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Abstract: Organic–inorganic building blocks are an important class of hybrid materials due to
the synergistic versatility of organic compounds with the robust properties of inorganic materials.
Currently, the growing interest in silica hybrid materials to modify the physical and chemical
properties of the silica network has led to an increasing interest in organoalkoxysilanes. A general
formula of R-[Si-(OR’)3]n, with OR’ as a hydrolysable alkoxy group and R acting as the organic
functional group (n ≥ 1), has led to precursors for many molecules. By introducing adequate organic
moieties (R), organoalkoxysilanes effectively engage in surface and matrix modification of silica-based
materials with smart-responsive units, coupling agents, targeting moieties, bioactive moieties etc.,
opening promising applications, specifically biomedical ones. Several synthetic procedures have
been established to introduce the alkoxysilane moieties, including hydrosilylation, coupling reactions,
and addition reactions to isocyanates. Herein, we review synthetic routes to organoalkoxysilanes
and the relationship between structural features to design appropriate organoalkoxysilanes for
specific applications.

Keywords: organoalkoxysilanes; silica; siloxanes; organic synthesis; silanes

1. Introduction

Silicon is the second most abundant element in the Earth’s crust and is usually found
bonded with oxygen, as in silica (or silicon dioxide) (SiO2) [1]. It is widespread in the
biological world where organisms use biomolecules to build silica structures with nanoscale
precision, as in the case of diatoms and silica sponges [2]. It is here that silica-based
supramolecular chemistry materials take significant inspiration from nature to produce
controlled hierarchical structures with superior properties [3].

The increasing interest in silica as a promising multifunctional material is due to its
chemical inertness, versatility due to well-developed siloxane chemistry, and biocompat-
ibility and degradability that arise from the ability of silica to decompose into relatively
innocuous byproducts [4]. Synthetic amorphous silica nanoparticles are one of the most
abundant synthetic nanoparticles used by the scientific community and are recognized as a
safe material by the Food and Drug Administration (FDA) that degrades to the non-toxic
monosilicic acid, Si(OH)4, a soluble silica source [5]. The great majority of silica materials
are polymers consisting of a silicon–oxygen (Si-O-Si) backbone, featuring organic groups.
The dynamic nature of polymeric silica is responsible for most of the properties of silica-
based materials. The strong Si-O bond (~100 kcal/mol) is stable over time and electron
delocalization, due to p(O) → d(Si) orbital overlap across the Si-O-Si bonds, promotes
stability over a high temperature range [6,7]. These highly attractive properties endow
silica and silica-based materials with a wide range of applications such as catalysis, drug
delivery, nanomedicine, energy storage/conversion, food technology, and environmental
nanoremediation, including wastewater treatment [8].

Several synthesis techniques have been developed to prepare silica nanoparticles (SiO2
NPs), such as plasma manufacturing, chemical vapor deposition, microemulsion synthesis,
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combustion processing, and hydrothermal processes [8,9], but the sol–gel synthesis is the
most widely applied technique [10]. It is a versatile bottom-up methodology that takes
advantage of a straightforward and easily controllable sol–gel condensation reaction. The
sol–gel chemistry involves the hydrolysis, and subsequent condensation, of alkoxysilane
precursors via acid or base catalysis [11]. These kinetically controlled reactions depend on
pH, temperature, solvent, ionic strength, reaction time, catalyst, silica precursor concentra-
tion, water/silane molar ratio, and organo-functional groups [12]. Tetramethylorthosilicate
(TMOS) and tetraethylorthosilicate (TEOS) are more frequent silica precursors and base
catalysis of silica precursors with ammonia is the most used approach for NP genera-
tion [11]. As alkoxysilanes are not soluble in water, low molecular height alcohols are often
added to the reaction mixture. During the sol–gel process, to obtain a stable morphology, it
is important to maximize the number of Si-O-Si bonds while minimizing the number of
silanol (Si-OH) and alkoxy (Si-OR’) groups, because otherwise the condensation slows but
never stops. For in depth discussions of the silica condensation mechanism and the sol–gel
process, there are reviews of the literature that cover the development in this field [12–15].

The combination of organic–inorganic building blocks within a single material is attrac-
tive due to the possibility to combine different organic functionalities with the advantages
of a stable and robust silica framework. Surface modification of silica-based materials is
usually achieved by silylation reaction with the free (≡Si-OH), geminal (=Si-(OH)2), and
vicinal silanols accessible on the surface [16,17]. This post-synthesis grafting functional-
ization is needed not only to reduce the toxicity by decreasing the silanol group density
but also to introduce molecules that are sensitive to the sol–gel reaction. Other approaches
include co-condensation, in which organoalkoxysilanes are added to the one-pot sol–gel
synthesis to incorporate organic groups into the silica framework and surface polymeriza-
tion (including both “grafting to” and “grafting from”) to build a polymer coating [16]. The
opportunities for functionalization, along with the multitude of synthesis pathways, are
responsible for the development of several silica-based materials with tunable morphology,
but it also provides a versatile platform to modify the surface with other materials, such as
targeting moieties, polymers, peptides, carbohydrates, and nucleic acids (Figure 1).
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Figure 1. Schematic illustration of silica-based nanomaterials. (A) SiO2 NPs as multifunctional
nanoplatforms. (B) Structural morphology: I: nonporous Stöber SiO2 NPs, II: mesoporous SiO2 NPs
(MSN), III: hollow SiO2 NPs, and IV: core-shell SiO2 NPs. III and IV can also be porous silica shells.
I-IV can be a stimuli-responsive silica framework. Scale bar: 50 nm.

Alkoxysilanes and organoalkoxysilanes are important precursors of silicones (R2SiO),
polysiloxanes with organic substituents (R) on the silicon atom [18]. Organosilicon ma-
terials appeared in the 19th century and the introduction of several functional groups to
produce materials with enhanced functions contributed to the wide range of applications
in several fields such as food, cosmetics, pharmaceutical materials, electronic materials,
etc. [18]. Organoalkoxysilanes are a type of organosilicon compound where the silicon
atom is linked to one or more organic groups through an alkoxysilyl group (Si(OR’)3, where
R’ denotes an alkyl or an aryl group. Although all organoalkoxysilanes belong to the
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category of organosilicon compounds, not all organosilicon compounds are classified as
organoalkoxysilanes due to the specific functional groups present that impart different
properties and reactivities to the compounds. Hydrolysis and condensation of silanes
and organoalkoxysilanes lead to silica (SiO2) and silsesquioxane (RSiO1.5) materials, re-
spectively [19,20]. Herein, the various synthetic methods to produce organoalkoxysilanes,
which serve as important precursors to enhance the properties of silica-based materials,
will be reviewed.

2. Organoalkoxysilanes

Organoalkoxysilanes (R-Si(OR’)3) are hybrid compounds, featuring both organic (R)
and inorganic alkoxysilane (Si(OR’)3) structural elements, with OR’ as a hydrolysable
alkoxy group. Bridged organoalkoxysilanes ((R’O)3-Si-R-Si(OR’)3) are also known in the
literature to be incorporated into the three-dimensional silica network through two covalent
bonds. These functionalized alkoxysilanes are usually co-condensed with tetraalkoxysi-
lanes such as TEOS as the silica source. Conversely, polysilsesquioxanes (PSQs) are an
important class of hybrid organic–inorganic nanostructures, obtained by sol–gel polymer-
ization of monosilanes (Figure 2a) or bis-silanes (Figure 2b) without the addition of an
external silica source [21]. Post-synthetic grafting allows modification of silica surfaces
with organic groups without compromising the silica initial morphology. Therefore, it is
the ability to design organoalkoxysilane architecture that is responsible for the polyfunc-
tional nature exhibited by hybrid materials. In practice, this means that the combination
of alkoxysilane end groups and introducing adequate organic (R) functionality will lead
to the formation of tailor-made multifunctional organoalkoxysilanes. It is important to
note that the reactive nature of alkoxysilanes also limits the reaction conditions required to
introduce specific organic moieties and, usually, the introduction of the alkoxysilane moiety
is the last synthetic step. Organoalkoxysilanes are known for their inherent tendency
to undergo self-condensation and usually need to be kept refrigerated and in ethano-
lic solutions. Commercial siloxane reagents usually include amines, alkenes, aldehydes,
and haloalkanes. These groups are frequently used to introduce moieties to amplify the
properties of siloxanes such as targeting groups and smart-responsive units. There is a
huge variety of organic moieties (R) for structural and functionalization of silica-based
materials that it is not limited anymore to simple organic bridges such as ethylene, ethyny-
lene, or phenylene [22]. New synthetic procedures have been established to synthesize
organoalkoxysilane precursors, allowing the introduction of the inorganic alkoxysilanes in
the organic moiety (Figure 3).

Compounds 2023, 4, FOR PEER REVIEW 3 
 

 

 

Figure 1. Schematic illustration of silica-based nanomaterials. (A) SiO2 NPs as multifunctional na-

noplatforms. (B) Structural morphology: I: nonporous Stöber SiO2 NPs, II: mesoporous SiO2 NPs 

(MSN), III: hollow SiO2 NPs, and IV: core-shell SiO2 NPs. III and IV can also be porous silica shells. 

I-IV can be a stimuli-responsive silica framework. Scale bar: 50 nm. 

2. Organoalkoxysilanes 

Organoalkoxysilanes (R-Si(OR’)3) are hybrid compounds, featuring both organic (R) 

and inorganic alkoxysilane (Si(OR’)3) structural elements, with OR’ as a hydrolysable 

alkoxy group. Bridged organoalkoxysilanes ((R’O)3-Si-R-Si(OR’)3) are also known in the 

literature to be incorporated into the three-dimensional silica network through two cova-

lent bonds. These functionalized alkoxysilanes are usually co-condensed with 

tetraalkoxysilanes such as TEOS as the silica source. Conversely, polysilsesquioxanes 

(PSQs) are an important class of hybrid organic–inorganic nanostructures, obtained by 

sol–gel polymerization of monosilanes (Figure 2a) or bis-silanes (Figure 2b) without the 

addition of an external silica source [21]. Post-synthetic grafting allows modification of 

silica surfaces with organic groups without compromising the silica initial morphology. 

Therefore, it is the ability to design organoalkoxysilane architecture that is responsible for 

the polyfunctional nature exhibited by hybrid materials. In practice, this means that the 

combination of alkoxysilane end groups and introducing adequate organic (R) function-

ality will lead to the formation of tailor-made multifunctional organoalkoxysilanes. It is 

important to note that the reactive nature of alkoxysilanes also limits the reaction condi-

tions required to introduce specific organic moieties and, usually, the introduction of the 

alkoxysilane moiety is the last synthetic step. Organoalkoxysilanes are known for their 

inherent tendency to undergo self-condensation and usually need to be kept refrigerated 

and in ethanolic solutions. Commercial siloxane reagents usually include amines, alkenes, 

aldehydes, and haloalkanes. These groups are frequently used to introduce moieties to 

amplify the properties of siloxanes such as targeting groups and smart-responsive units. 

There is a huge variety of organic moieties (R) for structural and functionalization of silica-

based materials that it is not limited anymore to simple organic bridges such as ethylene, 

ethynylene, or phenylene [22]. New synthetic procedures have been established to syn-

thesize organoalkoxysilane precursors, allowing the introduction of the inorganic 

alkoxysilanes in the organic moiety (Figure 3). 

 

Figure 2. Polysilsesquioxanes obtained from (a) organoalkoxy monosilane and (b) organoalkoxy 

bis-silane. (R)—organic functionality; R’—an alkyl or aryl group. 

R Targeting 
agentsDyes

Receptor-ligand 
interaction

MRI-active 
agents

Polymeric 
shell

Organic functional
groups

A B

I II III IV

Figure 2. Polysilsesquioxanes obtained from (a) organoalkoxy monosilane and (b) organoalkoxy
bis-silane. (R)—organic functionality; R’—an alkyl or aryl group.
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3. Synthesis of Organoalkoxysilanes
3.1. Hydrosilylation

The transition-metal-catalyzed hydrosilylation, or hydrosilylation reaction, involves
the anti-Markovnikov addition of silicon–hydrogen bonds (Si–H) across a π-bond for
the synthesis of silicon–carbon bonds (Si-C) [23]. Suitable unsaturated functional groups
include olefins, alkynes, ketones, carboxylate esters, amides, imines, nitriles, and pyridines,
expanding the reaction applicability from industry to academia [23]. Speier’s catalyst
and Karstedt’s catalyst, both platinum catalyzed hydrosilylation, have an important role
in organosilicon chemistry [24]. Both follow Chalk–Harrod and modified Chalk–Harrod
mechanisms, with high regioselectivity and reaction yields, and exhibit good functional
group tolerance [24]. Currently, there has been an increasing interest in the development of
sustainable and less expensive catalysts [23,24].

Stimuli-responsive strategies activated by internal and/or external stimuli have been
applied as smart triggers to open molecular gates on SiO2 NPs or to disintegrate the sil-
ica network [25]. An enzyme-responsive silica shell was pioneered by Corma et al. on
doxorubicin (DOX)-loaded liposomes (Liposome@Si*) (Scheme 1) [26]. The functionalized
organoalkoxysilane was prepared by chloroplatinic acid-catalyzed hydrosilylation of pent-4-
enoic acid allyl ester 3 and triethoxysilane in 70% yield. The organic–inorganic hybrid silica
shell was prepared by co-condensing TEOS and the ester-bridged silsesquioxane precursor
4 by the sol–gel method using NaF as the catalyst. The Liposome@Si* were stable at the
physiological pH of 7.5 and released the cargo upon endocytosis and exposition to esterase-
type enzymes, which promoted the degradation of the silica shell. In another approach,
Picchetti et al. designed a light-cleavable bis-alkoxysilane 7 to prepare light-breakable meso-
porous silica nanoparticles (MSN) (Scheme 2) [27]. The photolabile organoalkoxysilane
was synthesized by the introduction of two carbon–carbon double bonds in 5-hydroxy-2-
nitrobenzyl alcohol 5 and subsequent hydrosilylation with triethoxysilane using Karstedt’s
catalyst. The hydrosilylation reaction was found to proceed in 30% yield in the presence
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of a 2% catalyst loading. The light responsive MSN were prepared by a modified Stöber
approach, using ammonia-catalyzed hydrolysis, cetyltrimethylammonium bromide (CTAB)
as the structure-directing agent, and co-condensing TEOS and the photolabile alkoxysilane.
As a hydrophobic test molecule with biological interest, 7-dehydrocholesterol (7-DH) was
loaded into the NP pores and released due to degradation of the silica matrix promoted by
UV-light irradiation.
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Scheme 1. Synthesis of the ester-bridged silsesquioxane precursor that was incorporated on a silica
shell [26].
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Scheme 2. Synthesis of organoalkoxysilane 7 from 5-hydroxy-2-nitrobenzyl alcohol 5 [27]. Reac-
tion conditions: (i) NaH, DMF, 0 ◦C; (ii) allyl bromide, DMF, 0 ◦C to r.t.; (iii) Karstedt’s catalyst,
triethoxysilane, toluene, 50 ◦C.

Zhao et al. reported the hydrosilylation of 7-allyloxycoumarin dimer 9 with triethoxysi-
lane employing Karstedt’s catalyst (3% catalyst loading) in high yield (87%) (Scheme 3) [28].
The sol–gel polymerizable coumarin photodimer 10 was used to prepare spherical nanopar-
ticles that undergo a hard–soft transformation by direct irradiation with a UV light (254 nm).
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Scheme 3. Synthesis of coumarin photodimer 10 from 7-hydroxycoumarin 8 [28]. Reaction conditions:
(i) allyl bromide, acetone, K2CO3. (ii) BF3.OEt2, irradiation with a 500 W Hg lamp at 10 ◦C for 36 h;
(iii) Karstedt’s catalyst, triethoxysilane, benzene, 50 ◦C.

Organoalkoxysilane precursors based on carbohydrate derivatives have great potential
to prepare target drug delivery systems. It has been known that carbohydrates are involved
in several biological processes and that they can serve not only as energy sources and
structural components but also as key elements in several molecular recognition events [29].
Most studies on silanes and carbohydrates linked by hydrosilylation are used to modify
silicones. For example, Henkensmeier et al. prepared several allyl glucose derivatives
that were used to modify poly(dimethylsiloxane)s [30]. In another approach, Buchan et al.
prepared carbohydrate-derived silanes that were used in nickel-catalyzed hydrosilylation
of ketones in good to high yields [31]. These sugar silanes undergo highly selective in-
tramolecular glycosylation reactions [32]. Surprisingly, as far as is known, there is only one
publication to prepare carbohydrate-modified organoalkoxysilanes by a hydrosilylation re-
action. Xie et al. reported the iridium-catalyzed hydrosilylation of a glucose-derived allylic
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ether 11 with triethoxysilane in 70% yield (Scheme 4) [33]. The obtained organoalkoxysilane
12 is a valuable precursor to functionalize silica-based materials with carbohydrates of
biomedical interest.
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Eugenol (4-allyl-2-methoxyphenol), a natural occurring phenolic monoterpenoid,
is known for its several biological activities [34]. Surface modification of nanoparticles
with eugenol can enhance is therapeutic properties and its encapsulation can reduce
not only its high volatility but also promote a sustained-release performance [35]. For
instance, eugenol hydrogen bonded to the core-shell Fe2O3@SiO2 nanoparticle surface
exhibited higher in vitro cytotoxic activity on cancer cells lines and good antimicrobial
effects against tested microorganisms [36]. Alternatively, eugenol derivatives can be grafted
on the silica matrix. Sokolnicki et al. synthesized several alkoxysilane coupling agents by
hydrosilylation of eugenol derivative 14 with triethoxysilane in the presence of [Ir(cod)Cl]2
as the optimum catalyst in high yields and excellent regioselectivity (Scheme 5) [37]. The
organoalkoxysilanes were obtained with different polymer-reactive functionalities such as
epoxide, thiirane, thiocarbamoyl, and thioester moieties. By finding the best performing
catalyst, the authors avoided tedious and difficult column chromatography purifications,
since alkoxysilyl groups react easily with silanol groups on the silica surface. As eugenol
13 is a convenient natural occurring precursor in organic synthesis due to two highly
reactive functional groups—an allyl group and a hydroxyl group—the approach used in
this work can be easily extended to other organic compounds for the surface modification
of silica-based materials.
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obtained derivatives [37].

3.2. Isocyanates Addition Reactions

Isocyanates are highly reactive compounds that contain two cumulated unsaturated
bonds (-N=C=O). This organic functionality displays characteristic chemical reactions and
easily reacts with active nucleophilic groups, such as alcohols or amines, to yield urethanes
(carbamates) and urea bonds, respectively [38]. The simplicity of the isocyanate bond chem-
istry may further broaden the scope of its application to the synthesis of organoalkoxysilanes.

Curcumin (diferuloylmethane) is a biphenolic bioactive compound isolated from
turmeric (C. longa) [39]. Besides its use as a natural fluorescent dye, it has a broad spectrum
of biological features for human health, such as anti-inflammatory, anti-hypertensive, an-
tioxidant, anti-tumoral, and other activities. However, due to its low aqueous solubility, the
integration of curcumin into nanocarriers has been a strategy to improve its bioavailabil-
ity [40]. The group of Bein reported the synthesis of a curcumin-bridged organoalkoxysilane
by reaction of curcumin 16 and 3-(triethoxysilyl)propyl isocyanate (TESPIC) 17 to introduce
carbamate-linked silyl groups in 49% yield (Scheme 6) [41]. This precursor 18 was used in
a sol–gel reaction without the addition of TEOS to obtain fluorescent periodic mesoporous
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organosilica (PMO) nanoparticles with a high organic content (50 wt%). In a different
approach, Maggini and co-workers developed enzymatically degradable silica nanodonuts
by incorporating a multi-silylated peptidic moiety into the silica matrix (Scheme 7) [42].
The hybrid tri-L-lysine organoalkoxysilane 20 was prepared in situ with TESPIC 17, which
was subjected to a modified Stöber method with CTAB as the template. After template
removal, the ring-shaped hybrid silica material had a high organic content (ca. 70%) and
was used as a nanocarrier for doxorubicin in cancer cell lines.
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Scheme 6. Reaction of curcumin 16 and 3-(triethoxysilyl)propyl isocyanate (TESPIC) 17 to form
curcumin-based organoalkoxysilane 18 under anhydrous basic conditions [41].
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Scheme 7. Schematic representation of the synthesis of tri-L-lysine 19 doped silica nanodonuts [42].
Reaction conditions: (i) NEt3, DMF, r.t. 30 min.; (ii) CTAB, NH4OH, H2O, 50 ◦C, 2 h.

Hybrid silica–porphyrin systems have received great attention due to π-π stacking
interactions promoted by their immobilization in a silica network that enhances their
capability for electron transfer. The silylation reaction is usually achieved by condensing the
amino functions of the porphyrin ring 21 with TESPIC 17 in the presence of triethylamine
(Scheme 8) [43]. These ureido porphyrin precursors 22 have been employed in sol–gel
synthesis and found applications in electrocatalysts for oxygen reduction [44], two-photon
photodynamic therapy [45], and photocatalysis [46].
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Scheme 8. Synthesis of porphyrin-based organoalkoxysilane [43].

The preparation of silica nanoparticles with enhanced degradation in an aqueous
environment in the absence of additional reagents is still a challenge. To address this
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issue, Gao et al. prepared a sorbitol-based silsesquioxane precursor containing carbamate
linkages 24 (Scheme 9) [47]. The silylated compound was obtained by a reaction of sorbitol
23 and TESPIC 17 in DMF in the presence of triethylamine at 90 ◦C for 3 days. The obtained
organoalkoxysilane was co-condensed with TEOS and yielded SiO2 NPs that degraded in
water at neutral and acidic pH due to carbamate linkage hydrolysis.
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Scheme 9. Synthesis of sorbitol-based organoalkoxysilane 24 [47].

The development of three-dimensional (3D) bioprinting hydrogels obtained by the sol–
gel process is a potential strategy to obtain bioactive hydrogels in one step by combining
organoalkoxysilane building blocks. In a study by Valot et al., a bis-silylated polyethylene
glycol (PEG) 26 was used as a model material to optimize a generic method for sol–gel
3D bioprinting (Scheme 10) [48]. The urethane linkage between the PEG monomer 25 and
TESPIC 17 was obtained in 99% yield. This methodology could be easily extended to obtain
other silylated biomolecules such as peptides, proteins, or carbohydrates.
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Scheme 10. Synthesis of bis-silylated PEG2000 26 that was used in sol–gel hydrogel formation [48].
Reaction conditions: (i) NEt3, anhydrous THF, reflux 48 h.

Silylated materials obtained from carbohydrates through sol–gel reaction have been
described for hyaluronic acid, dextrin 27, chitosan 29, and pectin 31 (Scheme 11) [49]. The
hybrid biopolymers were obtained by functionalization with TESPIC 17, taking advantage
of the functional groups displayed by the carbohydrate units (primary amine and hydroxyl
group). For pectin silylation, the authors used a different silylation protocol and the carboxylic
acid group was functionalized with 3-aminopropyltriethoxysilane (APTES) 32 by N-ethyl-N′-
(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC)-mediated coupling.
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3.3. Nucleophilic Substitution Reactions

Vivero-Escoto et al. reported the preparation of a bis-silane derivative of Gd(III)
diethylenetriamine pentaacetate 36 using a thiol displacement reaction with (3-mercapto-
propyl)triethoxysilane (MPTES) 35 with good yield (66%) (Scheme 12) [50]. This monomer
was used for the synthesis of Gd-PSQ as in vitro contrast agents via magnetic resonance
imaging (MRI). From a chemistry point of view, this SN2 type nucleophilic substitution
mechanism [51] allows the introduction of a siloxane moiety while maintaining the redox-
responsive disulfide bond. This approach helps to introduce the reactive siloxane moiety in
the last synthetic step. As several redox-sensitive linkers containing disulfide have been
developed to build drug delivery carriers [52], the thiol–disulfide exchange with MPTES
can be easily applied to other substrates.
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The growing interest in the chemistry of selenium (Se) compounds has been motivated
by the discovery of the 21st proteinogenic amino acid, selenocysteine, at the active site of
glutathione peroxidase, establishing the role of selenium in mammals [53]. Recently, the
bioactivity of selenium nanoparticles has attracted the interest of many researchers, but
their toxicity is still a major concern [54]. The development of selenium delivery systems,
such as silica-based nanoparticles, can substantially improve its therapeutic potential [52].
Another characteristic of Se chemistry is the higher sensitivity of diselenide bonds (Se-Se)
to low concentrations of oxidative agents when compared with disulfide bonds (S-S) [52].
Incorporation of redox-responsive Se-Se linkers in the nanoparticle matrix has the potential
to control both the degradation and the drug release. For instance, a dual oxidative/redox
responsive nanoplatform was developed by incorporating a diselenide bond into the matrix
of MSN to deliver “on-demand” protein therapeutics for cancer therapy [55]. The diselenide-
bond-containing organoalkoxysilane, namely bis[3-(triethoxysilyl)propyl]diselenide 38,
was prepared from the commercially available (3-chloropropyl)triethoxysilane 37 and
freshly prepared sodium selenide as a selenide nucleophilic source with a yield of 18%
(Scheme 13).
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(3-chloropropyl)triethoxysilane 37 [55].

Taking advantage of commercially available amine functional siloxanes, nucleophilic
acyl substitution reactions can be used as a strategy to couple an organoalkoxysilane
to an acyl compound of interest. Fatieiev and coworkers prepared an oxamide-bridged
alkoxysilane 40 by coupling oxalyl chloride 39 and APTES 32 in dichloromethane, using
triethylamine as the base catalyst at 0 ◦C (Scheme 14) [56]. The precursor was obtained as
an unusual crystalline product in 95% yield and used to prepare enzymatically degradable
bridged silsesquioxane nanomaterials with a high organic content (50%). In this context,
Croissant et al. used the same precursor to prepare mesoporous organosilica nanopar-
ticles (MON) by co-condensing it with 1,4-bis(triethoxysilyl)benzene in the absence of
an additional silica source [57]. The obtained MON with oxamide–phenylene bridges
were composed of 50% organic content and were suitable to load both hydrophilic and
hydrophobic compounds.
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3.4. Nucleophilic Addition Reactions

Primary amines, R-NH2 or ArNH2, can react with aldehydes or ketones by nucle-
ophilic addition to give hemiaminals that dehydrate to substituted imines. Consequently,
commercially available siloxanes containing amines or aldehydes are useful building blocks
to obtain functional organoalkoxysilanes. Liu et al. reported MON with pH-responsive
enhanced degradability for the release of anti-cancer drugs [58]. The Schiff base precursor
42 was prepared by coupling APTES 32 with terephthaldehyde 41 in ethanol at 80 ◦C
(Scheme 15A). This bis(triethoxy)silane precursor was also incorporated in MSN [59] and in
pH-responsive silica coatings for protection of colloidal nanoparticles [60]. In this last work,
it was possible to study the effect of the organic unit on the nanoparticles morphology.
Negatively charged polystyrene nanoparticles (PSNPs) (100 nm) were coated with SiO2 via
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a sol–gel route by co-condensation of TEOS and the diimine organosilane 42. The resulting
silica shells ranged from 8 to 20 nm in thickness and the introduction of the pH-responsive
moiety led to hybrid core–shell nanoparticles that changed the morphology from smooth
and homogeneous to a raspberry-like silica shell (Scheme 15B).
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Scheme 15. (A) Synthesis of the pH-responsive organoalkoxysilane 42 and (B) TEM images of
polystyrene silica core–shell nanoparticles without (left) and with the pH-responsive organoalkoxysi-
lane 42 incorporated in the silica network (Adapted with permission from [60]. Copyright American
Chemical Society 2022 licensed under CC BY 4.0). Scale bar: 100 nm.

3.5. Click Chemistry Tools

Click chemistry is a highly efficient collection of organic reactions that occur rapidly
and selectively under mild conditions to covalently link two functionalized chemical enti-
ties [61]. Therefore, azide–alkyne cycloaddition can broaden the scope of well-defined silox-
anes as molecular building blocks. Croissant and coworkers prepared organic–inorganic
hybrid biodegradable bridged silsesquioxane nanomaterials for two-photon-excited (TPE)
imaging and therapy in vitro [62]. A tetra-alkoxysilylated porphyrin photosensitizer 45
was prepared via copper-catalyzed azide–alkyne cycloaddition (CuAAC) click coupling
(Scheme 16A). The tetrapropargyled porphyrin precursor 43 reacted with the commercially
available (3-azidopropyl)triethoxysilane 44 under microwave irradiation in quantitative
yield. The same synthetic strategy was used to prepare a tetra-alkoxysilylated diamino-
diphenylbutadiene photosensitizer 47 (Scheme 16B) [63].
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Scheme 16. (A) Synthesis of tetra-alkoxysilylated porphyrin 45 and (B) diamino-diphenylbutadiene
47 photosensitizer precursors by click chemistry. Reaction conditions: (i) Cu(I), THF, 20 min., 100 ◦C,
200 mW.

4. Direct Application of Commercial Organoalkoxysilanes in Silica-Based Materials

The commercial availability of organoalkoxysilanes has enabled the surface modi-
fication of SiO2 nanomaterials with organic molecules, providing an opportunity to ad-
just the surface charge of nanoparticles or to serve as a bridge to other organic moieties.
As an example, von Baeckmann and coworkers investigated different organic linkers
on the SiO2 NP surface and their influence on the attachment of PEG chains [64]. The
commercially organoalkoxysilanes used were TESPIC 17, APTES 32, MPTES 35, and (3-
glycidyloxypropyl)trimethoxysilane (epoxy) 48 (Scheme 17). The authors found that the
PEG-silane, thiol-maleimide, or isocyanate-amine coupling promoted the highest PEGy-
lation efficiency. In another work, to study the quantification of surface ligands and for
tracking chemical modifications on SiO2 nanoparticles by solution NMR spectroscopy,
Crucho et al. covalently modified the SiO2 surface with amine, thiol, alkene, and carboxylic
acid (obtained after nitrile hydrolysis) groups from commercially available siloxanes [65].
The SiNP surface was covalently modified with four different organoalkoxysilanes: APTES
32, trimethoxy(7-octen-1-yl)silane (TMOenS) 49, 3-(triethoxysilyl)propionitrile (TESPN) 50,
and (3-mercaptopropyl)triethoxysilane (MPTMS) 51 (Scheme 17). The authors found that
combining in situ dissolution of the SiO2 NPs and standard quantitative analysis by NMR
spectra are suitable for tracking small amounts of surface-bound ligands.

In another work, Meng et al. designed a nanovalve delivery system on MSNs.
The authors used β-cyclodextrin (β-CD) as the cap and tested several stalks by reacting
chloromethyltrimethoxysilane 52 with a series of aromatic amines, including 1-Methyl-
1H-benzimidazole (MBI) 53 (Scheme 18) [66]. In a similar approach, Porta and cowork-
ers built folic acid-modified mesoporous silica nanoparticles, in which the pores were
capped by a cyclodextrin (α-CD) structure (Scheme 19) [67]. In this work, the nanopar-
ticle surface was first modified with APTES 32, which was further reacted with 2-(2-(2-
Azidoethoxy)ethoxy)ethyltoluensulfonate 55 to introduce an azide terminal functional
group. Next, the particles reacted with an alkyne derivative of folic acid by CuAAC.

The commercially available bis[3-(triethoxysilyl)-propyl]disulfide (TESPDS) 56—an
organoalkoxysilane containing a disulfide bridge—was used to build PLGA@Silica core
shell nanoparticles, with a redox-responsive silica shell (6–10 nm) (Scheme 20) [68]. In
another work, Croissant et al. reported PMO with control size and morphology from
nanospheres to nanorods by co-condensing TESPDS and bis(triethoxysilyl)ethylene in
various weight ratios [69]. Maggini et al. prepared breakable MSNs by co-condensing
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TEOS and TESPDS in a molar ratio of 70:30 considering the silica source [70]. The disulfide-
doped silica nanoparticles were found to be redox-responsive even inside glioma C6
cancer cells.
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To prepare a light-responsive mesoporous silica, Chen and coworkers used APTES 32
to attach a carboxylic acid-terminated photosensitive spiropyran. The commercially avail-
able perfluorodecyltriethoxysilane (PFDTES) was also grafted on the SiO2 surface to tune its
hydrophobicity [71]. Rivero-Buceta et al. reported the use of APTES 32 grafted on the sur-
face of MSN to covalently attach a 2′-hemissucinate docetaxel derivative (DTX) 57 by a cou-
pling reaction promoted by HATU along with Hünig’s base (N,N-diisopropylethylamine,
DIPEA) to form an amide bond (Scheme 21) [72].
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Surface modification of SiO2 NPs can also be used for surface-initiated polymerization
(SIP) reactions from the nanoparticle surface with the growth of polymer brushes (“grafting-
from”) [73]. Grafting an organic polymer shell influences not only the conformation of
the polymeric chains but also the physicochemical properties of the nanomaterials [74].
Balis et al. reported the preparation of thermoresponsive poly(N-isopropylacrylamide)
(PNIPAM) polymer brushes-grafted MSN [75]. In the first step, the authors built an
APTES 32 layer on the nanoparticle surface that was used to attach the atom transfer
radical polymerization (ATRP) initiator α-bromoisobutyryl bromide (BIBB) 58 through
amide bond formation (Scheme 22). Recently, a polymer shell of poly(D,L-lactide-co-
glycolide) (PLGA) was grafted on Stöber silica nanoparticles by surface-initiated ring
opening polymerization (ROP) according to a procedure reported by Raj and coworkers [76].
In this study, the nanoparticles with an average diameter of 31 nm were modified by
tethering (3-glycidyloxypropyl)trimethoxysilane 48 to their surface, followed by epoxide
ring opening. The more accessible hydroxyl end groups were used as co-initiators for the
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ROP, resulting in a polymer shell with a 50:50 ratio of lactic acid and glycolic acid with
86% conversion.
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5. Conclusions

The sol–gel synthesis is a well-known and reliable process for obtaining silica-based
nanomaterials. Much of the work with organoalkoxysilane compounds was to develop
precursors for bridged silsesquioxane nanoparticles to maximize the organic content of the
resulting nanomaterial. These materials are expected to show higher stability in aqueous
solutions. However, it is important to note that high incorporation levels of organoalkoxysi-
lanes in the silica matrix can compromise the silica structural stability [77] and the bulkiness
of bridging groups can affect the sol–gel reaction [21]. Bridged organoalkoxysilanes are
more popular in the literature, as grafting of single molecules on SiO2 NPs can be accom-
plished by using commercial organoalkoxysilanes as linkers.

Functional organoalkoxysilanes have been recognized as a valuable strategy to ob-
tain safer and targeted silica-based drug delivery systems and the development stimuli-
responsive systems have become a popular strategy of current research. As mentioned
already, organoalkoxysilanes have been used to silylate molecules with biological interest
such as carbohydrates, polymers, and peptides [78].

A few different methods have been proposed for the synthesis of organoalkoxysilanes
by selection of specific precursors. During the synthesis, it is important to find the optimum
condition for the preparation of pure silanes with high yields to avoid tedious purification
steps. Purification by column chromatography could be achieved by adding ethanol (1–2%)
to the eluent system. As organoalkoxysilanes may undergo self-condensation to yield
polysiloxane structures, the compounds are usually stored at low temperatures and in
ethanolic solutions.

The design of silica hybrid materials with fine-tune functionalities depends on the
nature of the organoalkoxysilane precursors, which are only limited by the researcher
creativity. Therefore, the combination of organic–inorganic building blocks will continue
to be a fertile area of research. We sincerely hope this review kindles the interest in the
potential of organoalkoxysilanes and silica-based nanomaterials and serves as a source
for inspiration for the development of design strategies to obtain other relevant silylated
molecules with potential biomedical interest.
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