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Abstract: Age estimation from human skeletal remains is a critical component of the biological profile
for unidentified decedents. Using a Bayesian approach, we examine two popular methods (Lovejoy–LJ,
and Buckberry zand Chamberlain–BC) for estimating age from the auricular surface of the ilium.
Ages of transition are generated from a modern Portuguese skeletal sample (n = 466) and are coupled
with an informative prior from historic Spitalfields, London (n = 179) to estimate age in a sample of
modern Americans from the Bass Donated collection (n = 639). The Bass collection was challenging
to statistically model, potentially due to higher morbidity and mortality characteristics of the central
southern United States. The highest posterior density ranges provide a realized accuracy between
84–89% for males and 85–91% for females using the LJ method, and a realized accuracy between
79–82% for males and 65–71% for females using the BC method. Both methods worked well for
older individuals. Cumulative binomials showed that both methods significantly underperformed;
however, results were better for the LJ method, which also showed lower bias. Reference tables for
aging modern American samples are provided, and the data meet Daubert guidelines, i.e., legal criteria
for acceptable scientific evidence in a court of law in the United States.

Keywords: forensic science; forensic anthropology; transition analysis; hazards analysis; sacroiliac
joint; Daubert guidelines

1. Introduction

An important component in building the biological profile for an unidentified dece-
dent is the estimation of age-at-death. Adult age estimation is particularly challenging
because it is based on the degeneration of the skeletal tissue, which is further affected
by an individual’s life history. These biological and environmental processes result in
considerable variation in age indicators, especially for middle to older adults.

Traditionally, skeletal age is estimated by scoring features on a reference sample where
morphological changes in the skeleton are linked with known age and then applying these
estimated ages to an unknown target sample or individual. In a severe critique, Bocquet-
Appel and Masset [1] outlined the bias and inaccuracy inherent in this approach, where the
age distribution of the target sample will reflect the age distribution of the reference sample,
a condition which later came to be known as age mimicry. Boldsen and colleagues [2]
proposed transition analysis, a method that reduces or eliminates the issue of age mimicry.
When transition analysis parameters are combined with Bayesian statistics using a prior
age distribution, the resulting age estimates more accurately reflect the senescence changes
in the target sample while minimizing bias [2]. Bayesian statistics with transition analysis
have been successfully applied to pelvic age indicators, including the pubic symphysis [3–6]
and the auricular surface [7–9].

Lovejoy and colleagues [10] developed the traditional, standardized method for esti-
mating age-at-death based on morphological changes to the auricular surface of the ilium.
Their method (referred to here as the Lovejoy method, LJ), based on an eight-phase sys-
tem, describes changes to several criteria (e.g., transverse organization, texture, porosity,
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etc.) and is considered advantageous because the changes manifest well into advanced
years. While widely used across various geographic regions, most authors reported broad
agreement when applying the Lovejoy method [11–19]. However, as one might expect,
this traditional approach suffered from typical issues of age mimicry and some researchers
struggled to assign a myriad of morphological changes to one stage. This latter issue was
specifically addressed by Lovejoy and colleagues, who proposed that scholars should focus
on the critical age indicators that best represent the aging process and use auxiliary features
to adjust age estimates.

Buckberry and Chamberlain [20] used a different approach to revise the auricular
surface aging method (referred to here as Buckberry and Chamberlain method, BC). They
argued that the auricular surface features aged independently from one another and should
be scored separately and not grouped together into a single phase. Thus, instead of
combining various indicators into a single phase, they created a composite scoring system
where five features (transverse organization, texture, microporosity, macroporosity, and
apical changes) were independently scored and then combined to estimate a final composite
age for the individual. They reported increased replicability, due in part to lower intra- and
inter-observer error. Importantly, while results were presented using a traditional statistical
approach, the authors also used Bayesian statistics to provide posterior probabilities for
ten-year age ranges. Some authors [21,22] compared the LJ and BC methods and found
BC markedly easier to apply and more accurate than the LJ method. In 2016, Hens and
Godde [7] applied Bayesian methodology to both auricular surface methods, statistically
modeling age in Portuguese males. They found that the application of transition analysis
coupled with Bayesian statistics significantly improved age estimates for both methods,
work that was later independently confirmed by Kim and Algee-Hewitt [23].

The main objective of this research is to use a Bayesian analysis to apply an informative
prior probability distribution with transition analysis to estimate age-at-death in a modern
American skeletal sample of both males and females. We compare the Lovejoy and Buck-
berry and Chamberlain methods. The resulting age estimates are tested for performance
against a hold-out sample of Americans, an issue considered critical by Braga et al. [24].
This Bayesian approach allows for the estimation of accuracy and precision (i.e., bias) for
each method. Our second objective is to provide the highest posterior density ages and
highest posterior density age ranges at 75%, 90%, and 95% accuracy (i.e., coverages) that
may be used by forensic anthropologists practicing in a legal setting who need to estimate
the age of unknown individuals. These results meet the criteria outlined in Daubert v. Mer-
rell Dow Pharmaceuticals, Inc. [25] which required rigorous testing and evaluation of forensic
methods. Referred to as the Daubert guidelines, this case law outlines the criteria needed
for the presentation of scientific evidence in a court of law. Specifically, the United States
Supreme Court determined that in order for evidence to be considered reliable, it must be
grounded in scientific methods and procedures, i.e., the technique has been subjected to
peer review, error rates are reported, and the technique is generally accepted within the
relevant scientific community. The 75% coverage would be acceptable for skeletal remains
in archaeological contexts, where personal identification of decedents is highly unlikely
or impossible and age estimation is provided as a foundation for further demographic or
pathological interpretations. However, the 90% and 95% coverages meet the standards out-
lined for reliability in the Daubert guidelines where accuracy and precision in age estimates
are essential.

2. Materials and Methods
2.1. Samples and Scoring

This research uses two contemporary, modern skeletal samples: (1) American males
and females of European (i.e., White) ancestry derived from the William M. Bass Donated
Skeletal Collection at the University of Tennessee Knoxville (Bass Collection) and (2)
Portuguese males and females from the Luis Lopes Collection of the National Museum of
Natural History and Science in Lisbon, Portugal (Lopes Collection). Both collections are
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associated with documented demographic characteristics. Background on collection history
and composition are presented by Shirley et al. [26] and Cardoso [27], and the samples
have been thoroughly described in the literature [3,4,7,8,28]. A third sample from Christ
Church Spitalfields (Natural History Museum, London) dates to post-medieval London
residents and is dated to 1646–1859 AD. This sample also has documented age, sex, and
occupation for a portion of the collection [29] and served as the sample for Buckberry
and Chamberlain’s [20] work. The Spitalfields sample has a similar age profile to our
two modern samples. Table 1 depicts a breakdown of the samples by sex and age for
each collection.

Table 1. Sample age distributions.

Age Interval American Portuguese Spitalfields
Males/Females Males/Females Males/Females

16–19 1/0 5/5 2/2
20–29 7/3 18/22 5/5
30–39 44/12 20/10 14/9
40–49 72/30 34/12 8/11
50–59 83/57 49/39 15/22
60–69 80/67 35/43 25/19
70–79 50/60 33/66 13/16
80–89 35/38 27/43 2/9
90–99 0/0 0/5 2/0
Total 372/267 221/245 86/93

The American and Portuguese samples were scored by one experienced researcher
(SMH) for the two auricular surface methods, LJ and BC, using protocols to maintain a
blind study. Pathological specimens and individuals of unknown sex were not scored.
All Portuguese pelves were scored across a period of two weeks, while the Americans
were scored during one week. To account for intraobserver error, ten pelves from each
collection were scored three times each on different days and there was perfect agree-
ment. Additionally, due to the challenging nature of the LJ method, wherein one must
combine numerous indicators into one stage, scoring followed guidelines outlined by
Lovejoy et al. [10] where individuals exhibiting traits indicative of an advanced stage
were placed into a higher phase/stage even when youthful characteristics were retained.
We lament cases where authors have not reported their scoring techniques thoroughly in
the literature.

2.2. Statistical Methodology

For the goal of this paper, the American data (Bass collection) serve as the target
sample to derive and test age-at-death estimates from the two auricular surface aging
methods. The Portuguese data (Lopes collection) are used to estimate the transition analysis
(TA) parameters. The Spitalfields sample serves as the informative prior, from which we
calculated hazard parameters using a Gompertz model. These Gompertz parameters are
subsequently combined with the Portugal TA parameters in Bayes Theorem to produce
point estimates and ranges of ages to be tested on the American sample. Plots of Kaplan–
Meier survivorship calculated on American females and males with Gompertz curves from
the Portuguese and Spitalfields data confirm the fit of these samples (Figures 1 and 2).
Selection of similar mortuary profiles generally ensures a good fit of the informative prior
to the age-at-death structure in the TA sample [6]. However, Godde and Hens [3] reported
some deviation from fit may be tolerated; a conclusion that was later confirmed by the
independent work of other researchers [9,30].
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Figure 1. Kaplan–Meier survivorship (stepped lines) showing the probability of survival across
adult ages and Gompertz survivorship curves (solid line) representing age-dependent death rates for
males. The black line is Spitalfields informative prior showing an excellent fit to the model. The grey
line is the Portuguese Lopes collection (used for transition analysis), which shows higher rates of
survivorship for middle to older adults in the sample.

Figure 2. Kaplan–Meier survivorship (stepped lines) showing the probability of survival across
adult ages and Gompertz survivorship curves (solid line) representing age-dependent death rates
for females. The black line is Spitalfields informative prior and the grey line is the Portuguese
Lopes collection (used for transition analysis). Both Gompertz curves show an excellent fit nearly
overlapping with the survivorship curves.

A number of samples were available from which to choose an informative prior,
either through published Gompertz parameters (Terry collection, LA County Coroner from
Konigsberg et al. [6]), Knox County, Knox Cemetery, U.S. from census data in Godde [8],
or the generation of Gompertz parameters from our own data with published Gompertz
parameters (Torino, Portugal, Sardinia) [3,4,7,31], unpublished data of which we were
granted access (Forensic Databank, St. Brides [32]), publicly available data (post-medieval
England and Wales as described in Godde and Hens [3,4,7,33]), and the data published in
Buckberry and Chamberlain [20]. Past attempts at modeling the American sample showed
the available samples (except those from post-medieval Europe) were not a good fit and
did not produce viable age ranges. Gompertz survivorship plots of the three European
samples (Figures 3–5) showed St. Brides and Spitalfields had promise as their fit to the Bass
Collection was good, as was their relationship to the sample from Portugal. The decision to
go with Spitalfields over St. Brides was driven by a slightly better fit of TA parameters.
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Figure 3. A comparison of Gompertz survivorship curves for males from eight separate skeletal
collections. Lines closest to the Bass collection (target sample) and Portuguese collection (transition
analysis sample) and showing similar curves were considered best fit lines.

Figure 4. A comparison of the Gompertz survivorship curves for males from six modern database
(non-skeletal) collections. Lines closest to the Bass collection (target sample) and showing similar
curves were considered best fit lines.
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Figure 5. A comparison of Gompertz survivorship curves for females from eight separate skeletal
collections. Lines closest to the Bass collection (target sample) and Portuguese collection (transition
analysis sample) and showing similar curves were considered best fit lines.

The Gompertz model is expressed as:

ht = α3eβ3t (1)

S(t) = exp
{

α3

β3
[1 − exp(β3t)]

}
(2)

where h is the hazard, t is age-at-death, and S is survivorship; Equation (1) is the hazard and
Equation (2) is the survival function. The Gompertz model parameters are α3 and β3. We did
not shift our curve to a specific age. The transition analysis parameters were obtained from
a cumulative probit model [6], which represent the age at which an individual transitions
from, in this case, one auricular surface phase to the next. The probits were run for:
(1) Lovejoy method phases, (2) each of the five indicators for Buckberry and Chamberlain,
and (3) the composite scores as phases from Buckberry and Chamberlain. The transition
analysis and Gompertz model parameters are combined in Bayes’ theorem [2]:

Pr
(
a
∣∣cj
)
=

Pr
(
cj
∣∣a) f (a)∫ ∞

0 Pr
(
cj
∣∣x) f (x)dx

(3)

where f(a) is a probability density function (PDF) used to derive the highest posterior
density (HPD), analogous to a frequentist mode, and highest posterior density region
(HPDR), which is a range of values calculated at 75%, 90%, and 95% coverages. Coverage
represents the “percentage of individuals expected to fall within the specified HPDR” [6].
Due to this property, as the coverages increase, the regions become larger. In this paper, we
use the HPDRs as age ranges.

The accuracy of the HPDRs was tested by a cumulative binomial test using the doc-
umented age of the American samples as a measure of the accuracy of the HPDRs at the
various coverages. A measure of accuracy and whether it is significantly different than the
stated coverage is provided through this process. Finally, bias is estimated and reported
with the following equation:

Σ
(estimated age − actual age)

N
(4)
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All analyses were run in R [34] using originally composed scripts and programming
written by Dr. Lyle Konigsberg (http://faculty.las.illinois.edu/lylek/, accessed on 25
June 2022).

3. Results

TA parameters for Lovejoy method phases in females and males are found in
Table 2. Female ages-at-transition are spread almost across each decade of life until
phases 7–8 at which point it jumps to 2 decades. In males, each age-at-transition until
phases 6–7 represents a single decade of life. At phases 6–7, this changes to every
2 decades, similar to the females. The Buckberry and Chamberlain method TA parameters in
Tables 3–8 have relatively similar patterns across the sexes and show several components
that distinguish between young and older adults (i.e., apex and macroporosity). Micro-
porosity does not distinguish between major life stages (e.g., young, middle, and older
adult), concentrating on discriminating with an approximately 10–12 year age range in both
sexes. Texture ages-at-transition are spread from young–middle adult among the sexes,
while transverse organization is spread from young–middle until stages 4–5 at which time
it increases to the 80s. Finally, for both sexes the phases derived from composite scores
extend relatively evenly until older adult.

Table 2. Transition analysis parameters for Lovejoy et al. method on Portuguese samples.

Parameter Estimate Age at
Transition Estimate Age at

Transition

MALES FEMALES
I-II 2.97 19.45 3.05 21.17

II-III 3.28 26.47 3.37 29.16
III-IV 3.55 34.89 3.62 37.38
IV-V 3.81 45.18 3.86 47.29
V-VI 4.08 59.28 4.03 56.45

VI-VII 4.29 72.91 4.16 63.87
VII-VIII 4.53 92.75 4.40 81.80
ST DEV 0.25 0.23

b 4.04 4.28
Log-likelihood −303.65 −324.73

Table 3. Transition analysis parameters for transverse organization using Buckberry and Chamberlain
method on Portuguese samples. Estimates and slope are on a log scale.

Parameter Estimate Age at
Transition Estimate Age at

Transition

MALES FEMALES
I-II 3.04 20.96 3.14 23.26

II-III 3.55 34.86 3.61 36.95
III-IV 3.86 47.31 3.91 49.82
IV-V 4.40 81.63 4.43 83.92

ST DEV 0.40 0.43
b 2.52 2.30

Log-likelihood −258.58 −293.02

http://faculty.las.illinois.edu/lylek/
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Table 4. Transition analysis parameters for texture using Buckberry and Chamberlain method on
Portuguese samples. Estimates and slope are on a log scale.

Parameter Estimate Age at
Transition Estimate Age at

Transition

MALES FEMALES
I-II 2.93 18.69 3.04 20.84

II-III 3.29 26.94 3.51 33.42
III-IV 3.75 42.55 3.83 45.98
IV-V 4.00 54.36 4.01 55.08

ST DEV 0.32 0.29
b 3.12 3.50

Log-likelihood −205.14 −181.16

Table 5. Transition analysis parameters for apical changes using Buckberry and Chamberlain method
on Portuguese samples. Estimates and slope are on a log scale.

Parameter Estimate Age at
Transition Estimate Age at

Transition

MALES FEMALES
I-II 3.47 32.14 3.55 34.81

II-III 4.32 75.47 4.21 67.04
ST DEV 0.52 0.47

b 1.92 2.11
Log-likelihood −192.38 −204.25

Table 6. Transition analysis parameters for microporosity using Buckberry and Chamberlain method
on Portuguese samples. Estimates and slope are on a log scale.

Parameter Estimate Age at
Transition Estimate Age at

Transition

MALES FEMALES
I-II 3.46 31.73 3.33 27.89

II-III 3.78 43.71 3.63 37.82
ST DEV 0.53 0.47

b 1.89 2.14
Log-likelihood −167.89 −119.71

Table 7. Transition analysis parameters for macroporosity using Buckberry and Chamberlain method
on Portuguese samples. Estimates and slope are on a log scale.

Parameter Estimate Age at
Transition Estimate Age at

Transition

MALES FEMALES
I-II 3.63 37.76 3.54 34.53

II-III 4.58 97.24 4.22 68.01
ST DEV 0.74 0.49

b 1.35 2.04
Log-likelihood −214.93 −207.04
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Table 8. Transition analysis parameters for Buckberry and Chamberlain Phases on Portuguese
samples. Estimates and slope are on a log scale.

Parameter Estimate Age at
Transition Estimate Age at

Transition

MALES FEMALES
I-II 2.96 19.25 3.04 20.96

II-III 3.25 25.84 3.38 29.48
III-IV 3.50 32.98 3.55 34.92
IV-V 3.77 43.54 3.73 41.74
V-VI 4.00 54.73 3.94 51.48

VI-VII 4.26 71.03 4.20 66.90
ST DEV 0.30 0.30

b 3.30 3.29
Log-likelihood −293.97 −278.58

The HPDR table for the LJ method phases shows similar ranges for females and
males (Table 9). The regions increase with phases, which is expected due to increased
heterogeneity as one ages. In comparison with the HPDRs generated from the BC method
(Table 10), the Lovejoy method’s regions were narrower by phase. Both aging techniques
detected older ages.

Table 9. Highest posterior density (HPD) for each Lovejoy method phase with various high-
est posterior density regions (HPDR) in the American samples using Spitalfields samples as the
informative prior.

Phase HPD 75% HPDR 90% HPDR 95% HPDR

MALES
63.44% Realized Accuracy 83.87% Realized Accuracy 88.98% Realized Accuracy

I 18.00 18.00–25.24 18.00–29.15 18.00–31.91
II 25.18 18.71–33.95 18.00–39.25 18.00–43.31
III 34.85 25.2–48.2 22.01–55.12 20.26–59.78
IV 47.04 34.45–63.50 30.20–71.39 27.79–76.45
V 61.79 46.74–78.51 41.19–85.46 37.96–89.66
VI 73.28 57.96–88.06 51.75–93.81 48.01–97.23
VII 81.36 66.74–94.44 60.41–99.39 56.47–102.34
VIII 89.14 75.72–100.64 69.60–104.95 65.68–107.50

FEMALES
65.17% Realized Accuracy 85.39% Realized Accuracy 91.39% Realized Accuracy

I 18.00 18.00–26.07 18.00–30.15 18.00–32.99
II 27.77 20.53–37.61 18.26–42.33 18.00–46.27
III 37.94 27.96–51.49 24.58–58.49 22.68–63.27
IV 49.78 37.14–66.03 32.80–73.73 30.32–78.67
V 61.38 47.06–77.78 41.83–84.77 38.78–89.04
VI 69.65 54.76–85.02 48.98–91.18 45.53–94.88
VII 78.55 63.52–92.41 57.21–97.68 53.35–100.81
VIII 89.10 75.15–100.91 68.80–105.26 64.76–107.83
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Table 10. Highest posterior density (HPD) for each Buckberry and Chamberlain phase with various
highest posterior density regions (HPDR) in the American samples using Spitalfields samples as the
informative prior.

Phase HPD 75% HPDR 90% HPDR 95% HPDR

MALES
62.10% Realized Accuracy 79.03% Realized Accuracy 82.26% Realized Accuracy

I 18.00 18.0–27.9 18.00–33.52 18.00–37.62
II 26.01 18.04–37.69 18.00–45.99 18.00–51.78
III 35.63 24.04–52.85 20.56–61.58 18.75–67.09
IV 48.89 33.73–68.74 28.79–77.53 26.05–82.83
V 62.67 45.38–80.84 38.99–87.96 35.30–92.15
VI 73.36 55.94–89.12 48.76–94.96 44.46–98.39
VII 85.00 68.86–98.19 61.43–102.93 56.73–105.69

FEMALES
50.56% Realized Accuracy 64.79% Realized Accuracy 71.16% Realized Accuracy

I 18.00 18.00–29.89 18.00–36.4 18.00–41.12
II 30.17 20.19–45.36 18.00–53.57 18.00–60.24
III 40.48 27.42–59.57 23.43–69.00 21.29–74.91
IV 50.11 34.67–70.38 29.65–79.29 26.85–84.62
V 61.88 44.29–80.81 37.92–88.22 34.27–92.54
VI 73.38 55.31–89.61 47.93–95.55 43.54–99.01
VII 86.43 69.86–99.59 62.13–104.23 57.21–106.92

The cumulative binomials (Table 11) show that neither method’s accuracy met the
corresponding coverage level; they all significantly underperformed. However, the realized
accuracies for the Lovejoy method coverages were still good–excellent, especially for the
90% coverage, yielding approximately 91% accuracy in females and 89% accuracy in
males. Biases indicate that the LJ technique overaged for both sexes, while the BC method
underaged females and overaged males. In general, the bias was greater for the BC method.
Taken together, the results from the LJ method technique were superior to BC—at least for
the American target sample.

Table 11. Cumulative binomial tests of the performance of the Lovejoy (LJ) and Buckberry and
Chamberlain (BC) methods on American holdout samples using Portuguese transition analysis
parameters and Spitalfields samples as the informative prior.

Method CI Number of Successes Number of Failures p-Value Probability of Success Bias

MALES

LJ 75% 236 136 <0.0001 0.63 7.95

LJ 90% 312 60 0.0003 0.84 8.33

LJ 95% 331 41 <0.0001 0.89 8.62

BC 75% 231 141 <0.0001 0.62 10.85

BC 90% 294 78 <0.0001 0.79 10.77

BC 95% 306 66 <0.0001 0.82 11.49

FEMALES

LJ 75% 174 93 0.0004 0.65 7.99

LJ 90% 228 39 0.0183 0.85 8.04

LJ 95% 244 23 0.0109 0.91 8.09

BC 75% 135 132 <0.0001 0.51 −10.91

BC 90% 173 94 <0.0001 0.65 −11.02

BC 95% 190 77 <0.0001 0.71 −11.08

Bold indicates significantly lower performance than probability.
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4. Discussion

Age estimation from the auricular surface of the ilium remains a popular method
utilized by forensic anthropologists, with the LJ method garnering more than twice as
many practitioners as the BC method in a recent survey [35]. The BC method is reportedly
easier to apply and outperforms the LJ method when no statistical manipulations are
applied [7,21,22]. The BC method should be the technique of choice when practitioners
are unable to use Bayesian statistics. However, previous work on Portuguese males [7]
strongly indicated that while both methods perform relatively equally when Bayesian
statistics are applied, the LJ method showed significant improvement under this rigorous
methodology compared with a traditional (i.e., non-Bayesian) approach. There is little
reason for forensic anthropologists to apply the traditional LJ method without the use
of a Bayesian approach. Additionally, the auricular surface of the ilium outperforms the
commonly used Suchey–Brooks pubic symphysis method, providing narrower age ranges
with better coverages (see ranges in Godde and Hens [3,4] for comparison).

This paper used Bayesian modeling to estimate age in modern Americans from both
sexes and supports our previous work modeling age in Portuguese males [7]. When con-
trasting these two aging methods on Americans of both sexes, the LJ method showed
narrower age ranges and lower bias, around 8%, compared with around 11% using BC. Ad-
ditionally, the LJ method showed higher realized accuracy at 75%, 90%, and 95% coverages,
and markedly so for females, where accuracy was between 15–20% higher using LJ. The
HPDRs reported here control for age mimicry, allowing age estimates to be applied across
different populations. Forensic anthropologists should feel comfortable using the HPDR
tables presented here, along with our previously published values for Portuguese males [7]
as look-up tables for their own data and avoiding non-Bayesian auricular surface aging,
especially for the LJ method. Indeed, Konigsberg et al. [6] argue that population-specific
age indicators are not as important as comparable age structures between populations.

Admittedly, we attempted to model age in the American sample previously but were
unable to find a comparable sample with a good fit to use as an informative prior. The
Bass Donated collection represents a sample of modern Americans drawn primarily from
Tennessee, but also other regions in the central south of the United States; one would
think comparable populations would abound. In a 2017 paper, Godde [8] noted the Bass
Collection Gompertz survivorship was significantly different than a cemetery from the
same city and the mortality data from the U.S. Census for the same county, state, and
country (also visible in Figures 3–5). Thus, we were challenged in finding a sample with a
similar age distribution until we accessed the data from Spitalfields and St. Brides. When
choosing a prior, it is customary to search for populations that are comparable in terms of
time and geography. Why would a sample of post-medieval Londoners have provided
such a good fit to modern Americans from the south? In particular, for females, the lower
survivorship of around age 83 and over almost mirrors post-medieval Europe. Additionally,
the roughly contemporary Portuguese sample, representing urban as well as rural-to-urban
migrants, also matched with the modern Americans. An exploration of the literature on
health and mortality provides some insights as to why it was so tough to fit a model to the
Bass collection.

In general, mortality in the United States is higher than in countries with similar
economies [36]. While health and mortality may vary due to numerous factors including
socioeconomic status, sex, and ethnicity, geography remains a significant factor. Geographic
inequality in adult mortality in the United States is greater than in western Europe [37]
and the central-southern section of the United States is one of the most disadvantaged [38],
especially since the mid-20th century [39].

The rural southern United States, especially Tennessee, Kentucky, Alabama, and
Mississippi, has higher rates of morbidity and mortality compared with other rural and
urban areas in the Northeast, Midwest, and Western United States [40,41]. In particular,
Appalachia and the Mississippi Delta regions have the lowest life expectancy in the country
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and the highest mortality rates due to various health issues [42–46]. People from Tennessee
and Appalachia are the main contributors to the Bass Donated collection [26].

Mortality rates in the last two decades in many southern states (including Tennessee)
were 30–40% higher than other regions of the United States—translating to 3–4 fewer years
of life expected at age 50 [36]. These values represent the effects of numerous environmental
and health hazards, including: smoking [36]; lower bone mineral density with higher
hip fracture rates [47]; nutritional disease [48]; growth stunting [49]; stroke [50,51]; and
high helminth load, with up to 55% of people affected by endemic whipworm, despite
campaigns to eradicate such infections [52]. Overall, these studies underscore the poorer
health and increased mortality risk from structural inequalities in populations from the
central south United States, which is the underlying population for the Bass Donated
collection. The health and mortality of these U.S. southerners more closely matches that
from post-medieval London and urbanizing Lisbon in the 1800s who would have been
affected with similar environments [28].

Despite the challenges inherent in modeling the Americans, we are successful in
providing highest posterior density ages and highest posterior age ranges for modern
American samples. Tests on a hold-out sample show realized accuracy in the 80–90% range.
The Bayesian approach is far superior to traditional (i.e., non-Bayesian) methods because it
controls for age mimicry, allowing age estimates to be applied across different populations.
Additionally, Bayesian methods provide prediction intervals and/or credible intervals.
Some forensic anthropologists may find the wide age ranges disappointing and hesitate
to apply them to their own casework. We would remind them that these estimates are
far superior to the traditional auricular surface age estimates alone and these statistical
approaches are necessary to meet Daubert criteria in American forensic science.
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