simulations, the atomic positions’ root-mean-square fluctuations
(RMSF) were calculated using Equation (5). RMSF values were determined by subtracting
the average position of each atom ri from its position at each time step j, and then calculat-
ing the quadratic deviations. The total simulation time I was expressed as the total number
of time steps collected, and this calculation provided detailed information on the protein
dynamics during the simulations, including the impact of the interactions with the formed
complexes [62].

RMSFi =

[
1
I

I

∑
j=0

[ri(j)− ri]
2

]1/2

(5)

The RMSF of the system was performed to understand the displacement and stability
of each protein residue in the trajectory of the 100 ns simulation.

Figure 7 displays the primary interactions of the major coffee ground oil composition
complexes studied, demonstrating significant conformational changes of the compound–
Eversa lipase complexes during the simulation. The simulation trajectories of all complexes
showed mean oscillations with substantial correlations with critical replication residues.
The only complexes with values higher than 2.0 Å for residue His 268 were those formed
between methyl decanoate and Eversa. Additionally, lipase complexes with methyl do-
cosanoate and 6,9-methyl octadienoate showed RMSF values above 2.5 Å in residues Phe 63,
Thr 102, and Asn 232, despite the fluctuations observed. Nonetheless, the results suggested
that the structures remained stable in an aqueous solution. When complexed with various
ligands through docking techniques, the protein conformations obtained from the MD
simulations provided crucial information about the small molecules’ binding modes in
different enzyme folding states [63,64].
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3.4.3. H-bonds Analysis

The number of hydrogen bonds is essential to verify whether a complex has reached
stability in a dynamic system [63,64]. In the Figure 8A–G are shown the graphs of hydrogen
bonds in relation to the time of 100 ns with their moving averages.
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After the 100 ns production stages, the formation of hydrogen bonds between Eversa
lipase and the corresponding simulated ligands was observed in Figure 8 to verify stability
in the dynamic system. The hydrogen-bonding networks changed during the simulation,
and the number of interactions fluctuated between three and five for the lipase. The Ev-
ersa with hexanoic acid complex (Figure 8A) displayed isolated hydrogen bonds and a
moderate average number of hydrogen bonds per period (up to five), indicating relatively
adequate and median hydrogen-bonding networks forming reasonable connections during
its trajectory (red line). The MD simulations of methyl decanoate and 6,9-methyl octa-
dienoate (Figure 8E) showed more interactions along the course (three links), suggesting a
hydrogen-bonding network moderately more significant than the previous one.

The simulation of other acids with the Eversa enzyme resulted in a weaker network of
interactions, with a maximum of two hydrogen bonds formed. However, the stability of
the complex was maintained due to the presence of these connections, even though the size
and functionalities of the compounds were not as significant [65,66].
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Therefore, complementary correlations can be observed when comparing hydrogen
bonds formed in molecular dynamics with those previously obtained by the coupling
process, indicating the convergence of a static method to a continuous system process.

3.4.4. SASA Calculations

Solvent-Accessible Surface Area (SASA) measures the surface area of a protein that
is accessible to solvent molecules and plays a critical role in understanding the behav-
ior of proteins in solution. The SASA of the coffee bean oil composition complexes was
monitored during 100 ns of molecular dynamics (MD) simulations, a powerful compu-
tational technique that can provide detailed insights into the dynamics and stability of
biomolecules [67,68].

The results of the SASA analysis demonstrated unique patterns (Figure 9). Notably,
hexadecanoic acid, methyl octadecanoate, methyl docosanoate, 6,9-methyl octadienoate,
and methyl octadecenoate exhibited a significant rise in SASA values during the simulation,
indicating relaxation of the structure. Conversely, the SASA values for methyl eicosanoate
and methyl hexadecanoate decreased, indicating tension in the enzyme upon complex
formation [69,70].
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Figure 9. Solvent-Accessible Surface Area (SASA) of the Eversa lipase as a function of time
from the MD simulations. The curves are running raw data averages with a window of 100 ns.
(A) hexadecanoic acid; (B) methyl decanoate; (C) methyl eicosanoate; (D) methyl hexadecanoate;
(E) 6,9-methyl octadienoate; (F) methyl octadecanoate; (G) methyl docosanoate.
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Interestingly, the binding of the ligands did not lead to a significant change in the SASA
values. This suggests that the binding of the ligands to the protein did not significantly
alter the accessibility of the solvent molecules to the protein surface [71,72].

After 100 ns of simulation, the SASA values fluctuated around a steady state value,
indicating that the simulated systems were in equilibrium. However, it is essential to note
that Eversa molecules with stabilizing monovalent ions had the highest SASA values. The
systems with higher ion concentrations had smaller areas, which could have caused the
protein structures to shrink under the influence of the surface charge, resulting in more
compact structures.

Upon further analysis of the data, it was observed that the fluctuation or expansion of
the relaxed surface area was predominantly caused by the fluctuation of the SASA in the
flexible C-terminal region. This suggests that the flexibility of the C-terminal region is a
critical factor in determining the overall SASA values of the protein.

These findings could potentially guide the development of new compounds that
interact more efficiently with the protein surface or help optimize the conditions for complex
formation.

In summary, the analysis of Solvent-Accessible Surface Area (SASA) is highly relevant
in molecular dynamics simulations as it provides valuable information about biomolecular
interactions, protein folding, ligand binding, protein–protein interactions, and solvent
effects. It helps in understanding the structure–function relationships of biomolecules and
aids in various areas of molecular biology and drug design.

3.4.5. MM/GBSA Calculations

One way to determine the free energies of a receptor complex is by using the MM/GBSA
method, which involves calculating molecular mechanics energies along with generalized
Born and surface area continuum solvation. The software tool MolAICal uses this ap-
proach to rapidly estimate the free energy of a system using three trajectories obtained from
molecular dynamics simulations without considering ligand entropy [69,70].

Based on free energy calculations, the complex formed between Eversa and methyl
octadecenoate showed the best result with a value of −26.86 kcal/mol. The methyl
eicosanoate/Eversa and 6,9-methyl octadienoate/Eversa complexes had lower free en-
ergies of −23.62 kcal/mol and −23.41 kcal/mol, respectively. The other complexes formed
in the simulations had free energies ranging from −16.26 to −13.27 kcal/mol, as shown in
Table 3.

Table 3. Oil composition and molecular docking results.

Complex ∆Eele + ∆Gsol ∆Evdw ∆Gbind (kcal/mol) Standard Deviation(kcal/mol) (kcal/mol)

hexadecanoic acid/Eversa 18.43 −29.14 −13.27 +/− 0.052
methyl

hexadecanoate/Eversa 17.67 −33.93 −16.26 +/− 0.023

methyl
octadecanoate/Eversa 10.33 −37.19 −26.86 +/− 0.027

methyl
docosanoate/Eversa 20.76 −39.79 −19.03 +/− 0.024

methyl eicosanoate/Eversa 13.75 −37.37 −23.62 +/− 0.027
6,9-methyl

octadienoate/Eversa 11.97 −35.38 −23.41 +/− 0.026

methyl
octadecenoate/Eversa 19.56 −35.03 −15.47 +/− 0.026

It is important to note that in this analysis of the entire trajectory, the ligands that
improved affinity with the enzyme Eversa were different from the molecular docking study,
except 6,9-methyl octadienoate. Figure 10 shows the interactions of the complexes that
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stood out the most with a record in the trajectory between 1 ns, 50 ns, and 100 ns: methyl
octadienoate/Eversa, methyl eicosanoate/Eversa, and 6,9-methyl octadienoate/Eversa.
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Figure 10. Interactions between methyl octadecenoate: (A) methyl eicosanoate; (B) 6,9-methyl-
octadienoate; (C) Eversa amino acid residues between 1–10 ns of trajectory.

The phrase “entropy variation” pertains to the decrease in available degrees of freedom
due to the establishment of one or more interactions. Before the formation of a complex,
only two molecules (ligand and protein) could move in various ways, including rotation,
translation, and vibration. However, after the formation of a complex, the movement of the
molecules is restricted.

This estimate can be obtained from the typical mode calculations for the two systems.
Thus, for a macromolecular complex with a target and a ligand, the interaction energy must
be estimated according to Equations (6)–(8) [71,72].

∆A(vac)
interaction =

(
EMM

complex − EMM
target

)
−
(

EMM
complex − EMM

ligand

)
+ T∆SNORMODS (6)

∆A(vac)
interaction = EMM

complex − EMM
target − EMM

complex + EMM
ligand + T∆SNORMODS (7)

∆A(vac)
interaction = EMM

ligand − EMM
target + T∆SNORMODS (8)

4. Conclusions

This study effectively modeled the interactions between the oils present in coffee
grounds and Eversa® Transform 2.0, showing an affinity of each oil with the active site of the
enzyme and proving to be important information for future research on reaction catalysis for
producing biodiesel or biolubricants. The study found that 6,9-methyl octadienoate binds
near the enzyme’s active site with favorable free energy and specific interactions. Molecular
dynamics simulations showed stability and low RMSD values, indicating suitable coupling
positions for the reaction. According to the MMGBSA study, methyl octadecenoate was
the best free energy estimate for the enzyme–substrate complex. The CASTp analysis
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identified the main active sites for potential immobilization of the enzyme in experimental
studies, excluding the native region of the ligand. However, it is essential to note that
while computer simulations provide useful initial screening tools, in vitro and extended
applications may face additional variables and challenges that require further study and
consideration, such as transport conditions, enzymatic inhibition, equilibrium conditions,
and physicochemical properties of the produced biodiesel.
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