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Abstract: Since ancient times, herbal medicines (HM) have played a vital role in worldwide healthcare
systems. It is therefore critical that a thorough evaluation of the quality and control of its complicated
chemical makeup be conducted, in order to ensure its efficacy and safety. The notion of HM chemical
prints, which aim to acquire a full characterization of compound chemical matrices, has become
one of the most persuasive techniques for HM quality evaluation during the last few decades. The
link between NMR and chemometrics is discussed in this article. The chemometric latent variable
technique has been shown to be extremely valuable in inductive studies of biological systems as
well as in solving industrial challenges. The results of unsupervised data exploration utilizing main
component analysis as well as the multivariate curve resolution, were various. On the other hand,
many contemporary NMR applications in metabolomics and quality control are based on supervised
regression or classification analyses.

Keywords: herbal medicines; NMR; chemical prints; chemometrics; biological systems

1. Introduction

It is difficult to undertake spectroscopic investigations of chemical mixes that contain
several components [1]. These difficulties are worsened in systems with individual compo-
nents that are uncertain or difficult to isolate and analyze. These systems are mixtures of
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compounds in many states of order and disorder, multiphase materials, interfaces, dopants,
biological systems that respond differently when isolated, and metabolomes [2]. NMR spec-
troscopy is a good tool for examining these complicated mixtures since it can quantitatively
evaluate the specification of a bulk sample while also revealing information regarding
the atomic environment, the ordering within the sample, and the electronic structure [3].
Even the statistically based algorithms, such as principal component analysis and free
component examination, can also be used to separate spectra components into successive
sections without having comprehensive knowledge of the source signals associated with
these components. These techniques are useful tools; however, due to implementation
concerns, such as software challenges, a lack of understanding, and a lack of literature
examples, they are not commonly employed.

The present article discusses many of the most frequently utilized latent variable
approaches in NMR data analysis and predictive modeling. It describes how difficult it is
to transform NMR data for multivariate data processing, and how various chemometric
techniques affect NMR data.

2. Herbal Extracts as Therapeutic Agents

For millennia, traditional herbal therapy has been used in a variety of ways, and
it is still mostly used as a primary form of healthcare in a number of developing and
disadvantaged nations [4]. Traditional medicines (TMs) were used by nearly 80% of the
world’s population in impoverished nations for basic healthcare due to their cheap cost
and accessibility. According to the WHO, aborigines residing in rural villages are not
served by contemporary treatment facilities [5]. Early explorers’ plant collections, as well
as ethnobotany, have played a significant role in the discovery of novel pharmaceuticals
for many centuries. Plants and their derivatives account for 25% of all medications in
developed countries [6]. In many African and Asian nations, medicinal plants are still
used in basic healthcare by up to 80% of the population [7]. These herbal medicines
(HMs) are also gaining prominence in developed countries, particularly the United States
and Germany.

Despite its existence and continued use over many centuries, traditional medicine has
not been officially recognized in most countries. Therefore, due attention and support has
been paid to education, training, and research in this area. The quantity and quality of the
safety and efficacy data on traditional medicine seem to be insufficient to meet the criteria
needed to support its use worldwide. The reasons for the lack of research data are primarily
healthcare policies as well as the lack of adequate or accepted research methodology for
analyzing TMs [8]. To analyze the quality and authenticity of HMs, the identification of
specific herbs and their main components is essential. However, this examination does not
provide the whole picture for HMs because multiple factors are often responsible for their
therapeutic advantages. The majority of phytochemical constituents of herbal products
must be established in order to ensure the reproducibility and reliability of pharmacological
and clinical research on these products, to better understand their bioactivities and potential
side effects, and to improve product quality control [9].

It is crucial that we identify the variation between conventional medicines and HMs
when comparing these two types of therapeutic agent and how they are supplied. The
administration of a pure chemical in comparison to a plant extract containing the same
chemical entity is quite different. The distinction is mostly due to the intricacy of a plant
extract, which introduces a flood of variables into conventional phytomedicinal research,
all of which could influence its chemical complexity and bioactivity. Weathers et al. (2011)
found that when a plant sample (e.g., Artemisia annua) was administered vs. a pure medicine
(e.g., artemisinin), the bioavailability of the bioactive substance through the leaves was
45 times higher than in the case of the pure drug [10]. As a result, the plant extract’s
complexity may have contributed to the higher bioavailability of the bioactive substances,
and consequently their bioactivity.
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Herbal therapy may be critical since science is only beginning to appreciate the nu-
merous complex, diverse, and sophisticated mechanisms that operate in a wide variety of
biochemical systems found in organisms [11].

HMs have shown a wide range of success in treating infections, particularly in recur-
ring and chronic illnesses. Additionally, it is worth noting that a variety of plant extracts,
having a variety of bioactive compounds, can be used to achieve clinical efficacies that
are typically not possible with single-compound-based drugs, not to mention to provide
critical combination therapies that affect several pharmacological targets [12,13].

3. Quality Control and Quality Assurance (QC/QA) of Herbal Medicine

The presence of active components with medicinal benefits in HMs depends on various
factors, such as the period and place of harvest of the medicinal plants, the type of soil
in which they are planted, the quality of water used for their irrigation, and the way the
HMs are prepared [14]. HMs and the included treatments are part of a broader field of
complementary and alternative medicine [15]. The quality control of traditional medicines
is a crucial problem attracting a lot of research attention, since the safety and efficiency
of TMs are intimately linked to their quality [16]. Over the last few decades, the quality
requirements for HMs, herbal drug (HD) preparations, and herbal therapeutic items have
advanced dramatically [17].

High-performance liquid chromatography with diode array detection (HPLC-DAD),
liquid chromatography with mass spectrometry detection (LC-MS/MS), and gas chromatog-
raphy with mass spectrometry detection (GC-MS) are the commonly reported methods for
detecting unlawful adulterations in HMs [18–21]. Recently, the local straight line screening
(LSLS) technique was devised for resolving complicated IR spectra of potentially contam-
inated HMs [22]. Chromatographic and electrophoretic methods in combination with
various detectors, such as IR-LSLS, and nuclear magnetic resonance (NMR) [23–25], have
been documented in relation to the adulteration of herbal formulations advertised for
weight loss [25–28].

All parts that contribute to the superiority of HDs should be considered in standard-
ization methods, including sample identity, organoleptic assessment, pharmacognostic
assessment, volatile matter assessment, quantitative assessment (ash values, extractive
values), xenobiotics assessment, microbial load assessment, phytochemical assessment, tox-
icity assessment, and biological activity assessment [29]. Researchers have used chromato-
graphic fingerprinting methods to assess the quality of herbal samples and the products
developed from them. To protect the safety of the consumer, sample identification must
be conducted with extreme caution. It is accomplished by removing adulterations (plants
mixed together) or full misidentifications (wrong plants), as well as samples of low quality
(low quantities of active chemicals) or possessing excessive concentrations of pollutants
(e.g., pesticides) [30]. Chemometric techniques are now being utilized in conjunction with
chromatographic data to generate even more accurate data for determining the integrity of
HMs as well as for observations on the comparisons and differences between HMs data.
The strength of chemometrics is in the multidimensional remarks that are used to describe
the data’s similarities and contrasts, which are then presented in a graphical manner that is
user-friendly [7].

4. Techniques in Metabolomics

Metabolomics is the comprehensive quantitative and qualitative analysis of all metabo-
lites existing in biofluids, cells, tissues, or organisms. Metabolites are the end products of
biological processes [31,32]. The orderly study of small-molecule metabolites, which are
byproducts of certain biological activities, is known as metabolomics [33].

Due to the formidable complexity of biological systems, particularly those of plants,
one-step analysis and visualization of all metabolites in a metabolome is not practical, in
contrast to other “omics” approaches, such as genomics, proteomics, and transcriptomics.
The four major areas of metabolic analysis are as follows:
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(a) The quantification of specific metabolites via targeted compound analysis.
(b) Metabolic profiling for determining the quantitative and qualitative characteristics of

a set of related substances or specific metabolic pathways.
(c) Metabolomic fingerprinting for classifying samples via quick global examination.
(d) Metabolomic study that entails analyzing “all” metabolites quantitatively and qualita-

tively (which is not yet possible).

Targeted metabolite analysis, also known as metabolite profiling, examines a subset
of metabolites in samples using a specific set of analytical techniques, for example, GC-
MS and LC-MS, to estimate their quantity, rather than perform a complete metabolome
analysis. Thin-layer chromatography (TLC), Fourier transform infrared spectroscopy (FT-
IR), and NMR and Raman spectroscopy are just some of the other methods employed in
metabolite analysis [34,35]. Recent advancement in analytical techniques used for detecting
and characterizing low-mass compounds, e.g., MS and high-field NMR, has resulted in a
particularly fast method for analyzing metabolite data matrices generated by metabolomic
investigations [7]. Due to the rapidity and robustness of NMR, which is crucial for industrial
quality control, this study focuses on its use.

As a consequence of the relatively high sensitivity and extensive presence of protons
in organic metabolites, NMR spectra provide a rich source of information on the content
of metabolites in samples. NMR spectra can be generated in 10 min using 10–50 mg of
material. It is usually possible to identify 10–20 recognized chemicals based on an NMR
spectrum that may comprise even 50–100 metabolites [36]. NMR spectra are acquired
in deuterated liquids using an NMR spectrometer (ideally 400 MHz or higher) set to the
appropriate proton NMR frequency of the instrument. A number of scans are performed
on each sample, ranging from 64 to 256 for high-quality spectra. The number of necessary
scans is determined by the NMR spectrometer’s magnet strength; as magnet strength
increases, fewer scans are required. The (1) relaxation delay and (2) pulse width parameters
are two important factors to be considered when obtaining high-quality spectra [37]. The
concept of using all data points in an NMR spectrum is gaining traction, and for some
sophisticated algorithms that align the peaks and eliminate any undesired variances, it will
become a far more prevalent practice [38].

5. Plant (Herbal) Metabolomics Experimental Methods
5.1. Herbal Product Collection and Extraction

Traditional collection of plant material must consider a number of aspects that might
have a substantial impact on the sample’s integrity (e.g., collection time, weather, season,
soil, etc.) [7]. The processing of herbal material is distinct from that of normal metabolomics
analysis in that the HM material is treated before processing, and the samples are taken
into the production line as a processed herbal product. It is nevertheless critical to obtain
an accurate representation of the herbal plant material that will be used to make the herbal
product. To avoid introducing any undesirable variance in the data, good manufacturing
procedures (GMP) and good laboratory practices (GLP) must be followed.

The extraction method may cause metabolic events to occur in the plant material,
resulting in a change in the sample’s metabolome. As a result, it is critical to consider the
chosen HM preparation procedure. The analytical sample must be prepared in the same
way that the HM is prepared for consumption by patients. To remove the metabolites
from the cells, the HM product must be crushed and extracted; this is performed at low
temperatures and/or in the presence of a solvent. Ultrasonication has been demonstrated
to be the most efficient method for degrading plant cells, and thus for producing the highest
quantity and diversity of the metabolites for study [39].

It is vital to note that the extraction technique must account for both the solute–
solvent interactions and the solute or analyte’s dissociation from the matrix. This means
that, in addition to a proper solvent choice, the techniques of pre-extraction and matrix
treatment during extraction play a significant role in metabolite release, and that, in order
to achieve good results, not only the type of solvent used, but also the physicochemical
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characteristics of the matrix, the effect of pH on the matrix, the contact time, and the
metabolite compartmentalization, should be taken into account [40].

NMR is one of the possible analytical techniques employed in metabolomics that
offers significant benefits over other techniques. This is not only because of the great
information richness of the resultant spectra for chemical constructions, it is also due to the
good repeatability of NMR chemical changes, the simple comparison of relative metabolite
amounts, and the fewer pre-separation processes required before analysis [41].

5.2. NMR Analysis
1H NMR spectroscopy is a method that can provide a “metabolic fingerprint”, which

can be used to determine the sample’s overall biochemical makeup. It is possible to monitor
the changes in the concentrations of thousands of metabolites instantaneously by comparing
the spectra from several samples, and so to observe the dynamic metabolic profiles [42]. This
principle (also known as “metabonomics”, “metabolomics”, “metabolic fingerprinting”,
and “profiling”) has been used in a variety of fields, including the quantification of drug
toxicity [43,44], environmental metabolism [45,46], plant metabolism [47,48], and, more
recently, natural product profiling [49]. Chemometric data analysis techniques can be
used to develop mathematical design models to predict structure, activity, and metabolic
relationships based on NMR spectroscopic data (or indeed any other multivariate analytical
data) (Figure 1) [41].
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In NMR metabolomics, significant volumes of plant material are not required. In
10 min, 10–50 mg of plant material is enough to obtain its 1H NMR spectrum. It is generally
easy to identify 10–20 recognized substances from an NMR spectrum that may comprise
50–100 metabolites [50].
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6. Chemometric Analysis

One-to-one correlations between a cause and its effect are frequently required in
science in order to validate relationships; this can be accomplished, usually, via modest
data investigation in conjunction with a randomized experimental scheme [51]. Although
univariate causality definitely has a purpose, it has become a barrier to understanding
more complex systems, such as those seen in metabolomics, which conceals many rela-
tionships. To identify these relationships, multivariate techniques for data exploration
are necessary [50].

The majority chemometric methods work with PCs (principal components) from the
data’s underlying common or latent patterns. Among its principal advantages for data
processing, the most important is its capacity to manage large multivariate datasets using
variable collinearity and projecting multivariate data into a few dimensions that can be
shown visually. The disadvantage of using PC models is that they demand the simulta-
neous analysis of data from several samples, which might lead to the loss of qualitative
information [51]. All these data must be low-rank and bilinear for the successful application
of chemometrics to spectral data. In reality, bilinearity means that the signal intensities
in the example spectra need to be proportionate and additive to the concentrations [52].
Additionally, a chemical component must have a single spectral signature (for example, a
collection of multiple spectra); thus, it must have the same spectral shape across all samples,
with the exception of intensity [53].

6.1. Unsupervised Data Exploration by PCA

The most basic and often-used unsupervised chemometric approach is principal
component analysis (PCA). PCA has been around for more than a century [54]. Owing to
its extremely powerful data reduction and data display characteristics, it might be called
the parent approach for exploratory multivariate data analysis.

PCA is a statistical test that belongs to the factor analysis category. PCA is a math-
ematical tool that uses a small number of factors to represent the variation in a dataset
(i.e., responses used to characterize the samples). A two-dimensional or three-dimensional
projection of samples is commonly produced for visual analysis, using the axes (principal
components, PC) as factors. Each PC is a linear combination of the original responses (with
some correlation between them), and they are orthogonal to one another [55]. The number
of PCs used, and hence the amount of variance collected, should be carefully chosen. One
method is to count the number of components that produce the best classification model, or
to use cross-validation to identify the PCs. Another factor to consider is how the score plot
is visualized. The PCs should capture a high fraction of the variation if one is interested in
observing the natural aggrupation of the data. Low-percentage PCs do not explain raw data
well. Another difficulty is the requirement for data pre-processing before PCA application.
The chosen pre-processing method is determined by the nature of the data, and should
be explored [56]. Three issues were raised in a recent review [57]; i.e., (1) incorrect units
for exploratory analysis, (2) misinterpretation of PCA loadings from a first- and second-
derivative pre-processed signal, (3) artefacts caused by signal normalization procedures,
such as SNV or MSC, leading to the misinterpretation of PCA loadings. As a remedy to
these issues, the units employed should be directly connected to the concentration to mini-
mize misinterpretations. According to the standard PCA rule, a sample with a high score
value at one PC is defined by the variables that are positively linked with the high loading
values for that PC. This is not always the case for the derivative spectra. The interpretation
of PCA loadings based on the first or second derivative is not straightforward, and it is
necessary to evaluate the derivative signal as well as the loadings. The application of
an anti-derivative function on PCA loadings is recommended as a solution in this case.
Normalization can remove not just the undesired signal variations, but also the important
information from the original spectra [57].

PCA separates the data matrix, such as a sequence of the NMR spectra, into PCs,
which are linear combinations that, in a least squares sense, approximate the original
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dataset [58]. The first PC in the data is the spectral profile (loading) that best describes
the largest proportion of the variation; the second PC is the profile that best describes the
second largest, and so on. The PCs are composed of what is known as scores and loadings.
The loadings possess the information on the spectral variables, whereas the scores contain
the information on the loading vector’s amount or significance (pseudo-concentration) in
the sample set (chemical shifts). The residuals are the parts of the data that the model does
not explain (E). The new variables are uncorrelated and are formed by combining the new
coordinate system based on the directions with the greatest deviations (the first PCs). PCA
achieves this by efficiently deleting a small number of orthogonal PCs, making it the most
robust and consistent chemometric method available [59,60].

6.2. Self-Modeling Multivariate Curve Resolution

PCA is typically used for the categorization and exploration, and because the load-
ings and scores must be orthogonal, it cannot directly estimate real chemical spectra and
concentrations. However, an unsupervised classification approach that does not require
orthogonality can also be applied; for example, in the case of the multivariate curve resolu-
tion (MCR) [61,62]. In the NMR literature, this is referred to as molecular factor analysis
(MFA) [63,64].

6.3. Supervised Data Exploration by PLS Regression

PLS (partial least squares) is a frequently used method for modeling the relationships
between various sets of observed variables using latent variables. Wold and coworkers
created PLS projections of observed data regarding its latent structure [65]. The PLS
method incorporates regression and dimension reduction techniques, as well as modeling
tools to modify the relationships between sets of observed variables by a small number
of latent variables (not directly observed or measured). These latent vectors, in general,
maximize the covariance between several sets of data. Similar to PCA, it can be used as
a discrimination tool and a dimension reduction method [8,9]. It is also related to other
regression techniques, including principal component regression (PCR), ridge regression
(RR), and multiple linear regression (MLR); all of these techniques can be grouped together
under the umbrella of continuum regression (CR) [66].

The counterpart of regression analysis is partial least squares (PLS) regression [63],
which is fundamentally based on the PCA principle. On the other hand, the latent variables
of spectral data are identified in such a way that only the information needed to forecast
the physical/chemical data is recovered. PLS regression aims to develop a linear regression
model that can predict a desired attribute from a multivariate signal. While PCA can
be compared to going shopping for data without a shopping list (i.e., the data analysis
is performed without any prior knowledge), PLS regression can be compared to going
shopping with a specific shopping list (in the data). The calibration models between
the NMR spectra and a specific response variable can be created if the reference data
are available. This can be accomplished using PLS regression, which is the second most
fundamental technique in chemometrics. The bilinear data matrix (X) is resolved into linear
components by PLS, similar to PCA (latent variables). PLS, on the other hand, focuses on
data variance that covaries (or is related when auto-scaled) to the response variable(s) (y).
As a result, PLS regression is a supervised approach for developing prediction models that
can be used to substitute a slower, more precise, and accurate analytical method with a faster,
more precise, and accurate NMR-based method. PLS is a powerful regression technique
that specializes in identifying and fitting erroneous variables with random correlations
to a reference value. To minimize overfitting in highly empirical chemometric models,
an adequate validation technique must be used (fitting the noise). The ideal condition
is to have a distinct dataset against which to evaluate the developed models’ genuine
prediction performance. As this is not always practicable or practical, cross-validation is
used instead [65,67], and can be useful for achieving the robust results (Figure 2).
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Cross-validation divides the sample set into a number of segments, each of which is
excluded, one at a time, and used as a pseudo test set for a model constructed from the
remaining samples in order to estimate the prediction error, i.e., the root-mean-square error
of cross-validation, and thus, to determine the number of latent variables (components) in
a PLS model (RMSECV) [68]. The model data demonstrate how the RMSECV changes as
the number of components increases. The initial minimum of the RMSECV curve is chosen
as the appropriate number of components for the model. In addition to the error measure,
model performance is typically presented as a projected vs. measured plot (RMSECV).

6.4. Supervised Classification by PLS-DA Regression

Despite the fact that PCA is a powerful exploratory tool, researchers are typically
dissatisfied with the discrimination provided by unsupervised PCA; hence, supervised
classification approaches are used instead. When creating a classification model using su-
pervised classification chemometric approaches, a priori knowledge is actively utilized. The
partial least squares regression discriminant analysis (PLS-DA) approach is the archetype of
the supervised classification methods [69]. PLS-DA is highly similar to a normal PLS regres-
sion model [65], in which the major goal of PLS-DA is to discriminate between two or more
classes into which the data can be classified, rather than predicting a continuous outcome.

The PLS-DA method achieves this discrimination by utilizing a pseudo response
variable (typically a dummy vector with zeros and ones describing the subjects’ affiliation
with one of two classes), and attempting to predict it as accurately as possible using the
information from the metabolite table or the NMR spectral dataset. The objective of this
classification exercise is to identify a set of latent metabolite patterns (components) that most
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accurately classify two (or more) groups. Classification parameters are used to optimize
the PLS-DA model (e.g., rate or percentage of misclassified samples). Due to their high
classification performance, PLS-DA models are widely used in NMR metabolomic research.

6.5. Improved Supervised Models by Variable Reduction

Despite the outstanding performance of PLS and PLS-DA, the pursuit of superior
regression/classification performance involves the employment of more complex algo-
rithms in the experimental design of bioactive chemical therapies to harness any con-
ceivable relevance. Orthogonalization and variable selection are the two most frequently
used approaches.

NMR spectra frequently reveal the regions devoid of chemical information, which can
disrupt the subsequent model, at best, and obscure any useful information in misleading
correlations, at worst. When the most informative spectral information is concentrated at
a few extremely small peaks, or even a single peak, against a background of numerous
larger peaks that vary in ways unrelated to the groups of interest, neither PCA nor PLS
is sensitive enough [70]. Variable selection appears to be an obvious strategy to improve
the regression or classification performance in such cases. As NMR studies involve such a
large number of variables, many of them will be meaningless (irrational, noisy, or signals
conveying information not relevant to the study); deleting these variables will often lead to
better classification models.

There are numerous ways of eliminating variables in order to improve the performance
of classification or regression algorithms, as well as data interpretation. Interval PLS (iPLS),
a fundamental technique for variable selection, has been shown to be particularly useful
for NMR spectra in terms of improving and simplifying regression or classification models
based on NMR data by subdividing the variable space (parts per million scale) into smaller
intervals [71–75]. iPLS is a PLS extension that creates local PLS models for a variety of
subintervals across the complete spectrum. The fundamental benefit of iPLS is that it
delivers an overall view of the vital information in several spectral subdivisions, reducing
the interference from other areas [76].

iPLS identifies spectral zones that contain information about the response variable (y).
The goal of this method is to limit the amount of possible interferences by reducing the
variable space (intervals can be as little as one variable in size), resulting in a more compact
and often superior model. Interval models, which divide up distinct portions of the NMR
spectrum into logical and more homogeneous sectors, such as aromatic, carbohydrate, and
aliphatic sectors, are generally a good component of NMR fingerprinting.

6.6. Improved Supervised Classification by Orthogonal Factor Extraction

Gender, age, and time of year are just some of the elements that cause diversity in
biological systems. R.A. Fisher (the founder of modern statistics) recognized this, and
developed the experimental designs that could estimate and handle variation caused by
these factors. Models for analyzing univariate data from intended experiments include the
paired t-test and analysis of variance (ANOVA). These methods are based on estimating
the variance associated with a nuisance (orthogonal) factor (e.g., subject) and removing it.
This emphasizes the variety of interest, such as treatment, which enhances the chances of
discovering anything intriguing (often referred to as statistical power). Multilevel PLS-DA
is a multivariate equivalent of two algorithms [74]: analysis of variance–concurrent compo-
nent analysis (ASCA), and external parameter orthogonalization (EPO) [77–81]. This is an
outside factor. The essence of ASCA, multilevel PLS-DA, and EPO is the partitioning of data
into two (or maybe more) orthogonal subspaces, one of which is disconnected, and hence
irrelevant for the study design component under consideration, and the other contains the
relevant data. Whereas variable selection can be thought of as a horizontal interference
elimination, orthogonalization can be thought of as vertical interference elimination in the
data matrix. OPLS-DA is a widely used approach in metabolomics that includes orthogo-
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nalization [78]. OPLS-DA divides information into two orthogonal subspaces, similar to
multilevel PLS-DA, ASCA, and EPO.

In contrast, OPLS-DA does not use any data other than the factor of interest (e.g.,
treatment). Obviously, OPLS-DA model prediction/classification performance is identical
to that of the corresponding PLS-DA model, and OPLS-DA’s popularity stems solely from
its easier and more obvious interpretation [82].

7. Multivariate Data Analysis

NMR has a distinct advantage over mass spectroscopic techniques in screening and
fingerprinting applications since it consistently identifies most of the chemicals present.
Mass spectroscopic techniques are plagued by issues caused by the varying ionization of
various types of compounds [83]. Multivariate statistical approaches, such as PCA, are
commonly used to analyze NMR data initially. PCA is a data visualization technique that
may be used to spot patterns in large datasets. PCA and other similar multivariate analyses
may be performed using a variety of commercially available software tools [84]. PCA is
the statistical analysis technique for extracting and visualizing the systematic variation
in data [85].

PLS, like PCA, may be used as a discriminating tool and a dimension reduction ap-
proach [86]. However, there appears to be an issue with dealing with vast amounts of data,
requiring the use of multivariate statistical data analysis (MVA), also known as chemomet-
rics, to recover the quality attribute information buried by screening approaches. MVA
developments, such as PCA, linear discriminant linear analysis (LDA), soft independent
modeling of class analogy (SIMCA), and PLS regression, and qualitative techniques, such
as the cluster analysis (CA), are used in combination with various pre-processing methods
to extract the required information from convoluted spectra [87].

To obtain values for the PCA score plot, the original variable from the NMR/MS data
is multiplied by coefficients, sometimes referred to as loadings. The exact numerical value
of the loading will indicate the link between the original variable and the component [7].
As a result, “loading plots” may be used to emphasize the spectral zones accountable for
data separation and, as a result, for the precise location of the scoring plots [88].

7.1. Adaptation of NMR Data for Chemometrics

The Fourier transformation of the time-domain (seconds) (FID) of NMR signals
recorded as a function of time can be used to derive the chemical shift spectrum (FID-
free induction decay). The quality of the spectra, and thus the quantitative information
contained within them, are determined not only by the strength and homogeneity of the
external magnetic field (shimming), but also by the precise and accurate tuning and match-
ing of the nuclear magnetic resonance frequency [89], phasing, baseline correction, line
shape correction, and chemical shift referencing, as well as pH, temperature, and water
filtration [90]. When applied to large NMR datasets, chemometrics or any other quantitative
statistical method puts the analytical NMR platform to the test in terms of the long-term
stability parameter.

The fact that the observed resonance frequencies are extremely sensitive to the local
chemical environment is probably the most valuable feature of 1H NMR spectroscopy,
but this shift in sensitivity also means that the resonance frequencies can be affected by
some minor temperature, pH, and external magnetic field fluctuations [91]. To solve this
problem, a variety of peak (signal) alignment algorithms has been developed. While the
overall spectrum-to-spectrum variations caused by some small changes in the spectrometer
frequency can be resolved by a simple translation of the entire spectrum, using either a
pattern recognition method or an internal reference peak, the local peak-to-peak chemical
shift variations caused by, for example, pH and temperature, are more challenging to handle.
Smoothing and/or data reduction via binning are two viable solutions to the problem
(bucketing) [92], but several more generic and elegant alternatives, such as correlation
optimal warping (COW), have been also devised [93], in addition to recursive segment-
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wise peak alignment [94] and interval correlation optimized shifting (icoshift) [95]. When
processing the multivariate data from large-scale NMR metabolomics experiments, there
are often two alternatives, which are outlined below.

7.2. Spectral Fingerprinting

In this case, multivariate data analysis makes use of all of the spectral properties. The
goal of this technique is to compare the “fingerprints”, or patterns of changes in response
to bioactive molecule intervention, rather than to identify each observable metabolite. As
processing capacity has increased and metabolic fingerprinting can reveal some novel
and unexpected insights, there is a growing trend to undertake the analysis at the highest
spectral resolution available [96]. Metabolic fingerprinting produces a dataset with the
following dimensions: number of samples and number of spectral variables, where the
number of spectral variables is typically (many) hundreds.

7.3. Spectral Profiling

For each sample, as many signals as are conceivable are discovered (although not
necessarily assigned), and their peaks are combined. This method will provide a dataset
with the following dimensions: number of samples and number of peaks, where the
number of peaks/metabolites is frequently in the hundreds. Spectral profiling complicates
pre-processing by requiring integration settings, but it produces more comprehensive data
tables for further data analysis [97].

8. Natural Product Metabolomics Using NMR
8.1. Analysis of Complex Pharmaceutical Preparation Using NMR Metabolomics

HMs are often quite complicated and contain a large number of chemicals in the
commercial market. Their preparation is frequently standardized using single-indicator
compounds or a set of connected compounds that do not contain the information on
other, apparently irrelevant, copious ingredients present in the herbal mixture. NMR
metabolomics also reveal the significant fluctuations in the concentration of flavonoids con-
nected to the Hypericum perforatum extract anti-depressant effect. Full-resolution NMR data
yielded plots with more accurate information on the chemicals in the extract responsible
for the grouping, and possibly for the therapeutic effect, showing that full-resolution NMR
data may be preferable for PCA of plant extracts and HMs (Table 1) [98].

8.2. Using NMR Metabolomics to Analyze Complex Artemisia Herbal Medicine

The combination of NMR spectroscopy with PCA has proven to be a highly promising
approach for the detection of specific ingredients in herbal extracts that were stated as
present throughout the extraction process. The presence of active anti-malarial artemisinin
in capsules manufactured from A. afra was studied [97]. NMR analysis was performed
on A. afra extracts and A. annua extracts, and the product capsules. The analyses were
carried out using a 500 MHz Bruker NMR spectrometer, with 128 scans completed for each
sample. At 6 min per sample, the spectra were referred to the residual chloroform peak.
For PCA, NMR data were processed and files were transmitted to SIMCA-P (10.0 Umetrics,
Umea, Sweden).

The differences between the three samples were clearly visible in this analysis. The
plant species A. afra and A. annua can be readily distinguished from one another using
PCA data, separating extremely well in the first PC. The capsules were grouped together
with A. afra in PC1, and separated from A. annua, indicating that the capsules certainly
contained A. afra. The A. afra and capsule samples were well-separated in PC2, with the
difference in chemical concentration between them explaining the separation. The anti-
malarial component, artemisinin, was only discovered in the A. annua samples, and not
at all in the A. afra samples, according to the same study’s LC-MS results. Thus, utilizing
NMR-based metabolomics, the stated presence of the anti-malarial component, artemisinin,
in the capsules of A. afra was revealed to be false [99].
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8.3. Chemical Profiling of HMs

The majority of existing standard QC procedures for entire extracts are insufficient for
use on HMs. There are a lot of differences between the batches of items on the market. As
many factors can affect the chemical composition of phytomedicine (plant growing envi-
ronment, collection/harvesting season, preparation and extraction procedure, and so on),
it is vital to guarantee that these elements are considered during HM quality control [100].
High-resolution 1H NMR may be quite useful, and when paired with chemometric anal-
ysis, it can be used to evaluate the entire plant extract. It allows one to see “all” of the
chemical components in a plant extract at the same time, as its “metabolic fingerprint”.
The differences and similarities between the economically relevant samples may be readily
and rapidly seen in 2D or 3D plots using PCA algorithms on NMR data, adding to the
high-throughput demand for QC procedures [46].

8.4. Ephedra Metabolic Fingerprinting Using NMR

The Ephedra genus is one of humanity’s earliest therapeutic plants. Ephedra sinica is
the most common source of ephedrine alkaloids, although ephedrine alkaloids can also
be found in the 14 species mentioned in this subsection. As a result, the need for species
identification is critical, and the present study demonstrates that this may be accomplished
using NMR-based metabolomics. NMR was used to examine three Ephedra species (E.
sinica, Ephedra intermedia, and Ephedra distachya var. distachya) and to compare them to nine
commercially available Ephedra herbal plant samples acquired from the Taiwanese market.
In PC1, the three known Ephedra species were separated quite effectively, with E. distachya
var. distachya separating totally from the other two species, which was confirmed to be
owing to the absence of ephedrine. The aqueous extracts were separated most strongly;
thus PCA was performed exclusively on them. Except for one species that was grouped
between E. sinica and E. intermedia and was proven to be a hybrid of these two, the majority
of commercial samples were clustered close to E. intermedia (Table 1).

It is obvious that NMR-based metabolomics may be utilized to assess the authenticity
of herbal plant material quickly and simply. Due to the fact that a considerable portion
of the globe still relies on traditional herbal markets to receive their primary treatment,
authenticating these supplies of HMs can be quite beneficial. Some HM firms rely on
wild-gathered plant material for their herbal manufacture, thus it is vital to double-check
the materials before employing them in the production process [101].

Table 1. Applications of NMR in chemometric analysis of natural products.

No. Plant Name Publication Year Research Aims Applied Statistical
Methods (If Any) Analytical Techniques References

1 Panax ginseng (roots) 2012 Quality assessment

PCA
HCA
PLS

PLS-DA

1H-NMR [102]

2 Artemisia afra, A. annua (herb) 2010 Quality assessment PCA 1H-NMR [103]

3 Zea mays (seeds) 2010 Quality assessment
PCA
HCA

SIMCA
1H-NMR [104]

4
Echinacea purpurea, E. pallida, E.
angustifolia, E. simulate (roots

and aerial parts)
2010 Taxonomic

discrimination PCA 1H-NMR [105]

5 Ganoderma lucidum (herb) 2010 Geographic origins PCA
OPLS-DA

1H-NMR [106]

6 Panax ginseng,
P. quinquefolius (roots) 2009 Taxonomic

discrimination PCA 1H-NMR [107]

7 Arabidopsis 2009 Taxonomic
discrimination PLS-DA 1H NMR [108]

8 Green Tea 2007 Quality assessment
PCA
PLS
OSC

1H-NMR [109]



Compounds 2022, 2 175

Table 1. Cont.

No. Plant Name Publication Year Research Aims Applied Statistical
Methods (If Any) Analytical Techniques References

9 Panax ginseng
Panax ginseng C.A. (roots) 2007 Quality assessment PCA 1H-NMR [110]

10 Brassica rapa (leaves) 2007 Geographic origins PCA 1H-NMR [111]
11 Ilex ssp. (arbutin) 2005 Discrimination PCA 1H-NMR [112]
12 Arabidopsis thaliana (seeds) 2003 Discrimination PCA 1H-NMR [113]

13

Strychnos nux-vomica (seeds,
stem bark, root bark),

S. icaja (seeds),
S. ignatii (leaves, stem bark, root

bark and collar bark)

2004 Discrimination PCA 1H-NMR [114]

14 Artemisia annua (herb) 2004 Geographic origins
PCA
PLS

PLS-DA
1H-NMR [115]

15 Camellia sinensis
(green tea leaves) 2004 Geographic origins PCA

HCA
1H-NMR [116]

16 Cannabis sativa (flowers) 2004 Geographic origins PCA 1H-NMR [117]

17 Coffee 2002 Quality assessment PCA
LDA

1H-NMR [118]

18 Quillaja saponaria
(bark/saponins) 2001 Structural

elucidation
PCA

PLS-DA
1H-NMR [119]

19 Propolis 2016 Classification PLS-DA
RF [120]

20 Ginseng Radix 2010 Evaluation PCA
CA

1H–NMR [121]

21 Isatis tinctoria 2015 Comparison
PCA
CA

k-NN
1H–NMR [122]

22 genus Paeonia L. 2017 Determination PCA 1H–NMR [123]

23 Serenoa repens 2018
Authentication of

saw
palmetto

PCA 1H–NMR [124]

24 Polygoni Multiflori Radix 2018 Metabolomics PLS-DA
N3

1H–NMR [125]

25 Two cinnamon species 2018 Authentication PCA
OPLS-DA

1H–NMR [126]

26 Neptunia oleracea 2016 Metabolites PLSR 1H–NMR [127]

27 Orthosiphon stamineus 2011 Metabolomics PLSR
OPLSR

1H–NMR [128]

28 Saffron 2010 Discrimination PCA 1H–NMR [129]

29 Angelica gigas 2011 Metabolomics PCA
OPLS-DA

1H–NMR [130]

9. NMR-Based Metabolomics: What the Future Holds
9.1. Perspectives on the Economy

The food authentication, functional genomics, and the significant equivalence testing
of GMOs are just a few prospective uses for NMR-based metabolomics. NMR, being a
dependable, non-destructive method for QC of economically relevant samples, is robust,
reliable, and non-destructive. The combination of NMR spectroscopy and multivariate
statistical analysis software opens up new possibilities for conducting sound and accurate
quality control analyses of botanical samples. The necessary standardization of HMs will
most likely play a major part in the approval of much more complicated HMs as a therapy
in the future, necessitating the robust and quick analytical methods for QC of these products
without the time-consuming preparation required for QC on the complex mixtures. As a
result, QC studies will most likely no longer be limited to a few chosen elements, but will
instead cover the whole sample composition.

NMR metabolomics, when used in conjunction with functional genomics, can help
researchers to gain a better understanding of the complex structure of the plant networks,
and answer how they evolve as a result of genetic modification. Except for genetic mod-
ifications, the basic nature of plant phenotypes in connection with their development,
physiology, and environment can also be established. It has been possible to employ
metabolomics to determine the impact of environmental stress on root and particular
enzyme activity [130]. It is also becoming increasingly common to combine the diverse
“omics” datasets and cross-correlate them to extract as much information as possible from
these data-rich matrices [88].
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NMR-based metabolomics will play an important role in the future of many biological
domains, both in terms of their research and economic growth. In the realm of drug
discovery and development, NMR-based metabolomics will help to identify the leading
components quickly and efficiently, and in certain situations, it may be able to replace
time-consuming chromatography methodology [7].

9.2. Perspective on Future Developments

NMR technologies have recently advanced to the point where they are an acceptable
approach possessing the specific characteristics for the investigation of plant metabolites.
The resolution and sensitivity capabilities of NMR are its biggest flaws. MS has the extra
advantage of being easily connected to a chromatography unit for combinational analysis,
whereas NMR requires more effort to link with chromatography procedures. Chemical
compounds can be recognized at very low concentrations, and even at the trace element
level, using MS analysis, enriching the data for chemometric analysis. The complex plant
extracts used in NMR create a lot of overlap in most regions of the spectrum, making it
challenging to retrieve the information needed from the spectra.

Magical angle spinning (MAS)-NMR spectroscopy is another advancement that has
received attention. This approach uses an extremely low quantity of deuterated solvent
and has a very simple sample preparation process (e.g., direct insertions of lyophilized
tissue on an MAS 4 mm zirconium rotor), resulting in the combined benefit of no sample
preparation issues and minimal amounts of costly solvents used. The samples are then
analyzed at a 54.7◦ angle (the magic angle), which considerably lowers line broadening
and yields high-resolution spectra. This has the advantage of preventing the samples from
being tainted by chemical reactions during their preparation [131,132].

10. Conclusions

With the public’s growing concern about the protection and quality of HMs, the con-
forming ideals that efficiently analyze HMs created from raw materials to medical goods
are becoming increasingly important for human health, as well as the industry’s long-term
viability. The chemical fingerprint utilized to provide a thorough description of complex
matrices is promising, and is projected to become a potent tool for HM quality assessment
due to the advantages of the overall quality assessment. The framework used with the
chemical fingerprint and chemometric approaches (RMN) was presented and discussed in
depth in this review. The utilization of chemometric approaches for data processing and
well-established chemical fingerprint procedures for HM quality evaluation were consid-
ered. In conclusion, according to numerous research, a proper fingerprint analysis should
comprise acceptable analytical methodologies, data pre-processing processes, and appropri-
ate chemometric approaches, depending on the scope and purpose of the application. In the
future, more studies will be needed to integrate chemical fingerprint-based chemometric
analysis to the traditional quality evaluation of HMs. Hopefully, in the future, the growth
of the chemical fingerprint paired with chemometric methodologies will be widened in
terms of suitable fields for the quality surveillance of HMs, based on the standardization
and validation of the entire framework.

Taking all of the foregoing into account, NMR-based metabolomics has a distinct
advantage over other traditional approaches. This is because it enables one to analyze all
of the molecules in the sample, providing a comprehensive picture of this sample. It also
has the ability to distinguish between the samples of various sources.
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