
Citation: Murray, N.J.; Spake, L.;

Cervantes, M.; Albanese, J.; Cardoso,

H.F.V. New More Generic and

Inclusive Regression Formulae for the

Estimation of Stature from Long Bone

Lengths in Children. Forensic Sci. 2024,

4, 62–75. https://doi.org/10.3390/

forensicsci4010005

Academic Editor: Hiroshi Ikegaya

Received: 22 December 2023

Revised: 9 February 2024

Accepted: 17 February 2024

Published: 21 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

New More Generic and Inclusive Regression Formulae for the
Estimation of Stature from Long Bone Lengths in Children
Nicola J. Murray 1, Laure Spake 2, Marianna Cervantes 1 , John Albanese 1,3 and Hugo F. V. Cardoso 1,*

1 Department of Archaeology, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; nicolam@sfu.ca (N.J.M.);
marianna_cervantes@sfu.ca (M.C.); albanese@uwindsor.ca (J.A.)

2 Department of Anthropology, Binghamton University, Binghamton, NY 13902, USA; lspake@binghamton.edu
3 Department of Integrative Biology, University of Windsor, Windsor, ON N9B 3P4, Canada
* Correspondence: hcardoso@sfu.ca

Abstract: Existing child stature estimation methods have a number of disadvantages. This paper
addresses some of these limitations by developing regression-based stature estimation formulae
that are more generic and inclusive. A sample of 142 individuals under 12 years of age from the
Hamann—Todd Human Osteological Collection and the New Mexico Decedent Images Database
were used to generate five least squares linear regression formulae to estimate stature from the
diaphyseal length of long bones. All models showed excellent fits to the data (R2 close to or at 0.98),
and internal validation confirmed the stability and accuracy of model parameters. External validation
was performed using a sample of 14 individuals from the Lisbon Collection and the Victoria Institute
of Forensic Medicine. Overall, the humerus provides the most accurate estimate of stature, but the
femur and tibia showed the greatest coverage. These formulae can be used in a variety of contexts
and are not dependent on group affiliation, including sex.
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1. Introduction

Stature estimation is an important aspect of biographic information across sub-discip-
lines of biological anthropology. In forensic anthropology, stature is used to help identify
missing individuals [1,2]. In paleoanthropology, it offers a means to estimate life history
parameters from body size estimations of human fossil specimens [3,4]. In bioarchaeology,
it can also provide a measure of living height that supports past osteobiographies [5] and
interpretations of health and well-being [6]. Stature is routinely estimated for adult individ-
uals, but in children, it is often not estimated because age is a more determinant aspect of
forensic identification or may add unnecessary error in growth studies of archaeological
populations. For example, the estimation of stature relies on data that can also be used
to estimate age—typically long bone lengths. Relative to age, in a medico-legal investiga-
tion, the height of the child is less commonly known or can change by an unpredictable
amount between the time it is last measured, the time the child goes missing, and/or the
time of death. Thus, the estimation of age is considered more reliable and is given more
importance in the identification process. However, in some cases stature has been useful to,
for example, distinguish between the remains of two or more children of the same dental
age [7]. In studies of archaeological samples, skeletal growth profiles often rely on a long
bone length as a proxy for height and dental development as an indicator of chronological
age [8,9]. Replacing a long bone length for a stature estimate in these profiles will add
an unnecessary amount of error associated with the stature estimation, and thus, many
researchers prefer to use the raw long bone lengths directly. Nonetheless, a stature estimate
can be useful for either single individuals or samples, as stature is more directly comparable
with modern living children [10,11], and osteobiographies often rely on other personal
features, including stature, to provide a picture of the individual [12].
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There are currently few child stature estimation methods, which is very likely the
result of the scarcity of data sources. To the best of our knowledge, available methods
include those of Telkkä et al. [13], Feldesman [14], Smith [15], Robbins Schug et al. [16],
Brits et al. [17], and Ruff [18], all of which rely on samples of living children where long bone
lengths have been measured from radiographs and standing height is measured directly.
Kimura [19] provides a similar stature estimation method but, in comparison, relies on the
radiographic length of the second metacarpal. With the exception of Feldesman [14], who
uses the femur-to-stature ratio to estimate stature, all of the remaining methods depend
on the strong relationship between long bone length and stature modeled via regression.
Because of the scarcity of data sources, most methods are based on longitudinal height data
and long bone radiographs taken from the children of the Denver Growth Study, apart from
the Telkkä et al. [13], Brits et al. [17] and Kimura [19] methods, which rely on cross-sectional
samples of Finnish, South African, and Japanese children, respectively. Feldesman [14] also
included two other similar longitudinal growth studies, one from the Harvard School of
Public Health Study and the other from British school children. While these methods have
the undisputable merit of providing the few reliable means to estimate stature from long
bone lengths in children, there are several downsides to their use.

Perhaps the most significant drawback to a large portion of these methods is that they
rely on the Denver Growth Study, which is comprised of a longitudinal cohort of healthy
middle- to upper-class North American children measured between the years of 1941 and
1967. Together with the Harvard School of Public Health (Feldesman, [14]) and the Finnish
sample (Telkkä et al. [13]), these samples include a disproportionate number of higher
socioeconomic class children whose growth trajectory might not be representative of the
general population. The Denver Growth Study was carried out more than 50 years ago,
and it is unclear whether the stature of these children can be considered representative
of contemporary well-off groups [20,21]. It is also uncertain whether the Denver Growth
Study children can be said to represent children from more disadvantaged groups in
developed countries or even children from developing nations, where medico-legal death
investigations involving children are unfortunately more common or over-represented [22].
Similarly, the Denver Growth Study cannot be said to represent children in ecologically
diverse populations from prehistoric or historic periods studied by bioarchaeologists.
Additionally, because the Denver Growth Study is longitudinal, the variation in stature-for-
long bone length sampled is smaller and representative of only a handful of children.

Further to these issues, there are concerns about whether long bone lengths measured
in radiographs have been corrected for magnification (parallax) in some studies [18]. In
addition to sample-specific problems, there are also several issues due to modeling ap-
proaches used to devise the stature estimation methods. Most of these methods also require
age to be estimated before the appropriate age-specific regression equation is selected.
Using age-specific equations is meant to account for the changes seen in linear proportions
of limbs and differing growth trajectories from infancy to adolescence. However, for indi-
viduals of unknown age, this step adds intermediate error that is not reflected in the final
prediction and associated prediction interval. Comparatively, some of these methods have
shown less concern to account for sex differences in growth after puberty. Finally, because
of the background of the samples used in these methods, many researchers might feel
tempted to consider these methods specific to “White” or “European-American”, particu-
larly privileged, children and to deem them of limited use among other population groups
in other nations. However, under similar social circumstances, there is little to no evidence
in support of “racial-“, ancestry-, or other similarly defined population-specific differences
in the relationship between stature and long bone length and growth in children [23]. In
adults, a generic stature estimation equation that does not require an unknown to first be
assigned to a given “racial”, ancestry, or national group provides the best results more
often than a population-specific equation [2,24].

The goal of this paper is to provide a more generic and inclusive set of regression
equations for the estimation of stature in children from long bone lengths, which do not rely
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on knowing the sex, the age at death, or assigning individuals to any a priori defined groups,
however the user wants to define them. In adults, Albanese and co-workers [2,24] have
already demonstrated that group affiliation, age, and sex make little, if any, contributions
to the increased reliability of stature estimation methods. Developing more generic and
inclusive equations requires sampling a diversity of children and as much variation in
stature-for-long-bone-length as possible. Unfortunately, and as mentioned above, samples
where stature and long bone lengths can be collected from a series of documented stature,
sex, and age children are very scarce. This paper is a first attempt at sampling a wide range
of variation by using multiple datasets that include a range of variation in children to model
the relationship between stature and long bone length. This sample includes a historical
and a modern sample of children representing various groups over time and data collected
from both real and virtual skeletons. Additionally, two other smaller but similarly diverse
samples, where data were likewise collected from real and virtual skeletons, were obtained
to test these stature estimation equations. The availability of these samples provides the
unique opportunity to develop and test a set of new, more general, and inclusive stature
estimation methods that can be used in a diversity of contexts and for a variety of purposes.

2. Materials and Methods

A model sample that includes 142 children under 12 years of age (69 female and
72 male) was used to develop the stature estimation equations. Thirty-one of these (17 fe-
male and 14 male) are comprised of skeletal remains from the Hamann–Todd Human
Osteological Collection (HTHOC) curated at the Cleveland Museum of Natural History,
Ohio, USA, and the remaining 111 individuals (52 female and 59 male) consist of full body
CT-scans obtained from the New Mexico Decedent Image Database (NMDID), USA [25].
The stature estimation equations were tested on a sample of 14 individuals of the same
age range (4 female and 10 male). Seven of these individuals (1 female and 6 males) are
comprised of skeletons in the Lisbon Collection (LC) cared for at the National Museum
of Natural History and Science in Lisbon, Portugal, and the remaining 7 (3 females and
4 males) consist of full body CT-scans obtained from the Victoria Institute of Forensic
Medicine, in Victoria, Australia (VIFM). The VIFM individuals were age-matched to the LC
individuals, as only a portion of the VIFM children were selected to meet the much smaller
sample size than the LC dataset, which was used in its entirety. See Table 1 for details about
the range and distribution of the ages in the model and test samples.

Table 1. Age composition of the model and test samples by sex and data source (HTHOC—Hamann–
Todd Human Osteological Collection, NMDID—New Mexico Decedent Image Database, LC—Lisbon
Collection, VIFM—Victoria Institute of Forensic Medicine).

Age (in Years) Model Sample Test Sample

Total Female Male NMDID HTHOC Total Female Male LC VIFM

0–0.99 25 10 15 16 9 — — — — —
1–1.99 26 10 16 21 5 2 1 1 1 1
2–2.99 14 7 7 13 1 2 — 2 1 1
3–3.99 13 5 8 11 2 — — — — —
4–4.99 14 9 5 12 2 — — — — —
5–5.99 8 5 3 7 1 — — — — —
6–6.99 6 4 2 4 2 — — — — —
7–7.99 10 8 2 9 1 4 — 4 2 2
8–8.99 9 4 5 5 4 2 1 1 1 1
9–9.99 8 3 5 8 — 2 1 1 1 1

10–10.99 5 2 3 3 2 2 1 1 1 1
11–11.99 4 2 2 2 2 — — — — —

Total 142 69 73 111 31 14 4 10 7 7
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All four datasets (HTHOC, NMDID, LC, and VIFM) include children of documented
sex, age-at-death, date of birth and death, and cadaver length, and also include other
biographic data, such as cause of death and assigned “race” [1,23,26–28]. Decimal ages
were calculated from birth and death dates for all individuals in the NMDID, LC, and VIFM
datasets. For the HTHOC, some children were missing birth records, and the most recent
full year of age was recorded as the known age. For those individuals, the decimal age was
calculated as being halfway between that age and the next by adding 0.5 years to their age.

The datasets in the model and test samples include a socioeconomically and temporally
diverse group of North American, Australian, and European children. Dates of death
for children in the HTHOC dataset range from 1917 to 1935. The collection includes
the skeletons of individuals who have been identified as “Black”, “Negro”, “Colored”,
“African”, or “White” Americans of low socioeconomic status who died mostly in the
Cleveland area [23]. In the NMDID dataset, dates of death range from 2011 to 2017 and
include a variety of socioeconomic status children, mostly underprivileged, who died in
the state of New Mexico, USA, and whose death was subjected to medico-legal death
investigation [27,28]. In the NMDID dataset, individuals were originally assigned to
“White”, “Black”, or “Native American” “race” groupings, with an additional field for
“Hispanic” ethnicity as coded by the medicolegal institution. The LC dataset includes the
remains of low to middle-socioeconomic children who were autopsied and whose remains
were exhumed from local cemeteries in the city of Lisbon, Portugal, having died between
1957 and 1972 [1]. Children in the VIFM dataset is comprised of children who died in the
state of Victoria, Australia, and whose deaths were also subjected to medico-legal death
investigations between 2011 and 2017 [27,28]. Table 1 displays the sample size breakdown
by dataset, age, and sex.

In model-building and testing, we opted to combine data from individuals who grew
up in very different biocultural environments in order to maximize the range of variation
included in each sample. Both the HTHOC and LC are historic datasets considered to
include children who lived under adverse living conditions and who are moderately to
severely stunted [23] and thus are significantly shorter for age compared to a modern
reference standard. In comparison, the NMDID and VIFM datasets can be said to include
“normal” modern children who lived under more favorable conditions to HTHOC and LC
and do not show significant height-for-age deficits relative to a modern standard [27,28].
Thus, by pooling the HTHOC and NMDID samples, we created a model sample that
incorporated a greater range of biological variation than would be present in either of those
groups alone and reflected a range of social experiences of growth.

In all four datasets, stature was taken as cadaver length, which was available from
autopsy records, except for the HTHOC dataset. For these children, the length of the cadaver
was measured in a suspended vertical position, as described by Todd and Lindala [29].
In the NMDID, LC, and VIFM datasets, the cadaver was measured in a supine position,
from vertex to heel, using a measuring tape, and with the body in an anatomic position,
typically undressed and with shoes removed [1,30]. All cadaver length measurements were
recorded in centimeters. Only individuals of 12 years of age and younger were included in
the study to exclude any individuals who would have already begun epiphyseal fusion.
The timing of epiphyseal fusion varies between bones and across epiphyses within the
same bone, resulting in non-comparable long bone lengths after 12 years of age.

Maximum diaphyseal length measurements for the humerus, radius, ulna, femur, and
tibia were collected in millimeters from dry bone measurements in the HTHOC and LC
datasets using an osteometric board. In the NMDID and VIFM datasets, maximum dia-
physeal length measurements were taken from DICOM images using a protocol shown to
replicate dry bone measurements taken on an osteometric board [31]. The left side was used
for the analysis when possible, and the measurement from the right was substituted when
the left was absent. Length measurements were subsequently converted into centimeters
for the analysis.
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Least squares linear regression was used to obtain the stature estimation formulae
where stature (in centimeters) was regressed onto the diaphyseal length (in centimeters) of
the humerus, radius, ulna, femur, and tibia in the model sample. To evaluate the fit of the
resulting prediction models, the F-statistic (F), the coefficient of determination (R2), and
the standard error of the estimate (SEE) were calculated. Visual observation of the data,
when stature is plotted against long bone length (Figure 1), indicated a linear relationship.
As growth models tend to be heteroscedastic because variation in size increases with age,
other statistical models were considered. However, when stature was plotted against long
bone length, the resulting plots showed that the dataset was homoscedastic.
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Figure 1. (a) Scatterplot illustrating the linear regression model of stature (cm) regressed onto
humerus diaphyseal length (cm). The humerus produced the strongest R2 (0.980) and smallest SEE
(3.73); (b) Scatterplot illustrating the linear regression model of stature regressed onto ulna diaphyseal
length. The ulna yielded the model with the poorest fit and largest SEE (4.45).

Internal validation of the stature estimation models was carried out to assess the
stability and accuracy of the model parameters and was completed by testing the equations
back onto the model sample (HTHOC and NMDID datasets). For each long bone model,
the estimated stature obtained for each individual was subtracted from the documented
stature to provide the regression residuals (estimated–documented stature). A negative
residual corresponds to an underestimation of stature by the model, and a positive residual
means that the model overestimated stature. The mean residuals (MR) and the mean of the
absolute value of the residuals (MAR) were calculated for the total model sample and for the
HTHOC and NMDID subsamples separately to provide a measure of the internal accuracy
of the models, respectively. The 95% confidence interval (CI) of the estimate was calculated
for each individual using the point estimate ± SEE × 1.96. The 1.96 corresponds to the
critical value for a two-tailed t-test distribution at a 95% confidence level. The 95%CI was
used to calculate the coverage or the percentage of individuals whose documented stature
falls within the 95% confidence interval (95%CI) of the estimated stature. This measure
was calculated for each long bone in the total model sample, as well as the HTHOC and
NMDID sub-samples separately.

To assess the transportability or cross-sample applicability of the stature estimation
models, an external validation was carried out by testing the equations using the test
sample (LC and VIFM datasets). Similar to the internal validation, the mean residuals (MR),
the mean of the absolute residuals (MAR), and the coverage or percentage of individuals
whose known stature falls within the 95% confidence interval (95%CI) of the estimated
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stature were also calculated for the total test sample, and separately for the LC and VIFM
datasets, to provide a measure of the accuracy of the regression equations outside of the
model sample. All data analysis was performed in R (v4.2.2) [32].

3. Results

Table 2 shows the slope (a) and intercept (b), and their respective p-values, of the
regression formulae for the estimation of stature (cm) from the diaphyseal lengths (cm) of
the five long bones included in this study. The table also includes the sample size for each
model, the F-statistic (F) and its p-value, the coefficient of determination (R2), the standard
error of the estimate (SEE), and the minimum and maximum range (Min–Max, in cm) for
the predictor variable (diaphyseal lengths). The Min–Max parameter includes the range of
diaphyseal lengths within which each model is expected to perform. Since the regression
model was built on bone lengths within this range, the model may not accurately reflect
the relationship between bone length and stature outside of this range. For example, it is
known that the relationship between leg length and stature changes with the adolescent
growth spurt [14]. Estimating stature from a diaphyseal length outside of that range may
result in a point estimate that is more inaccurate than suggested by our model testing, as
well as a 95% confidence interval for the estimate. All regression coefficients are statistically
significant, and the F-value indicates that all models are excellent fits to the data. All model
coefficients of determination (R2) are close to or at 0.98, indicating a very strong fit and that
only about 2% of the variation in stature for long bone length is not explained by the linear
regression models. The standard errors of the estimates are generally low, around or under
4 cm, about the point estimate.

Table 2. Least squares linear regression models (stature = a × diaphyseal length + b) and goodness of
fit for each diaphyseal long bone length. Stature and diaphyseal lengths are both in centimeters.

Bone Slope Intercept F p-Value R2 SEE Min–Max

n a p-Value b p-Value

Humerus 137 4.95 <0.001 23.26 <0.001 6459 <0.001 0.980 3.73 4.9–25.7
Radius 128 6.57 <0.001 23.27 <0.001 4639 <0.001 0.974 4.19 4.9–21.9
Ulna 139 6.27 <0.001 18.64 <0.001 5084 <0.001 0.974 4.45 4.7–23.6

Femur 135 3.27 <0.001 31.20 <0.001 6037 <0.001 0.978 4.02 5.3–39.7
Tibia 138 3.97 <0.001 31.07 <0.001 5993 <0.001 0.978 4.08 4.9–34.1

F is the test of regression’s overall significance. R2 is the coefficient of determination. SEE is the standard error of
the estimate (in cm). Min–Max is the range of diaphyseal long bone lengths (in cm) in the model sample.

Based on the parameters of the regression models, the humerus provides the best-
performing stature estimation method with the highest R2 (0.980) and the smallest pre-
diction error (SEE = 3.73 cm). Figure 1a illustrates the bivariate relationship between the
diaphyseal length of the humerus and stature, where most observations are tightly posi-
tioned about the entire regression line. The femur provided the second-best model with a
SEE of 4.02 cm and an R2 of 0.978. Overall, the ulna provided the poorest model with the
highest prediction error (SEE = 4.45 cm), although the R2 is on par with the other long bones
(R2 = 0.974). Figure 1b illustrates the ulna diaphyseal length regressed on stature. Both the
best and worst models illustrated in Figure 1a,b, demonstrate a clear linear relationship
between stature and long bone length throughout the ontogenetic period considered, as
well as a general lack of heteroscedasticity in the dataset.

Internal validation of the models (Table 3) show no bias (MR = 0.00) in the model
parameters and a mean absolute residual (MAR) ranging between 2.77 and 3.01 cm in
the total sample. The humerus and radius showed the smallest residuals (MAR). When
considering the percentage of individuals whose known stature is within the 95%CI of the
predicted stature, the radius and ulna are tied for the best coverage at about 95%, and the
tibia provided the poorest coverage at 90.6% in the total sample. When comparing the two
datasets in the model sample, all models tend to overestimate the stature of individuals
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in the HTHOC and slightly underestimate the NMDID dataset. Bias is greatest in the
humerus (MR = 1.02 and MR = −0.27, respectively) and tibia (MR = 1.92 and MR = −0.56,
respectively) for both the HTHOC and the NMDID samples. On the other hand, the MAR
values across the two datasets indicate that the humerus provides the best results in both
(MAR = 3.66 and MAR = 2.97, respectively), followed by the femur (MAR = 4.09) in the
HTHOC and the ulna (MAR = 2.58) in the NMDID. Residuals (MAR) are generally smaller
in the HTHOC (MAR range: 3.66–4.93) and greater in the NMDID for all long bones (MAR
range: 2.53–2.69). The HTHOC dataset also shows the smallest percentage of individuals
whose known stature falls within the 95%CI of the predicated stature (70.97–86.21%),
compared to the NMDID dataset, which shows a greater coverage percentage, at or above
95% (95.33–97.27%). In this respect, the humerus and ulna are the better-performing bones
in the HTHOC dataset, whereas the ulna and femur perform the best in the NMDID dataset.

Table 3. Internal validation results for each of the long bone models are shown for the total model
sample and separately for the two model datasets (HTHOC—Hamann–Todd Human Osteological
Collection, NMDID—New Mexico Decedent Image Database).

Bone Total HTHOC NMDID

n MR MAR 95%CI n MR MAR 95%CI n MR MAR 95%CI

Humerus 137 0.00 2.77 92.7 29 1.02 3.66 82.8 108 −0.27 2.53 95.4
Radius 128 0.00 2.92 94.5 18 0.75 4.93 83.3 110 −0.12 2.59 96.4
Ulna 139 0.00 3.01 95.0 29 0.21 4.64 86.2 110 −0.06 2.58 97.3

Femur 135 0.00 3.12 91.1 31 0.55 4.55 71.0 104 −0.16 2.69 97.1
Tibia 138 0.00 3.01 90.6 31 1.92 4.09 74.2 107 −0.56 2.69 95.3

MR is the mean residual (in cm). MAR is the mean of the absolute residuals (in cm). 95%CI is the coverage or the
percentage of individuals whose stature falls within the 95%CI for the predicated stature.

The estimated transportability or cross-sample applicability of the models, as deter-
mined by the external validation on the test sample, is shown in Table 4. Overall, the
humerus provides the most accurate estimate of stature (MR = 0.47) in the test sample, and
the least accurate stature predictions were obtained from the ulna (MR = 2.38). The femur
and tibia showed both the greatest residuals (MAR = 3.19 and MAR = 3.20, respectively)
and the greatest coverage (92.9% in both). The weakest coverage is from the humerus
and ulna, with 81.8%. When comparing the LC and VIFM datasets, all equations, on
average, underestimated stature in the LC and overestimated it in VIFM. The ulna equation
provided the least accurate stature estimations with the greatest overestimates for VIFM
(MR = 5.96), and the equation providing the greatest underestimates for LC was the tibia
(MR = −3.13). Overall, the MAR results show that the femur provided the best model
(MAR = 3.19), while the ulna provided the poorest (MAR = 4.72), followed by the radius
(MAR = 3.67). In comparing the LC and VIFM samples, the LC sample had slightly larger
MARs (3.17–4.16) than the VIFM sample (2.95–5.96) for each bone, other than the ulna.
When evaluating the percentage of individuals in the total test sample whose documented
statures are bracketed by the 95%CI, the radius, femur, and tibia have 100% coverage for
the VIFM. Conversely, the VIFM has the least coverage for the ulna, with 66.7%, whereas
the LC has 100% coverage. For the LC sample, the humerus and radius have the lowest
coverage at 80%.
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Table 4. External validation results for each of the long bone models are shown for the total test
sample and separately for the two test datasets (LC—Lisbon Collection, VIFM—Victoria Institute of
Forensic Medicine).

Bone Total LC VIFM

n MR MAR 95%CI n MR MAR 95%CI n MR MAR 95%CI

Humerus 11 0.47 3.46 81.8 5 −1.55 3.89 80.0 6 2.15 3.10 83.3
Radius 11 −0.86 3.67 90.9 5 −2.38 4.16 80.0 6 0.40 3.25 100.0
Ulna 11 2.38 4.72 81.8 5 −1.93 3.24 100.0 6 5.96 5.96 66.7

Femur 14 0.92 3.19 92.9 7 −1.11 3.42 85.7 7 2.95 2.95 100.0
Tibia 14 −0.74 3.20 92.9 7 −3.13 3.17 85.7 7 1.65 3.23 100.0

MR is the mean residual (in cm). MAR is the mean of the absolute residuals (in cm). 95%CI is the coverage or the
percentage of individuals whose stature falls within the 95%CI for the predicated stature.

4. Discussion

The current study proposes a series of new, more generic, and inclusive regression
formulae to estimate stature in juvenile remains that are based on a greater diversity
of children and that do not rely on previous knowledge about biological sex, age, or
group affiliations. Several previous child stature estimation methods have significant
drawbacks that limit their utility in a variety of paleontological, archaeological, and forensic
applications. These include relying on small longitudinal samples of children of high
socioeconomic status, which may include a limited range of variation in stature for long
bone length. Additionally, these methods have relied on radiographic measurements with
no correction for magnification. Some methods also require age to be determined before
the appropriate age-specific equation is selected.

Compared to existing methods, the regression formulae provided in this study estimate
stature with seemingly greater prediction error, about twice as much (about 15 cm at the
maximum range of the 95% confidence interval). However, this two-fold increase in error
is artificial because group or sex-specific approaches to estimation truncate variation in the
original samples. Since experts cannot make reliable a priori decisions of group affiliation
or sex in juvenile remains, the smaller prediction error of those methods is only apparent
and not real. Our method is a more realistic representation of the variation in growth of
stature-for-long bone length that exists across populations, compared to the other methods
that rely on a single population. The regression methods presented here should, therefore,
be more reliable when applied across populations than previous methods.

An example of how to use the regression formulae to estimate the stature of an
unknown individual is provided here, using the diaphyseal length of the femur, with a
hypothetical measurement of 12.6 cm. The formula (Table 2) is stature = 3.27 × diaphyseal
length + 31.20. When 12.6 cm is substituted in the formula for diaphyseal length, solving
for stature yields a result of 72.4 cm. When calculating the 95% confidence interval, the
standard error of the estimate specific to the femur (Table 2; SEE = 4.02) is multiplied by
1.96 (4.02 × 1.96 = 7.88). This amount is then added to and subtracted from the point
estimate (72.40 ± 7.88 cm). The 95% confidence interval for this hypothetical measurement
is between 64.5 cm and 80.3 cm.

Results from the internal and external validation of the regression formulae are mixed,
indicating that the humerus provided the lowest mean absolute residuals (MAR), while the
radius and ulna provided slightly higher residuals (MAR), but at the same time, higher
percentages of individuals correctly estimated by the 95% confidence interval (95%CI).
When coupled with the fact that the humerus also had the smallest estimation error (SEE),
and, therefore, the smallest prediction interval around the point estimate, the internal
validation testing would seem to indicate that the humerus yields the best-performing
model. However, external sample testing did not support this. In external validation,
the femur and tibia showed the smallest mean absolute residuals (MAR) and the highest
percentage of individuals correctly estimated by the 95% confidence interval (95%CI). This
was not consistent across the two test samples, however: the best-performing equation in
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the LC test sample was the ulna, and in the VIFM, it was the radius. However, it should be
noted that the test sample is relatively small, even when the two test samples are aggregated
(n = 11–14). These equations should continue to be tested on samples of documented stature
to assess their performance across populations.

An additional and unexpected finding in external validation is that stature tended to be
underestimated in the LC test sample but overestimated in the VIFM test sample. Both the
LC and HTHOC samples are considered to represent children living under more adverse
environmental circumstances and include largely stunted children [23]. Comparatively to
LC and HTHOC, both NMDID and VIFM datasets are comprised of better-off children,
showing less constrained growth [27,28]. Consequently, the expectation was that stature
would be overestimated in LC (as it is in HTHOC) and underestimated in VIFM (as it is
in NMDID), but the opposite was observed. It is unclear why the above differences were
observed, and there are probably a range of possible factors. One of them is simply the
small sample sizes of the LC and VIFM datasets, making the results more sensitive to
random fluctuations in sample composition.

Another possible factor explaining the external validation results is the fact that the
test sample is composed of slightly older individuals (mean age = 6.8 years) compared
to that of the model sample (mean age = 4.2 years). Since variation in growth increases
over age (heteroscedasticity), the fact that the test sample is older on average than the
model sample may mean that the test sample incorporates more variation, impacting
the performance of the models on the test sample. However, closer examination of the
relationship between stature and long bone length in the datasets shows that while in
the test sample, children in the LC sample had longer bones for stature than children in
the VIFM sample, the relationship was reversed in the model sample, where children in
the HTHOC dataset were found to have shorter bones for stature when compared to the
children in the NMDID dataset. In fact, children in the LC sample showed the longest
bones for stature, followed by the NMDID, HTHOC, and VIFM children, who were found
to have the shortest bones for stature (Figure 2). The reason for these differences is unclear,
but results suggest they may be related to differences in the contribution of trunk height to
total height, the timing of growth of different body segments across the course of ontogeny,
and how these differences in body proportions reflect the differential impact of the timing
and intensity of stress on individual or shared-group life histories [33–35].
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All of these factors discussed above are likely to contribute to the unexpected results
in the external validation test. However, rather than highlighting problems, these results
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are a further demonstration of the applicability or transportability of the stature estimation
equations developed in this study in a variety of distinct groups within and across popula-
tions, with dissimilar variation to that of the model samples and reflecting different social
experiences. Such differences can be in height-for-age but also in the relationship between
stature and long bone length. As such, the test samples and the results of the external
validation provide a good approximation of the performance of the stature estimation
equations outside of the model sample. In fact, the differences between the model and test
sample are a testament to how the method proposed here is being pushed to its limits and
provides a better or more realistic estimate of its future performance.

Given the mixed performance of the equations in the internal versus external valida-
tion tests, which models should be used to estimate stature in an unknown individual?
The selection of a model depends to some extent on the motivations of the user. In forensic
anthropological applications, it is typically considered most important that the 95% pre-
diction interval yielded by a method includes the true value for the individual so that the
estimate does not exclude a potential identification. In this case, a practitioner may prefer
a model with high coverage (95%CI) in external testing and might, therefore, prefer the
femur and/or tibia models. However, in paleoanthropological and/or bioarchaeological
settings, the 95% prediction intervals are less important, and researchers might prefer
instead models with smaller prediction intervals and/or higher accuracy. In this case, the
user might prefer a model with higher SEE but low residuals (MR and MAR) in external
testing, for example, the humerus. Of course, the choice of model is also constrained by the
bones retrieved.

The various considerations made up to this point also highlight some of the limitations
of this study. One of the potential concerns includes the issue of unknown or inexact decimal
age for children in the HTHOC dataset and the different ways by which cadaver length
was collected, including the conversion of cadaver length to standing height. Given that
the regression equations do not seem to depend on age, the use of individuals with inexact
age is not problematic. The reason why there was no attempt to address how cadaver
lengths were measured differently in the various datasets, and no stature-to-standing
height conversion was attempted is because there is no consensus on how to accomplish it.
Most importantly, there are no data to address this issue properly. Furthermore, the results
presented in this paper suggest that a correction is not required. The equations provide
good estimates of documented stature, regardless of how the stature data were collected.

The most significant concern, however, is probably the age structure and size of the
samples. The model sample has more younger individuals and includes more children
from the NMDID dataset. While the number of females and males in the sample is relatively
equal (F = 69, M = 73), the distribution of individuals across the age categories is not. There
is no pattern in the ages or stature of the children whose statures were misestimated, and
the inclusion of infants does not seem to play a role in the performance of the methods.
However, while the relationship between stature and bone length does change with age
(Figure 3), when individuals are pooled across ages and samples, a stable change is modeled
well enough by a linear model. Sample variation in the relationship between stature and
long bone length is more related to proportional differences between individuals rather
than differences due to age (Figure 3). Also, while the sexes were balanced, the sample
only included children under the age of 12 years. Before puberty and the adolescent
growth spurt, there is little evidence for sexual dimorphism in height growth [16–18]. Any
sex-related variation in the sample results from small differences that are better seen as a
continuum of overlapping ranges.
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Further, individuals of the “ancestry” groups recorded in the HTHOC and NMDID
datasets were included to incorporate more variation in the models, but the number of indi-
viduals in each “ancestry” is not equal. Since the goal was to be more inclusive and generic,
the regression formulae provided in this study were not meant to develop population-
or group-specific approaches that would require appropriate group representation. This
population- or ancestry-specificity is problematic due to the lack of clarity on what the
parameters of membership to a “population”, “ancestry”, or “group” are [24]. Further, the
definitions of these parameters create artificial distinctions in human variation, separating
people into arbitrary boundaries [24].

In addition to being independent of age and sex, the stature estimation equations
can, therefore, also be said to be independent of other group affiliations such as “ancestry”
or “race.” The reason why children identified as different “races” were included in the
samples was not in an effort to make them more representative of a variety of “racial” or
“ancestry” categories but rather as a means to increase the sample variation in stature-
for-long bone length, as many of these categories represent children of either privileged
(typically “White” or “European”) or disadvantaged social background (typically “Black”,
“African” or other groups), who are on average taller- and smaller-for-age, respectively.
These racialized categories do not represent genetic or ancestry-related differences but
instead reflect embodied social inequalities [23]. Such inequalities reflect group differences
in access to nutrition, healthcare, and exposure to disease and pathogens, as well as healthy
social and psychological stimuli that result in developmental differences in stature. While
the differences in stature for long bone length in the various datasets can be attributed to
differences in social and environmental conditions during the growth of the individuals,
they simply highlight the range of cross-population applicability or transportability of
the stature estimation methods provided here. This results in more generic and inclusive
methods which can be used more widely. For example, individuals under medico-legal
investigation are a subset of the population who are generally of lower socioeconomic
status (SES) [22,36]. Individuals of low SES often have a compromised nutritional status,
and malnutrition can lead to stunting and differences in body segment proportions, such
as shorter legs [17,18,23,36]. For these reasons, the HTHOC and NMDID samples were
combined to include greater variation in stature-for-long bone length, potentially increasing
the number of populations, groups, and individuals, particularly disadvantaged, to which
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the models can be applied. This also includes prehistoric and historic populations living in
a variety of ecological conditions. Previous observations of how different body segments
respond to environmental changes found that the humerus was least affected and thus
reliable and less biased for estimating stature [1,23,37]. This is only partly consistent with
the findings of these models, as overall, the humerus performed simultaneously better in
terms of residuals (MR and MAR) than the lower limb, which generally performed better
in the coverage (95%CI) tests.

5. Conclusions

While stature may not be routinely estimated from juvenile skeletal remains for differ-
ent reasons, available stature estimation methods in children show several disadvantages.
The most significant of which is probably the reduced amount of variation sampled in
long bone length-for-height, which results in limited applicability of existing methods.
The linear regression formulae provided in this study rely on a more diverse sample than
previously available or used, offering a more generic and inclusive alternative for stature
estimation in children that does not require a priori knowledge about the age, sex, or group
affiliation of the individual. Furthermore, regression equations were tested on a small
but diverse and unique set of test samples that provide a realistic estimate of their future
performance. Formulae, based on the length of five long bones, also provide options for
use in different circumstances, depending on preservation and the goal of the expert. Al-
though further development in this area is heavily influenced by the scarcity of appropriate
samples, further external validation of these formulae is recommended whenever possible.
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