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Comparing Traditional Age Estimation at the Defense
POW/MIA Accounting Agency to Age Estimation Using
Random Forest Regression
Kyle A. McCormick

Defense POW/MIA Accounting Agency Laboratory, 590 Moffet St,
Joint Base Pearl Harbor-Hickam, HI 96853, USA; kyle.a.mccormick5.civ@mail.mil

Abstract: Age estimation from developmental traits is typically assessed in isolation, where an age
range is derived from known individuals that exhibit that degree of fusion. There are no objective
means for incorporating developmental evidence from multiple areas of the skeleton into one cohesive
age estimate. This limitation is obvious in the casework at the Defense POW/MIA Accounting Agency
(DPAA), where subjectivity is introduced into age estimates based on multiple age indictors. This
holds true even when age is derived from one source, The 1957 study by McKern and Stewart). This
study uses 388 individuals from the McKern and Stewart study and 41 individuals from the Battle
of Tarawa and uses Random Forest Regression (RFR) to estimate an age interval using multiple age
indicators. These RFR estimates are compared to age estimates from the Forensic Anthropology
Reports (FARs). Overall, FAR age estimates are more accurate (92.7%) than those from the two RFR
models (80.5% and 76.6%). This increase in accuracy comes at the cost of some precision (FARs
average age interval of 8.1 years and RFR average age intervals of 6.3 and 6.4 years). The RFR models
prefer age indicators with late fusion, such as the medial clavicle, and the pubic symphysis, which
exhibit a combination of developmental and degenerative ages in morphology. Some avenues for
further research are discussed.

Keywords: forensic anthropology; developmental age estimation; Random Forest Regression;
machine learning

1. Introduction

Age estimation from skeletal remains is an important aspect of the biological pro-
file [1–4]. Typically, commonly used and well-established age-related areas of the skeleton,
such as the pubic symphysis [5–9] and auricular surface [10–12], are assessed in isolation,
resulting in age estimates that cannot be systematically integrated into a single prediction.
Transition analysis, however, represents an important exception to this trend [13,14]. This
common approach is the result of most age estimation methods focusing on a single skeletal
age indicator, each with its own methodology and sample [15]. Constructing a single age
interval from multiple isolated age indicators is a task rife with possible vectors for error
and uncertainty [16], including, but not limited to, reference sample considerations such as
population affinity [17,18], secular change [19], and sex [20–22].

The transition from late adolescence to adulthood represents an informative phase
for skeletal age estimation [23,24]. During this phase, the skeleton presents analysts with
both developmental (e.g., epiphyseal fusion) and some (quasi)degenerative (e.g., pubic
symphysis morphology) indicators of age. Estimating age from a skeleton exhibiting
this stage of development using methods derived from the same population represents
an optimal situation for accurate and precise estimation. This situation is typical at the
Defense POW/MIA Accounting Agency Central Identification Laboratory (DPAA), where
a majority of our casework consists of young American males born in the early 20th century.
Given the sample composition relevance to current casework, analysts at the DPAA rely
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strongly on the 1957 study by McKern and Stewart, which examined age-related changes in
the skeletons of 450 soldiers who died during the Korean War, 375 of which were identified
at the time of publication [25]. McKern and Stewart developed a methodology for scoring
cranial suture closure, third molar development, epiphyseal union, and pubic symphysis
development. The latter two methodologies are used in the current study and described in
more detail in the Materials and Methods sections.

As evidenced by its continued and habitual use in case work at the DPAA, this study
was an exceptional achievement. A recent re-analysis of Korean War anthropological
records highlights the effects of this study on current case work at the DPAA [26]. This
study examined 53 cases that were previously processed and analyzed by the Central
Identification Unit (CIU) in Kokura, Japan. These individuals were buried as unknowns
and later exhumed, re-analyzed, and identified by the DPAA. The predicted age intervals
from the CIU captured the reported age of these individuals in 58.5% (31/53) of cases,
compared to 90.6% (48/53) of cases during re-analysis at the DPAA [26].

The continued use of the McKern and Stewart study for current case work at the
DPAA is a sign of its success and usefulness. However, the age ranges provided in McKern
and Stewart are presented for single indicators, or in the case of the pubic symphysis,
a composite score (note, range refers to the minimum and maximum age bound for a
particular trait from the reference sample. Interval is a more-general term and here refers to
the bounds of the predicted age. In other words, all squares [range] are rectangles [interval],
but not all rectangles [interval] are squares [range]). Thus, the subjectivity of constructing an
age estimate from multiple independent age indicators remains. The typical approach is to
take “the highest of the low and the lowest of the high.” Where the age interval is the oldest
lower-bound to the youngest upper-bound of the age ranges provided by the assessed age
indicators. This study seeks to address that subjectivity by providing a methodology for
combining multiple age indicators into a cohesive age prediction (an estimated age, or point
estimate, and uncertainty around that point estimate) through Random Forest Regression
(RFR) and comparing those results to the age estimates from Forensic Anthropology Reports
(FARs) in a sample of recently identified individuals from the Battle of Tarawa. This World
War II Pacific theater encounter took place from 20–23 November 1943 and involved an
assault by U.S. forces on the heavily fortified Japanese position on Betio Island, Gilbert
Islands (now the Republic of Kiribati) [27]. Approximately 1000 U.S. Marines from the 2nd
Marine Division, more than 3000 Japanese soldiers, and an estimated 1000 Korean laborers
lost their lives over the course of these three days [28].

2. Materials and Methods

These data consist of 388 individuals from McKern and Stewart’s [25] sample and
41 recently identified individuals from the Battle of Tarawa. All individuals in this study
are U.S. Service Members, lost during World War II or the Korean War, and are overwhelm-
ingly young European American males (minimum age = 16 years 11 months, maximum
age = 50 years 5 months, average age = 23 years 11 months). Figure 1 shows the age distri-
bution of these samples.

Fourteen age indicators are used in this study (Table 1). These comprise pubic symph-
ysis morphology and epiphyseal fusion. Epiphyseal fusion is scored as no fusion (score
of 0), beginning fusion (score of 1), active fusion (score of 3), and complete fusion (score
of 4). Pubic symphysis morphology is assessed as three components, the dorsal demiface,
the ventral demiface, and symphyseal rim. Each of these components are scored in six
stages (0–5), with age progressing from 0 to 5. Table 2 provides the description of these
stages from McKern and Stewart [25]. While scoring multiple areas of the pubic symphysis
allows for higher fidelity in quantifying mosaic age changes to the symphyseal surface
compared to phase-based methods, the original McKern and Stewart study estimated age
from the pubic symphysis based on the composite score, or sum of the three components,
which range from 0 to 15 [25]. Based on descriptive statistics and basic data visualization
(plotting composite score against age), the authors found that some adjacent composite
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scores provided similar age estimates and were subsequently grouped together into a single
category [25]. For example, composite scores of 11–13 have the same estimated age range
of 23–39 years [25]. Thus, while in theory an individual with a composite score of 11 should
be younger than an individual with a composite score of 13, the decision to group these
composite scores together leads to each having a predicted age of 23–39 years.
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Figure 1. The age distribution of the McKern and Stewart sample and Tarawa individuals.

Table 1. Age indicators used in this study.

Area/Element Indicator

Clavicle Medial Epiphysis

Pubic Symphysis
Dorsal Demiface
Ventral Demiface
Symphyseal Rim

Os Coxa
Ischiopubic Ramus

Iliac Crest

Sacrum
S1/S2
S2/S3

Scapula
Acromion

Medial border
Lateral border

Limbs

Proximal Humerus
Distal Ulna

Distal Radius
Distal Femur

Proximal Tibia
Distal Fibula

This study tests the accuracy of conventional age estimation at the DPAA with a
cohesive approach, where all relevant indicators are integrated into a single statistical
model. Age estimation can be generalized by predicting a dependent variable from multiple
dependent variables. Linear regression is a common method for prediction, but it is
suboptimal for addressing age estimation, where a continuous variable is predicted by
ordinal variables. Linear regression is an example of a parametric model, which are typically
simpler and easier to interpret than their non-parametric counterparts. Parametric models,
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however, make fixed assumptions about the distribution of the underlying data and the
relationship between the independent and dependent variables. These assumptions cannot
be assumed in age estimation. Most importantly, the assumption of a linear relationship
between the dependent variable age and the independent variables is violated in age
estimation. Advanced parametric models, such as Bayesian regression, may overcome
these assumption violations through explicitly defining the underlying prior distribution
of each variable, including data transformations and interaction terms as extra parameters.
A more parsimonious approach is to use a non-parametric model, which does not assume
underlying variable distributions or the functional relationship between variables.

Table 2. Description of pubic symphysis component stages.

Component Description

Dorsal Demiface
Stage 0 Dorsal margin absent.
Stage 1 A slight margin formation first appears in the middle third of the dorsal border.
Stage 2 The dorsal margin extends along entire dorsal border.

Stage 3 Filling in of grooves and resorption of ridges to form a beginning plateau in the middle third
of the dorsal demiface.

Stage 4 The plateau, still exhibiting vestiges of billowing, extends over most of the dorsal demiface.

Stage 5 Billowing disappears completely and the surface of the entire demiface becomes flat and
slightly granulated in texture.

Ventral Demiface
Stage 0 Ventral beveling is absent.
Stage 1 Ventral beveling is present only at superior extremity of ventral border.
Stage 2 Bevel extends inferiorly along ventral border.

Stage 3 The ventral rampart begins by means of bony extensions from either or both of
the extremities.

Stage 4 The rampart is extensive, but gaps are still evident along the earlier ventral border, most
evident in the upper two-thirds.

Stage 5 The rampart is complete.

Symphyseal Rim
Stage 0 The symphyseal rim is absent

Stage 1 A partial dorsal rim is present, usually at the superior end of the dorsal margin; it is round
and smooth in texture and elevated above the symphyseal surface.

Stage 2 The dorsal rim is complete and the ventral rim is beginning to form. There is no particular
beginning site.

Stage 3 The symphyseal rim is complete. The enclosed symphyseal surface is finely grained in texture
and irregular or undulating in appearance.

Stage 4 The rim begins to break down. The face becomes smooth and flat and the rim is no longer
round but sharply defined. There is some evidence of lipping on the ventral edge.

Stage 5 Further breakdown of the rim (especially along superior ventral edge) and rarefaction of the
symphyseal face. There is also disintegration and erratic ossification along the ventral rim.

Random Forest Regression is an example of a non-parametric model and is the model
used in this study. This model is a machine learning algorithm that grows prediction trees
based on random subsets of the reference data, producing an ensemble of tree predic-
tions. This process helps to reduce overfitting and define uncertainty around a prediction
compared to a single tree estimate using all data. Random Forest Regression models are
effective at analyzing non-linear relationships, such as predicting a continuous variable
(i.e., age) from a set of ordinal variables (i.e., fusion scores) because each tree considers a
subset of the variables and splits the data into multiple regions [29]. The RFR model used in
this study trains the model using k-folds cross-validation based on the number of variables
to arrive at an estimated optimal model, which is used to grow 1000 predictions (trees). The
estimated age of an individual is defined by a point estimate and an uncertainty around
that estimate, or 95% prediction interval. The point estimate is defined as the average of all
1000 predictions and the 95% prediction interval is defined by identifying the bottom 2.5%
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and top 97.5% of predicted ages. All statistical analyses are performed in R [30] and the
Random Forest Regression model is from the Caret package [31].

For each of the Tarawa individuals, age is estimated using two RFR models. The first
model is trained on the McKern and Stewart sample; the second model is trained on the
McKern and Stewart sample and the Tarawa individuals minus the predicted individual.
The results of each of these models are compared to the original FAR age intervals.

3. Results

Table 3 compares the known age of each Tarawa individual to the FAR age estimates
and the results of the two RFRs. The 95% prediction intervals for the RFR estimates are
presented in year-level precision. Table 4 provides aggregate summary information for the
performance of the FAR analysis and each RFR model. Samples sizes for each prediction
varied based on the variables used and data availability. Sample sizes range from 287 to
364 individuals, with an average of 314 individuals for the McKern and Stewart models
and from 301 to 405 individuals, with an average of 334 individuals for the total sample
(combined McKern and Stewart and Tarawa individuals) models.

Looking at accuracy, the FAR age estimates easily performed the best with 92.7%
(38/41) of individuals falling within the age interval provided by the analyst, followed by
80.5% (33/41) for the total sample RFR, and 75.6% (31/41) for the McKern and Stewart
RFR. The superiority in accuracy comes at a cost of precision, however, with the average
predicted age interval of the FAR estimates being almost two years wider than the RFR
models. This tradeoff between accuracy and precision is mainly relegated to the older
individuals. The average age interval for the 11 oldest individuals is 14.6 years for FAR
analysis and the RFR model interval is roughly half of that at 7.5 years. Of note, 10 of
the 18 RFR mis-aged individuals fall within the 11 oldest (approximately the top 25%)
individuals (see Table 3). All of these individuals were underaged by the RFR. There
appears to be a general trend for under-aging, with all three incorrect FAR age estimates
and 12 of the 18 incorrect RFR age estimates under aging individuals.

Examining the RFR models in more detail reveals both are essentially the same in
terms of variable importance (Figures 2 and 3). Figure 2 illustrates the effect of substituting
a variable for noise on the prediction of age. The longer the variable bar in Figure 2, the
more error is introduced into the model when substituting that variable for randomness.
Stated another way, the longer the bar in Figure 2, the more informative that variable is
for age estimation. A similar understanding can be taken from Figure 3. Random Forest
Models arrive at a prediction through data partitioning. The more informative a variable is
to age, the more likely it is to partition these data. And node purity is a measure of how
well data are partitioned while minimizing overlap.

The difference in age accuracy in the RFR that includes the McKern and Stewart and
Tarawa data over the RFR based on only the McKern and Stewart data is likely a result of
increased sample size and variation in trait scoring reflecting current analyses at the DPAA.
Age estimation is mainly driven by late-fusing epiphyses, such as the medial clavicle, the
first and second sacral vertebrae, and the pelvis; and the pubic symphysis, which shows a
combination of degenerative and developmental morphology (see Figures 2 and 3).
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Table 3. Comparison of age estimates to known age.

Ind. Known Age FAR Analysis * McKern and Stewart * Total Sample *
Age Interval RF Est. 95% PI Interval RF Est. 95% PI Interval

1 38.3 23–39 17 35.1 31–38 8 35.0 31–39 9
2 35.4 24–39 16 28.8 24–31 8 28.7 25–31 7
3 34.9 23–39 17 29.1 24–33 10 29.2 24–33 10
4 33.5 23–39 17 30.5 29–32 4 30.5 28–32 5
5 33.1 23–39 17 31.9 29–33 5 31.9 29–33 5
6 31.8 23–39 17 31.9 29–33 5 31.8 29–33 5
7 28.8 23–35 13 29.1 27–31 5 29.0 27–31 5
8 26.8 22–28 7 27.0 22–31 10 26.8 22–31 10
9 26.1 23–36 14 33.2 28–37 10 33.5 28–38 11

10 24.3 23–33 11 27.6 23–35 13 27.6 23–35 13
11 24.0 23–39 17 30.5 29–32 4 30.7 29–32 4
12 23.7 22–30 9 26.2 22–38 17 26.3 22–39 18
13 23.3 20–28 9 24.2 22–25 4 24.1 22–25 4
14 23.0 18–23 6 21.8 19–23 5 22.0 19–23 5
15 22.9 22–28 7 21.8 20–25 6 22.0 20–25 6
16 22.8 19–24 6 21.8 17–23 7 22.3 17–23 7
17 22.8 20–23 4 24.2 19–28 10 23.7 19–27 10
18 22.7 18–23 6 20.0 17–21 5 20.1 17–22 6
19 22.5 20–25 6 23.2 20–29 10 23.6 20–30 11
20 22.4 22–30 9 24.0 22–25 4 23.9 22–25 4
21 22.1 20–24 5 21.8 19–25 7 22.0 19–25 7
22 22.0 18–22 5 18.7 17–19 3 18.5 17–19 3
23 21.9 17–22 6 18.8 18–19 2 19.5 18–21 4
24 21.8 17–20 4 20.4 18–22 5 20.3 18–22 5
25 21.8 18–25 8 24.2 20–29 10 24.3 20–29 10
26 21.5 18–20 3 19.7 18–22 5 19.9 18–22 5
27 21.1 17–20 4 19.8 17–21 5 19.8 17–21 5
28 21.0 18–22 5 20.0 18–21 4 20.1 19–21 3
29 20.8 18–22 5 20.7 18–22 5 20.7 18–22 5
30 20.8 18–22 5 20.6 19–22 4 20.3 19–21 3
31 20.3 18–21 4 20.2 18–22 5 20.1 18–22 5
32 20.0 20–24 5 24.3 22–26 5 24.2 22–26 5
33 20.0 18–23 6 20.5 18–22 5 20.6 18–22 5
34 20.0 16–20 5 19.5 17–20 4 19.5 17–21 5
35 20.0 18–24 7 20.4 18–23 6 20.3 18–23 6
36 19.9 18–24 7 22.5 17–25 9 22.5 17–25 9
37 19.7 17–22 6 19.9 17–22 6 19.9 17–22 6
38 19.6 17–20 4 19.9 18–21 4 20.0 17–21 5
39 19.5 18–22 5 19.9 17–21 5 20.0 17–21 5
40 19.3 18–21 4 20.2 18–22 5 20.3 18–22 5
41 18.6 18–22 5 20.6 19–21 3 20.6 19–21 3

* Bold indicates the known age is outside of the estimated age interval.

Table 4. Summary of age estimation performance.

FAR Analysis McKern and Stewart Total Sample

Age Interval 8.1 6.3 6.4
Correct 38/41 31/41 33/41

% Correct 92.7% 75.6% 80.5%



Forensic Sci. 2023, 3 279

Forensic Sci. 2023, 3, FOR PEER REVIEW  7 
 

 

general trend for under‐aging, with all three incorrect FAR age estimates and 12 of the 18 

incorrect RFR age estimates under aging individuals.   

Examining  the RFR models  in more detail reveals both are essentially  the same  in 

terms of variable importance (Figures 2 and 3). Figure 2 illustrates the effect of substituting 

a variable for noise on the prediction of age. The longer the variable bar in Figure 2, the 

more error is introduced into the model when substituting that variable for randomness. 

Stated another way, the longer the bar in Figure 2, the more informative that variable is 

for age estimation. A similar understanding can be taken from Figure 3. Random Forest 

Models arrive at a prediction through data partitioning. The more informative a variable 

is to age, the more likely it is to partition these data. And node purity is a measure of how 

well data are partitioned while minimizing overlap. 

The difference in age accuracy in the RFR that includes the McKern and Stewart and 

Tarawa data over the RFR based on only the McKern and Stewart data is likely a result of 

increased  sample  size  and  variation  in  trait  scoring  reflecting  current  analyses  at  the 

DPAA. Age estimation is mainly driven by late‐fusing epiphyses, such as the medial clav‐

icle, the first and second sacral vertebrae, and the pelvis; and the pubic symphysis, which 

shows a combination of degenerative and developmental morphology (see Figures 2 and 

3). 

 

Figure 2. The increase in mean square error (x‐axis) by random permutation of variables (y‐axis) in 

the  total model. Variables are sorted along  the y‐axis  in descending order of mean square error 

increase. The higher the mean square error, the more important a variable is for age estimation. 

Figure 2. The increase in mean square error (x-axis) by random permutation of variables (y-axis)
in the total model. Variables are sorted along the y-axis in descending order of mean square error
increase. The higher the mean square error, the more important a variable is for age estimation.

Forensic Sci. 2023, 3, FOR PEER REVIEW  8 
 

 

 

Figure 3. Increase in node purity (x‐axis) by variable (y‐axis) inclusion in the total model. Variables 

are sorted along the y‐axis in descending order of node purity increase. The higher the increase in 

node purity, the more important a variable is for age estimation. 

4. Discussion 

These  results highlight several  important concepts  in  the application of biological 

anthropology and other fields that deal with the practical aspects of uncertainty in esti‐

mation. First, the RFR used in this study has the common issue of estimation bias in age 

estimation, where older  individuals are under‐aged and younger  individuals are over‐

aged, with the former especially true in the current study [32,33]. Three of the four oldest 

individuals were incorrectly aged by the RFR model, which represents one fourth of the 

incorrect ages. Stated another way, the top 10% in age were incorrectly under‐aged 75% 

of the time and this represented 25% of the incorrect ages. And 56% of mis‐aged individ‐

uals were  the oldest 25% of  individuals, and  they were all underaged. The bias  in this 

study would likely not benefit from an explicit Bayesian approach of an informative prior 

age distribution [34]. And may be better understood as a non‐uniform distribution of the 

reference data, where RFR and other statistical models have more information in the mid‐

dle of the reference distribution [35]. As Figure 1 shows, the age distribution of these in‐

dividuals is strongly skewed younger. Interestingly, the distribution from which the Ta‐

rawa individuals are drawn from is essentially a smaller version of the McKern and Stew‐

art sample. This observation suggests that applying a prior distribution to age estimation 

models will not alleviate the issue of bias observed in this study. Rather, this issue may be 

the result of the information the model has to work with, suggesting a uniform age distri‐

bution  for reference samples would be optimal. As skeletal biologists, our samples are 

what they are. Often, the samples available to skeletal biologists are biased subsets of our 

target populations, the unknown individuals on which our methods are applied. We can‐

not manifest a uniform age distribution for our reference samples. We may, however, be 

able to simulate one. This idea, at first, may sound like statistical jargon to many, but it is 

an avenue worth exploring. The design and implementation are beyond the scope of this 

Figure 3. Increase in node purity (x-axis) by variable (y-axis) inclusion in the total model. Variables
are sorted along the y-axis in descending order of node purity increase. The higher the increase in
node purity, the more important a variable is for age estimation.
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4. Discussion

These results highlight several important concepts in the application of biological an-
thropology and other fields that deal with the practical aspects of uncertainty in estimation.
First, the RFR used in this study has the common issue of estimation bias in age estimation,
where older individuals are under-aged and younger individuals are over-aged, with the
former especially true in the current study [32,33]. Three of the four oldest individuals
were incorrectly aged by the RFR model, which represents one fourth of the incorrect ages.
Stated another way, the top 10% in age were incorrectly under-aged 75% of the time and
this represented 25% of the incorrect ages. And 56% of mis-aged individuals were the
oldest 25% of individuals, and they were all underaged. The bias in this study would likely
not benefit from an explicit Bayesian approach of an informative prior age distribution [34].
And may be better understood as a non-uniform distribution of the reference data, where
RFR and other statistical models have more information in the middle of the reference
distribution [35]. As Figure 1 shows, the age distribution of these individuals is strongly
skewed younger. Interestingly, the distribution from which the Tarawa individuals are
drawn from is essentially a smaller version of the McKern and Stewart sample. This ob-
servation suggests that applying a prior distribution to age estimation models will not
alleviate the issue of bias observed in this study. Rather, this issue may be the result of
the information the model has to work with, suggesting a uniform age distribution for
reference samples would be optimal. As skeletal biologists, our samples are what they
are. Often, the samples available to skeletal biologists are biased subsets of our target
populations, the unknown individuals on which our methods are applied. We cannot
manifest a uniform age distribution for our reference samples. We may, however, be able
to simulate one. This idea, at first, may sound like statistical jargon to many, but it is an
avenue worth exploring. The design and implementation are beyond the scope of this
article, but it is possible to simulate reference data based on known relationships from
observed data in a scientifically rigorous manner to construct a uniform reference sample
distribution. Additionally, supplementing data sets with simulated data could have the
additional benefit of capturing variation not observed in the sample population but found
in the target population, or the population ‘at large’ that we assume our reference samples
to approximate. Exploring the utility of data simulation in age estimation would build on
recent research in computational modeling and trait choice [36].

A discussion point more particular to this study is the construction of age estimates.
The methodology of constructing age estimates through the use of descriptive statistics
and basic data visualization used by McKern and Stewart [25] is historically pervasive in
forensic anthropology [7–12]. This prevalence is understandable for two reasons. First, it is
the nature of age phases or the choice to reduce composite methods to a single composite
score. The former is one variable and the latter consolidates multiple variables into one.
Both reduce morphological age-related information into a single variable. Descriptive
statistics and basic data visualization are the only tools available when dealing with a single
variable. As such, age estimates are limited to the mean age of the phase/composite score
and some expression of variability around that score (e.g., standard deviation and observed
age range). These are rather blunt statistical tools for addressing age estimation. This asser-
tion is supported by the large age intervals (to the point they are of questionable practical
utility) provided by these methods [7–12]. The second reason is the historic difficulty in
employing advanced statistical frameworks for questions in forensic anthropology. At the
time of McKern and Stewart’s study, computers filled rooms and were programmed by
punch-cards. It is understandable that their analysis was rudimentary by modern standards.
This is not an indictment of previous age estimation research in forensic anthropology. It
is the natural progression of the field. An in-depth understanding of modern, advanced
statistical modeling and the programming ability to implement them have not traditionally
been part of the forensic anthropologists’ knowledge base. In fact, the ability of researchers
to develop and deploy modern statistical modeling is a recent development.
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As mentioned in the introduction, the general guidance at the DPAA for defining an
age interval based on several age indicators is to define the lower-bound based on the oldest
lower-bound among age indicators and the upper-bound is the youngest upper-bound
among age indicators. Another common practice, especially in individuals that exhibit
skeletal maturity, is to take the age range provided by McKern and Stewart based on their
groupings of component scores. By summing the scores for the three components of the
pubic symphysis, McKern and Stewart grouped variations. This variation-consolidation is
further compounded by grouping composite scores together into set age ranges. This is
obvious in the repetitive use of FAR age ranges. The common 23–39 years age prediction
(see Table 3 and Materials and Methods), for example, is the age range provided by
McKern and Stewart for total pubic symphysis component scores of 11–13 [25]. At first
glance, this would appear to be a rudimentary approach, but it certainly is effective. It
is true that basing pubic symphysis age on the grand component score loses fidelity in
age-related morphology. This approach, perhaps more importantly, hides errors derived
from interobserver variability in scoring. Of the 125 possible combinations of scores for
the three traits, only 21 were observed by McKern and Stewart (25:83). All 41 of the
Tarawa individuals had complete pubic symphysis scores. Of those 41 scores, eight (~20%)
were in combinations not observed by McKern and Stewart. This finding suggests pubic
symphysis variability in current case work not observed in the McKern and Stewart sample,
interobserver variability or error in scoring, or ambiguity in score definitions. While it is
almost certainly a combination of all three, ambiguity in trait definitions is obvious to most
practitioners familiar with the method. This ambiguity extends to epiphyseal fusion scores
as well. While some traits are well-described, such as the fusion of the iliac crest, many
are not, such as that for the ischiopubic ramus, which logically leads to observer error.
Given that the fidelity of these ordinal variables is low, with only four possibilities, a score
difference in a couple of traits will compound in the resulting age estimate from a statistical
model such as RFR. This difference between McKern and Stewart’s understanding of their
method and how it is understood by current analysts is suggested by the increased accuracy
from the RFR that incorporates both the McKern and Stewart data and cases from current
analysts. There was a 5% increase in accuracy, with a near-identical level of precision by
adding just over 10% modern case work to the McKern and Stewart sample.

This study shows the effectiveness of current age estimation at the DPAA. This is due
in large part to the efforts of McKern and Stewart and their 1957 study. And while the
RFR models used in this study show promise, they cannot be recommended over current
practices based on the results of this study. This study also highlights important areas for
improvement both at the DPAA and within the larger field of forensic anthropology. These
include the need for refined methodologies that are easy to correctly implement, studies
that incorporate multiple age indicators into a single model, and the need for more data
and how we understand and construct our reference samples.
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