
Citation: Sadat, T. Predicting the

Average Composition of an

AlFeNiTiVZr-Cr Alloy with Machine

Learning and X-ray Spectroscopy.

Compounds 2023, 3, 224–232. https://

doi.org/10.3390/compounds3010018

Academic Editor: Alexander

Novikov

Received: 3 February 2023

Revised: 14 February 2023

Accepted: 22 February 2023

Published: 3 March 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Communication

Predicting the Average Composition of an AlFeNiTiVZr-Cr
Alloy with Machine Learning and X-ray Spectroscopy
Tarik Sadat

Laboratoire d’Automatique, de Mécanique et d’Informatique Industrielles et Humaines, LAMIH, Université
Polytechnique Hauts-de-France, UMR CNRS 8201, 59313 Valenciennes, France; tarik.sadat@uphf.fr

Abstract: A multi-principal element alloy (MPEA) is a type of metallic alloy that is composed of
multiple metallic elements, with each element making up a significant portion of the alloy. In this
study, the initial atomic percentage of elements in an (AlFeNiTiVZr)1-xCrx MPEA alloy as a function
of the position on the surface was investigated using machine learning algorithms. Given the absence
of a linear relationship between the atomic percentage of elements and their location on the surface,
it is not possible to discern any clear association from the dataset. To overcome this non-linear
relationship, the prediction of the atomic percentage of elements was accomplished using both
decision tree (DT) and random forest (RF) regression models. The models were compared, and the
results were found to be consistent with the experimental findings (a coefficient of determination R2

of 0.98 is obtained with the DT algorithm and 0.99 with the RF one). This research demonstrates the
potential of machine learning algorithms in the analysis of wavelength-dispersive X-ray spectroscopy
(WDS) datasets.
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1. Introduction

A multi-principal element alloy (MPEA) is a metallic alloy that is known to contain
significant proportions of several metallic elements (at least two) [1–3]. Among the various
elements, there is no linear relationship that leads to variations in the atomic percentage
as a function of the surface position. To overcome this nonlinearity, machine learning
can be used to overcome the challenge of predicting the atomic percentage of elements.
The term “machine learning” (ML) refers to a group of techniques that enable computers
to “learn” the correlation between numerical data representations and output values [4].
ML algorithms have the ability to achieve greater accuracy in predictions compared to
conventional methods, and can analyze large datasets quickly, which saves time and
resources. Additionally, they can recognize patterns and trends in data that may not be
immediately apparent through conventional analyses. ML models can also adapt to changes
in data over time, making them especially valuable for applications that require real-time
analysis [5]. Numerous applications have made use of machine learning techniques such
as the support vector machine (SVM), maximal entropy, and artificial neural network
(ANN) [6]. Liu et al. established machine learning models to predict the Vickers hardness
(Hv) of amorphous alloys [7]. Pan et al. developed an integrated composition–process–
property design system for Cu-Cr-Ni-Co-Si-Zr alloys using machine learning and were
able to recognize the relationship between Cu-Ni-Co-Si and Cu-Cr-Zr alloys [8]. Gao et al.
used a machine learning model to predict the elastic properties and Poisson’s ratio of non-
equiatomic high-entropy alloys (HEA) [9]. Islam et al. developed a neural network (NN) in
a machine learning framework to detect the underlying data pattern using an experimental
dataset and categorize the associated phase selection in MPEAs, providing insights on
developing MPEAs [10]. Wu et al. used eight phase-related variables as input and analyzed
six machine learning (ML) classification methods to identify MPEAs with outstanding
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strength–ductility [11]. Roy et al. presented an ML approach to down-select corrosion-
resistant alloys focusing on MPEAs [12]. Manzoor et al. described a method that uses ML
to predict the point defect energies in MPEAs using a database of the binary alloys that
make up those alloys [13]. Sai et al. used four different machine learning (ML) techniques
to estimate the room temperature fatigue lifetimes of single-phase CoaCrbFecMndNie and
multi-phase AlfCogCrhFeiMnjNik systems [14]. These algorithms were RF, SVM, gradient
boosting (GBOOST), and extreme gradient boosting (XGBOOST). Non-parametric models
such as RF and DT have the ability to fit complex data distributions without requiring
any assumptions about the underlying data. Additionally, they are capable of providing
accurate predictions even when the data are noisy or contain outliers. RF and DT models
are versatile enough to be used for both regression and classification problems, which
makes them useful for a wide range of applications [15].

In this work, machine learning algorithms are used to study the influence of position on
elements’ atomic percentage at the surface of an MPEA sample synthetized using physical
vapor deposition (PVD). The process of depositing thin films through PVD methods
has been widely adopted in various industries [16–19]. The atomic percentages of the
constituent elements of an (AlFeNiTiVZr)1-xCrx alloy are predicted using decision tree
(DT) and random forest (RF) machine learning methods for the first time.

2. Materials and Methods

This work was carried out on the basis of an experimental dataset consisting of ac-
quisition points across a single axis of wavelength-dispersive X-ray spectroscopy (WDS)
obtained from the work of Ruiz-Yi et al. [1,2]. WDS is better than energy-dispersive X-ray
spectroscopy (EDS) when it comes to high-energy resolution, its detection limits, and its
ability to detect elements with low atomic weights [20]. The samples were obtained by
co-deposing an AlFeNiTiVZr metal alloy and a Cr target using magnetron sputtering. Mag-
netron sputtering has emerged as the preferred method for applying various coatings that
are important in the industrial sector [21]. Further details regarding magnetron sputtering
and sample preparation are presented elsewhere [2]. In this work, the use of both decision
tree (DT) and random forest (RF) models is discussed. DT is a simple and interpretable ma-
chine learning algorithm that is commonly used for regression and classification tasks [22].
It is part of the supervised algorithms and can be used to predict a value from a set of
parameters by modeling the relationships between the input data and target output. The
interpretability of decision tree models makes them advantageous compared to other pat-
tern recognition methods. This allows for easier identification of crucial characteristics
and relationships between classes, informing future experiments and data analysis [23].
RF, which is a collection of DTs, typically produces better results than DT [24]. In recent
years, the RF classifier has become increasingly popular due to its exceptional classification
accuracy and efficient processing speed. The RF classifier provides dependable classifi-
cations by combining predictions from a group of decision trees. Additionally, the RF
classifier can effectively pick and rank variables that have the highest ability to differentiate
between target classes [24]. Keras [25], a popular deep learning library in Python, is used
together with the Scikit-learn package [26] to implement the algorithms in home-made
programs. Scikit-learn is a Python library that offers a unified interface for implementing
machine learning algorithms. It also includes additional functions that are crucial to the
machine learning process, such as data preparation methods, data sampling techniques,
evaluation metrics, and tuning/optimization search tools for improving an algorithm’s
performance [27]. Keras is a high-level neural network application programming interface
(API) that is open source and written in Python. It was created by François Chollet. Keras
can operate with various machine learning libraries, including TensorFlow (created by
Google), CNTK (created by Microsoft), and Theano (created by the University of Mon-
treal) [28]. A forest of 50 trees is used for the RF model, with 80% of the values being used
for training and 20% of the values for testing. To improve the training results, the data are
rescaled to a range of [0–1]. The algorithms and equations used in this study are described
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elsewhere [26], and the maximum depth of a tree, minimum number of samples in a leaf
node, and minimum number of samples required at a leaf node are set to “None”, 1, and 1,
respectively.

3. Results and Discussions

The average composition of the considered elements and the associated position on the
(AlFeNiTiVZr)1-xCrx sample were obtained from Rui-Yi et al. [1]. The ranges of attributes
of the dataset are presented in Table 1.

Table 1. Ranges of attributes from Ruiz-Yi et al. [1].

Attribute Range

Al (at. %) 13.7–23.6
Fe (at. %) 10.6–13.9
Ni (at. %) 10–17
Ti (at. %) 10.6–17.1
V (at. %) 9.4–16.2
Zr (at. %) 9.2–13.2
Cr (at. %) 6.1–36.6

Position (mm) 0–68.7

Figure 1 shows a scatter matrix plot of the dataset. A scatterplot matrix is a useful tool
for identifying linear correlations between multiple variables. It can be used to determine
if any of the variables have similar relationships to the data. The process of creating a
scatterplot matrix involves loading the data with multiple variables and visually examining
the correlations between them. In this work, there is no strong relationship between all the
variables (average atomic composition of Al, Fe, Ni, Ti, V, Zr, and Cr) and their position
on the sample. The composition of Al, Ti, V, and Zr increases along the sample, while Cr
decreases. Fe and Ni show different patterns; the amount of Fe increases and stabilizes,
while the amount of Ni increases and decreases. Such differences might be related to the
conditions of the deposition process, the cleanliness of the substrate, and the degree of
adhesion between the substrate and the deposited material or diffusion effects [29].

Thus, it is challenging to predict the average amount of elements based on the position
along the sample with variables that are not linearly dependent.

For the DT and RF models, the average composition of the elements of an (AlFeNi-
TiVZr) 1-xCrx alloy is used as input values, while the corresponding position on the sample
serves as the output. Distribution histograms of the attributes are presented in Figure 2.
No Gaussian distributions of both the variables and the output are highlighted.

Figure 3 shows a correlation matrix map of the Pearson correlation coefficients [30],
which determines the linear link between variables to evaluate the correlation between the
features [11]. A correlation matrix is a type of matrix in numerical linear algebra that has
the property of being symmetrical and positive semidefinite with diagonal entries equal to
1. This type of matrix is used in areas such as the preconditioning of linear systems and the
evaluation of errors in methods for solving symmetric eigenvalue problems [31].

The related Pearson correlation coefficient with two variables X and Y is defined
as follows:

ρ(X, Y) =
cov(X, Y)

σXσY
(1)

where the standard deviations of X and Y are represented by σX and σY, and cov(X, Y) is
the value of covariance [32]. A positive correlation is shown by numbers that are near to
1, while a negative correlation is indicated by values that are close to −1. There is no link
between intermediates with values of 0. As seen in Figure 3, there is a positive correlation
between most of the elements and the position, but this is not the case for the Cr. This result
is expected, as the Cr is the only element whose amount only decreases with the sample
position, as highlighted by Figure 1.
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The two models were compared using a statistical measure. R-squared or coefficient
of determination (R2) was used to assess the efficacy of the machine learning models [33].
Chicco et al. suggest that R-squared is the most informative measurement in many cases
compared to other statistics such as symmetric mean absolute percentage error (SMAPE),
mean absolute error (MAE) and its percentage variant (MAPE), mean square error (MSE),
and the root mean square error (RMSE). It is recommended to use R-squared as the standard
measure for evaluating regression analyses across various scientific fields [33].

Figures 4 and 5 display the predicted values of atomic percentage of each element as
a function of the true values for the two models (respectively DT and RF) concerning the
test dataset. In both cases, the coefficients of determination are very high. The minimum
R-squared value is 0.95 and 0.96 (respectively considering the DT and RF models) for the
vanadium, and the maximum is 0.99 for the chromium. Both the DT and RF models can
effectively predict the atomic percentage of elements, regardless of the position along the
line, and could be considered to improve a sputter model.

Machine learning is a very pertinent method that should be considered to predict
output value from several input variables that are not linearly dependent, and should
be considered in multiple cases of alloy research, for example, in the case of harmonic
alloys [34] or transformation-induced plasticity (TRIP) and twinning-induced plasticity
(TWIP) alloys [35].
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4. Conclusions

Two machine learning models were established from experimental values of the
composition of elements of an (AlFeNiTiVZr)1-xCrx alloy, as measured using wavelength-
dispersive X-ray spectroscopy. The decision tree and random forest models lead to relevant
predicted values of the average composition of the elements, whatever the position along
the line of measurements. A mean coefficient of determination of 0.98 is obtained with the
decision tree algorithm, and 0.99 with the random forest one. This means that machine
learning models are relevant and should be considered to improve a sputter model.
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