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Abstract: 3D printing is a promising technology for creating polymer objects of a given architecture
with specified functional properties. In fact, the choice of filaments for 3D printing is quite limited.
Here, we report a process for producing polystyrene filaments with 0.0025–2 wt.% single-walled
carbon nanotubes (SWCNTs) by extruding crushed polystyrene composites. The resulting filaments
are characterized by a high uniformity of filler distribution and the absence of air pores. Comparison
of microscopy data and electromagnetic properties of base composites and composite materials
printed from filaments showed that extrusion and printing improve SWCNT dispersion. The pro-
posed method can be used to create filaments for 3D printing of objects from various base polymers
containing functional fillers up to the electrical percolation threshold and above.

Keywords: polymer composites; single-walled carbon nanotubes; polystyrene; 3D printing; fused
deposition modeling; microwaves; low frequency impedance

1. Introduction

The rapid and cost-effective manufacturing of physical objects with complex geome-
tries and functional properties, tailored to a specific practical application, is one of the
most challenging tasks in any process chain. The speed and precision of 3D printers make
them a promising tool for prototyping polymer parts. Today, 3D printing is widely used in
various fields, including electronics [1–3], optics [4–6], aerospace [7,8], and medicine [9,10].
Among other polymer-based 3D printing technologies [11–13], fused deposition modeling
(FDM) looks the most promising for practical applications, including the production of
capacitors [14,15], electromagnetic shielding components [16–18], sensors [19–21], and
antistatic coatings [1,22]. FDM starts with the digital design of an element followed by
the creation of a 3D object layer by layer from a polymer filament [2,23–26]. Although
FDM printing is the most popular and economical method [27], it suffers from the limited
choice of materials for 3D printing [28] and the associated narrow range of their physical
characteristics. Thus, the development of a technique for manufacturing a 3D printing
filament for the reproducible production of polymer objects with the required functional
properties is an important issue for the industrial implementation of the FDM method.

The most common materials for 3D printing are thermoplastic elastomers such as poly-
lactic acid (PLA), acrylonitrile butadiene styrene (ABS), polyurethane (PU), polyethylene (PE),
and polystyrene (PS), etc., and less often, plastics with fillers are used [2,8,11,17,21,29,30].
Examples of the created products are a space radiation protection panels made of PE with
the addition of basalt powder [8], a GHz frequency range screen made of PLA with 10% of
graphene [17], and a tension sensor made of PU with carbon nanotubes (CNTs) [21]. A rather
small number of works devoted to FDM printing from polymer filaments with nanopar-
ticles is primarily due to the lack of commercially available materials for 3D printing and
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preliminary studies of changes in the structure of the material during filament extrusion and
subsequent 3D printing [28]. In addition, working with such materials is associated with
the phenomenon of nanoparticle agglomeration, which worsens the functional properties of
the created element [27,30] and can block the nozzle, causing material flow instability while
printing [31].

On the other hand, methods for creating polymer composite (PC) films with nanoparti-
cles are well-developed [32]. The exceptional structural and electronic transport properties
of CNTs, combined with the highly adaptive characteristics of polymers, create a truly versa-
tile platform for PC fabrication. In particular, the electrical conductivity and permittivity of
PC strongly depend on the CNT content [33–36], demonstrating a critical behavior near the
electrical percolation threshold. The percolation threshold can vary from 0.001 to 10 wt.%
CNTs [37–46] depending on the type of polymer [37,47], properties of nanotubes [37], and
their orientation [43,44]. However, dispersion of CNTs in the matrix seems to be the most
significant for lowering the percolation threshold [43–46].

The problem of CNT aggregation can be solved by their functionalization [45,46],
which is usually undesirable due to the deterioration of nanotube conductivity. Alter-
natively, these difficulties can be addressed by the right combination of homogenization
techniques [41,43,48–50]. In particular, a higher level of CNT dispersion was obtained dur-
ing post-treatment of PC on a forge-rolling machine [43]. Higher CNT dispersion lowers
the percolation threshold, improving PC conductivity. Although forge-rolling reduces ag-
gregates of nanoparticles, nanotubes are also destroyed at the same time [49,51]. Extrusion
can also improve the dispersion of CNTs in a polymer but only if the solvent is completely
evaporated before [50]. Otherwise, numerous air pores form in the volume of the extruded
filament and the conductivity of the PC deteriorates [4,52].

In this work, we use homogenized PCs containing single-walled CNTs (SWCNTs) as
the base material for filament extrusion for 3D printing instead of the traditional mixture
of polymer and nanotubes. The proposed approach successfully works for a wide range
of SWCNTs concentrations (0.0025–2 wt.%), improving the distribution of SWCNTs in PS
matrix and lowering the electrical percolation threshold.

2. Materials and Methods
2.1. Materials

The material containing 75% SWCNTs with a diameter of 1.6–2.2 nm was produced
by OCSiAl (Novosibirsk, Russia, LOT # 50-04122014). The catalyst and amorphous carbon
by-products were removed according to the procedure described in [53]. SWCNTs (1 g)
were heated in a muffle furnace at 500 ◦C for 1 h to open their tips and to oxidize amorphous
carbon. The product was stirred in HCl (200 mL) for 12 h at 60 ◦C to dissolve the iron
catalyst, washed with distilled water to neutral pH, and dried in a muffle furnace at
100 ◦C for 2 h. The content of amorphous carbon was less than 1% and the content of
iron-containing particles did not exceed 2 wt.% [53]. The purified SWCNT sample consists
of bundles of nanotubes with a diameter of about 20 nm and their agglomerates with a
diameter of about 80–120 nm (see Supplementary Materials for details).

High-impact PS (HIPS-850) with a density of 1.04 g/cm3 was used as the polymer base.

2.2. Filaments Preparation

Base PCs consisting of purified SWCNTs and PS were fabricated by the method
described elsewhere [54]. PS granules (20 g), the required amount of SWCNTs, and CHCl3
(300 mL) were treated with an ultrasonic homogenizer UZTA-0.15/22-O (U-SONIC, Biysk,
Russia, 22 kHz) at a power of 70 W for 30 min. The resulting suspension was located in a
fume hood at room temperature for a day and then in a desiccator at 40 ◦C until the solvent
had completely evaporated.

The filaments were made from crushed base PCs with a SWCNT content of 0.0025–2 wt.%
on a Wellzoom B single screw extruder (Shenzhen Mistar Technology Co., Ltd., Shenzhen, China)
at a power of 120 W and a nozzle diameter of 2.85 mm. The extrusion temperatures varied from
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195 to 235 ◦C depending on the viscosity of the composite, the screw speed was fixed to be
about 100 rpm. The resulting filaments had the same diameter along the length, uniform color,
and did not contain defects such as tears (see Supplementary Materials). That indicates that the
polymer was not oxidized during extrusion and SWCNTs were evenly distributed throughout
its volume.

It should be noted that filaments extruded from mechanical mixtures of PS and SWCNT
powder [55,56] or PS and 10% SWCNT masterbatch [29,57–60] as starting materials demon-
strated an extremely uneven nanotube distribution (see Supplementary Materials for details).

2.3. 3D Printing

3D printed samples were obtained from filaments on an Ultimaker 2 Go 3D printer
(Ultimaker B.V., Amsterdam, the Netherlands). The printing temperature (210–260 ◦C) was
selected experimentally for each SWCNT concentration, the platform temperature was about
90 ◦C, the printing speed was 30 mm/s, and printing was carried out with a 0.6 mm nozzle.
The tolerance level of filament diameter was 2.85 ± 0.3 mm. Plates (12 × 12 × 0.6 mm) and
rings (outer diameter 7.0 mm, inner diameter 3.0 mm, 2.3 mm) were printed. The upper
temperature limit of the apparatus did not allow printing with a filament containing more
than 0.5 wt.% SWCNTs due to clogging of a printer nozzle caused by the insufficient viscosity
of the filled PC. The schematic representation of all stages of printed samples fabrication is
shown in Figure 1.
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Figure 1. Scheme of the preparation of base composite materials, filaments, and 3D-printed samples
from PS and SWCNTs.

2.4. Microscopic Characterization

The morphology of the base PCs with SWCNTs (films 200 µm thick), printed plates,
and cross-sections of the obtained filaments was studied by optical microscopy using an
Olympus BX51 microscope (Olimpus Corp., Tokyo, Japan) in transmission and reflection
modes, respectively.

To examine the distribution of SWCNTs in PS in more details, the filaments with 0.005
and 0.1 wt.% filler loading were studied using scanning electron microscopy (SEM) on a
JEOL-6700F microscope (JEOL Ltd., Tokyo, Japan) at an accelerating voltage of 15 kV. To do
this, the filaments frozen with liquid nitrogen were broken perpendicular to their axes. The
resulting cross-sections were covered with a 10 nm thick gold layer using a conventional
sputtering tool.
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2.5. Electromagnetic Measurements

The measurements were carried out for the base PC films and 3D printed samples
(plates and rings). Plates were used to measure impedance at low frequencies, while rings
were used to study GHz characteristics.

The real and imaginary components of the impedance were measured by the two-
contact method on a Z-2000 impedance meter (Elins, Chernogolovka, Russia) in the fre-
quency range of 1 kHz–2 MHz. The electrical conductivity σAC and permittivity εAC were
reconstructed from the impedance data taking into account the following model [61]. The
measurement cell was considered as four parallel elements: R1 and C1 are resistance and
capacitance of the cell, and R2 and C2 are resistance and capacitance for studied PC film.
R1 and C1 parameters were determined from the impedance data with empty cell while
maintaining the same interplate distance as for the corresponding PC film. Further, the
material parameters, namely the AC electrical conductivity σAC and permittivity εAC, were
found from the calculated C2 and R2 values in assumption that the measurement cell can
be considered as flat capacitor with leakage currents.

Microwave measurements were carried out on a Mikran P2M-04A scalar network
analyzer (Mikran, Tomsk, Russia) in a coaxial cell 12.9 mm long in the range of 100 MHz–
4 GHz using a voltage standing wave ratio (VSWR) sensor DK1-04-11R-11R (Mikran, Tomsk,
Russia). As a result, the relative amplitudes of the wave reflected from the sample surface
(S11) and the wave transmitted through the sample (S21) were obtained. The measured
S-parameters were used to calculate the high-frequency values of εAC and σAC of the
investigated materials in accordance with the referred works [62–64].

3. Results and Discussion
3.1. Optimization of Extrusion Conditions

The extrusion of PS granules without SWCNT additives was carried out at a temperature
of 220 ◦C, which corresponds to the extrusion temperature of high-impact PS (190–230 ◦C).
As a result, a uniform white filament with a diameter of 2.8 mm was obtained (Figure 2).
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Figure 2. Images of PS filaments with different SWCNT concentrations (a), dependence of extrusion
temperature (b), and diameter (c) of filament on SWCNT content.

The addition of SWCNTs affects the rheological properties of polymers [60,65]. The
reorientation of nanotubes in the flow field during extrusion and the elimination of interpen-
etration of soft polymeric matrix with highly anisotropic nanoparticles change viscoelastic
properties of melt matrix [65] and the plastic transition temperature [66]. As a result, the opti-
mal extrusion temperature for obtaining filaments of an acceptable diameter (2.85 ± 0.3 mm)



Nanomanufacturing 2022, 2 296

varies depending on the nanotube content (Figure 2b,c). With increasing concentration from
0.0025 to 0.05 wt.%, the processing temperature becomes 5–20 ◦C higher than for clear PS. The
maximum temperature of about 235 ◦C was required for the extrusion of PC with 0.005 wt.%
SWCNTs. With a larger load of SWCNTs, the extrusion temperature decreases, reaching
195 ◦C for a filament with 2 wt.% SWCNTs. This behavior is associated with the high thermal
conductivity coefficient for SWCNT bundles (6.6–126.6 W/(m K)) [67] versus 0.14 W/(m K)
for PS [68]). Therefore, the heat released at the PS/SWCNT interface ensures the transition
of the material to the plastic state at a lower temperature. It can be seen that the filament
diameter decreases when SWCNTs are added to PS (Figure 2c). However, the dependence of
the PC filament diameter on the SWCNT content shows a rise at a filler content of 0.1 wt.%
followed by a gradual decrease. We assume that this indicates the formation of a network of
nanotubes, which affects the flow of the polymer melt [65].

It should be noted that the reported temperatures are optimal for the PS filaments with
SWCNTs at the screw speed of about 100 rpm using a Wellzoom B extruder. Changing any
process parameter, while maintaining the found optimal temperature, will immediately
affect the filament diameter.

3.2. Morphology of Base PCs and Filaments

Figure 3a,b shows transmission optical images of base PC films containing 0.005 and
0.1 wt.% SWCNTs. Even at lower nanotube concentrations, the base PC films appear opaque,
however, areas of unfilled PS remain, indicating the formation of micron-sized SWCNT
agglomerates, consistent with the previous work [69]. Cross-section images of filaments
with the same SWCNT loading have a uniform black color without visible air pores and
the unfilled areas of the polymer (Figure 3c,d). That distinguishes our filaments from those
obtained in [4,52]. In the work [52], filaments were obtained using a mixture of ABS and
multiwalled CNT solutions. The pores in those filaments were optically detected even after
8 extrusion cycles, while the electrical properties of the materials deteriorated after the third
cycle. SEM analysis of fracture surfaces of filaments with SWCNT concentrations of 0.005
and 0.1 wt.% shows uniform nanotube networks coated with PS (Figure 3e,f). Bundles of
nanotubes with a diameter of 15–20 nm and a length of about 2 µm can be distinguished
(inset in Figure 3f). The better dispersion of SWCNTs in filaments as compared to base
PCs could be explained by the splitting of SWCNT bundle agglomerates and improved
distribution of nanotubes in the polymer matrix after extrusion.
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Figure 3. Microscopic study of PCs containing 0.005 wt.% SWCNTs (top images) and 0.1 wt.%
SWCNTs (bottom images): optical images of base PC films (a,b), cross-sections of filaments (c,d), SEM
images of filament cross-sections (e,f), and optical images of 3D printed plates (g,h). Inset in (f) shows
SEM image of filament with 0.1 wt.% of SWCNTs from a region with poor SWCNT dispersion.
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Figure 3g,h shows optical images of plates printed from the PC filaments with 0.005
and 0.1 wt.% SWCNTs. 3D printing was done crosswise in parallel lines at an angle of 45◦.
The surface roughness of the plates is related to the features of the method. The uniform
color of the products indicates a uniform distribution of SWCNTs in PS.

3.3. Electrical Properties of Base PCs and Printed Samples

Figure 4 shows the frequency and concentration dependencies of AC electrical conduc-
tivity and permittivity for base PCs and plates printed from the filaments. At a frequency
of 1 MHz, the AC conductivity of base PCs increases from 10−6 S/m to 10−5 S/m with
an increase in the SWCNT content from 0.0025 to 0.5 wt.%. With a further increase in the
nanotube loading, the increase in conductivity slows down (σAC is 10−4 S/m for base PC
with 2.0 wt.% loading). This trend is less pronounced in microwaves (Figure 4c) due to
the higher conductivities of both PS (black curves in Figure 4a,b) and SWCNTs [70]. The
permittivity of base PCs at 1 MHz increases from 2.8 to 18.5 when the SWCNT loading
changes from 0.025 to 0.5 wt.% (Figure 4d,f). A further increase in the SWCNT content
reduces the permittivity, which drops to 4.2 at 2.0 wt.% SWCNTs. This phenomenon can
be understood within the micro capacitor model [71]. At low loading, nanotubes and
their bundles act as highly polarizable domains isolated from each other. The polymer
layer separating adjacent nanoparticles becomes thinner with concentration, creating micro
capacitors, causing a significant increase in permittivity, observed as a peak at 0.5 wt.%
SWCNTs. Above this critical concentration, the thickness of the polymer decreases so much
that the interparticle current increases the losses, deteriorating the permittivity to the value
of the matrix.
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At low concentrations of SWCNTs, the conductivity of printed samples somewhat
decreases compared to the values for base PCs (Figure 4b,c). Transport degradation reflects
changes in the network structure and composite architecture. SWCNTs are oriented in the
flows of the extruder and printer [65], while nanotubes in base PCs are randomly distributed.
Since the measurements are carried out for the in-plane orientation of the electric field
relative to the PC layer, the conductivity of the printed plates is mainly characterized by
the transverse conductivity of the nanotubes, while the response of the base PCs contains
both less- and more-conductive components. On the other hand, microscopy images show
that the surface of the printed plate is not flat (Figure 3g,h). This is due to the peculiarities
of FDM technology. The product is grown layer by layer with several parallel print head
passes. The deposited strips of diluted polymer cool down before the layer creation ends.
The result is a relief surface. When the next polymer layer covers the previous one, the
obtained air gaps go into volume of the printed product [11,72]. At a sufficiently high
SWCNT concentration, these structural features do not affect the flow of electrical current
through the sample. However, when the fraction of SWCNTs is small, inhomogeneity in
the volume of the plate worsen its conductivity.

The maxima of the permittivity appeared in the printed plates at 0.1 wt.% SWCNTs
(Figure 4e,f). Below this concentration, the permittivity of printed plates is higher than that
of base PCMs containing the same SWCNT portion. This indicates that the extrusion and
printing processes improve the dispersion of SWCNTs in PS as compared to base PCs.

Electromagnetic data show that highly conductive 3D printed composite materials can
be used to create antistatic coatings and microwave screens.

4. Conclusions

Polymers with nanoparticles are in high demands for a range of practical applications
such as flexible conductive screens, electromagnetic shielding, microwave and terahertz
optics, etc. Each one requires materials with special properties formed to a certain architec-
ture, which can be obtained using the modern technologies of 3D printing. In this work,
we described a simple process for manufacturing of PS filaments with permittivity and
conductivity determined by the SWCNT concentration for FDM 3D printer and evaluated
the nanotube dispersion and electromagnetic properties of printed plates. The process is
based on the extrusion of milled PCs and can be transferred to the production of highly
homogeneous filaments from other thermoplastic polymer matrices and reinforcing mate-
rials. The absence of air pores in the filaments is achieved by careful evaporation of the
solvent during the production of PC and optimization of extrusion parameters. Extrusion
and 3D printing serve as additional steps for splitting the nanotube agglomerate inherited
from base PCs and further improving the dispersion of SWCNTs. A comparison of the
electromagnetic properties of base PCs and PCs printed from fabricated filaments revealed
an improvement in the dielectric properties in the latter case. This suggests the practical
application of the obtained material for 3D printing of protection skins for electronic com-
ponents from damage caused by electrostatic discharge, impeding the output of any signal
and preventing electromagnetic interference from affecting sensitive electronics.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nanomanufacturing2040017/s1, Figure S1: TEM image of purified
SWCNTs; Figure S2: Photographs of polymer filaments with 0.1 wt.% SWCNT made from (a)
milled base PC, (b) powdered polystyrene granules, (c) mixture of polystyrene and 10% SWCNT
masterbatch with single extrusion, (d) mixture of polystyrene and 10% SWCNT masterbatch with
multiple extrusion.
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