Next Article in Journal
Morphological Description and Molecular Analysis of Newly Recorded Asteroid, Henricia djakonovi Chichvarkhin, 2017 (Asteroidea: Spinulosida: Echinasteridae), from Dokdo Island, Korea
Previous Article in Journal
A New Species of Proctoporus (Reptilia, Gymnophthalmidae, Cercosaurinae) from the Puna of the Otishi National Park in Peru
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Phylogenomic Analysis Supports the Transfer of 20 Pathovars from Xanthomonas campestris into Xanthomonas euvesicatoria

1
Biosciences, University of Exeter, Exeter EX4 4QD, UK
2
Gibbet Hill Campus, School of Life Sciences, The University of Warwick, Coventry CV4 7AL, UK
3
Fera Science Ltd., York Biotech Campus, Sand Hutton, York YO41 1LZ, UK
*
Author to whom correspondence should be addressed.
Taxonomy 2023, 3(1), 29-45; https://doi.org/10.3390/taxonomy3010003
Submission received: 30 November 2022 / Revised: 2 January 2023 / Accepted: 4 January 2023 / Published: 6 January 2023

Abstract

:
The Gram-negative bacterial genus Xanthomonas includes numerous infra-specific taxa known as pathovars, which are defined primarily on host range and disease symptoms. With the advent of molecular sequence data, many pathovars have been transferred from X. campestris into other Xanthomonas species to better harmonise taxonomy and phylogeny. We performed whole-genome shotgun sequencing on pathotype strains of the following X. campestris pathovars: blepharidis, carissae, clerodendri, convolvuli, coriandri, daturae, euphorbiae, fici, heliotropii, ionidii, lawsoniae, mirabilis, obscurae, paulliniae, pennamericanum, spermacoces, uppalii, vernoniae, viegasii and zingibericola. These genomes showed more than 98% average nucleotide identity with the type-strain of X. euvesicatoria and less than 88% with the type-strain of X. campestris. We propose the transfer of these pathovars into X. euvesicatoria and present an emended species description for X. euvesicatoria.

1. Introduction

The genus Xanthomonas contains Gram-negative plant-associated bacteria, many of which are pathogens of crops, ornamentals, or other plants [1,2]. An important feature of Xanthomonas pathogen classification and nomenclature is the inclusion of infra-specific taxa known as pathovars, defined primarily on their host range. The taxonomy of pathovars is governed by the International Standards for Naming Pathovars of Phytopathogenic Bacteria [3]. These standards are devised by the Committee on the Taxonomy of Plant Pathogenic Bacteria under the auspices of the International Society for Plant Pathology.
Recently, there have been significant efforts to reconcile the taxonomy of Xanthomonas with phylogenetic relationships inferred from molecular sequence data as well as biochemical traits. Nevertheless, the taxonomic positions of some taxa are incongruent with their apparent evolutionary relationships. This is the case for more than 20 infra-specific taxa (i.e., pathovars) that are classified within the species X. campestris, yet appear to be only distantly related to the typestrain of this species, according to preliminary phylogenetic analysis based on the gyrB genetic locus [4]. In the present study, we perform a more robust phylogenetic analysis based on whole-genome sequencing rather than just that single locus. Thereby, we clarify the phylogeny and propose taxonomic revisions to reflect this.
The current inconsistencies between phylogeny and taxonomy can be explained by the historical context. Collectively, Xanthomonas bacteria cause disease in hundreds of plant species. However, most of these bacterial strains each causes disease on a narrow range of hosts, often a single plant genus or species. Before the advent of molecular methods, Xanthomonas pathogens were difficult to distinguish phenotypically other than by their host ranges and disease symptoms. Historically, the commonly accepted approach to taxonomy was to propose a new Xanthomonas species for each new host. This led to a proliferation of Xanthomonas species, with over 100 being listed in the 1951 edition of Elliott’s Manual of Bacterial Plant Pathogens [5]. Many of these species were subsequently lumped together as pathovars within a single species, X. campestris, in the 1974 edition of Bergey’s Manual of Determinative Bacteriology [6] and a 1978 proposal on nomenclature and classification for plant pathogenic bacteria [7].
After the lumping together of diverse pathogens into X. campestris, there followed a period of splitting. Based on DNA—DNA hybridisation studies, a major revision of Xanthomonas taxonomy created several new Xanthomonas species. Some pathovars were transferred out of X. campestris into these new species [8]. In that study, 66 pathovars were also identified as being ‘formerly’ within X. campestris but not yet transferred to any of the new species. The authors recommended referring to these as “Xanthomonas species”, without using a species name [8]. Although these authors generated fatty acid methyl ester (FAME) profiles for most of those 66 pathovars [9], they did not include these pathovars in their DNA—DNA hybridisation experiments nor their phenotypic analysis using the Biolog GN microplate system [8]. Therefore, this 1995 major update of Xanthomonas taxonomy did not assign these 66 pathovars to species [8].
Parkinson and colleagues furthered the case for additional Xanthomonas species in 2009. They performed an extensive survey of partial gyrB gene sequences across the genus [4]. This identified a number of X. campestris pathovars whose gyrB sequences were highly divergent from the X. campestris type strain. Many of these appeared to belong to what Parkinson called the “X. euvesicatoria species complex”. However, phylogenetic analysis based on a single genetic locus can be unrepresentative of the wider genome. Therefore, Constantin and colleagues subjected pathotype strains to multi-locus sequence analysis (MLSA), whole-genome sequencing, DNA—DNA hybridisation and phenotypic profiling [10]. This polyphasic study proposed the transfer of several X. campestris pathovars into X. euvesicatoria, X. citri, X. axonopodis, and X. phaseoli [10]. Recent studies formally proposed transfer of a further 20 X. campestris pathovars to X. citri [11] and two to X. vasicola [12].
Despite previous progress in resolving taxonomy of X. campestris pathovars, there remain many whose position is yet to be addressed, perhaps because of the limited genetic data available for these. In the present study, we perform whole-genome sequencing and phylogenetic analysis to argue that pathovars uppalii, lawsoniae, clerodendri, zingibericola, viegasii, pennamericanum, mirabilis, obscurae, paulliniae, daturae, convolvuli, carissae, fici, heliotropii, euphorbiae, vernoniae, spermacoces, coriandri, blepharidis, ionidii should be transferred from X. campestris into X. euvesicatoria. Furthermore, we confirm that pathovars aberrans, armoraciae, barbaraeae, incanae, papavericola, plantaginis, and raphani are phylogenetically close to the type-strain of X. campestris and so do not require transfer.

2. Materials and Methods

The bacterial strains used in this study are listed in Table 1 and were purchased from the National Collection of Plant Pathogens (NCPPB), York, United Kingdom. For the preparation of genomic DNA, bacteria were grown in plates with King’s B agar medium [13] at 28 °C for 48 h. Single colonies were picked and transferred to Universals with 10 mL King’s B broth medium and incubated overnight at 28 °C at 220 rpm. Next, 1.8 mL of culture was transferred to a 2 mL Eppendorf tube and centrifuged at 5000× g for 10 min. The supernatant was discarded, and another 1.8 mL of culture was added to this pellet, and tubes were centrifuged for 2 min at 5000× g. The pellets were used for DNA extraction immediately or flash-frozen in liquid nitrogen and stored at −20 °C until extraction. This procedure for bacterial growth is documented in protocols.io at https://dx.doi.org/10.17504/protocols.io.ewov1nr92gr2/v1 (accessed on 19 November 2022).
Genomic DNA was extracted using the Qiagen MagAttract HMW DNA kit following the manufacturer’s instructions with some modifications. This modified procedure for DNA extraction is documented in protocols.io at https://dx.doi.org/10.17504/protocols.io.5jyl89428v2w/v1 (accessed on 19 November 2022).
Sequencing libraries were prepared using the NEBNext® Ultra™ II FS DNA Library Prep kit (New England Biolabs) according to the manufacturer’s instructions. Libraries were sequenced at the University of Exeter’s DNA sequencing facility on the Illumina NovaSeq 6000 platform to generate paired 150-bp reads.
Sequence reads were assembled de novo using SPAdes version 3.15.1 [46] as described in protocols.io at https://dx.doi.org/10.17504/protocols.io.kxygxzrqzv8j/v1 (accessed on 19 November 2022). The resulting genome assemblies were annotated by the NCBI Prokaryotic Genome Annotation Pipeline (PGAP) [47]. Assembly quality was assessed using CheckM version 1.2.2 [48], selecting its markers for genus Xanthomonas. Pairwise average nucleotide identities (ANI) between genome assemblies were calculated using FastANI [49]. Phylogenomic analysis used PhaME [50] and FastTree [51] as described in the protocol at https://dx.doi.org/10.17504/protocols.io.261geny57g47/v1 (accessed on19 November 2022). The resulting phylogenetic tree was visualised using the Interactive Tree of Life [52].

3. Results

3.1. Genome Sequencing and Assembly

We sequenced the genomes of the pathotype strains for each of 32 pathovars of X. campestris, which are listed in Table 1. These sequenced strains included 20 pathovars whose gyrB sequences suggested a closer relationship to X. euvesicatoria rather than to X. campestris [4]. It also includes, as controls, strains that have recently been transferred from X. campestris into X. euvesicatoria [10] or X. citri [11]. A further set of controls comprised seven pathovars that are closely related to the type strain of X. campestris [4]. Finally, we include the pathotype strain of X. axonopodis pv. passiflorae [53], synonymous with X. campestris pv. passiflorae, which has been mentioned in the literature as “X. phaseoli pv. passiflorae” [54].
The raw sequencing reads and draft-quality genome assemblies are available in the Sequence Read Archive [55,56] via BioProject accessions PRJNA742925 and PRJNA774128. Summary statistics for the genome assemblies are provided in Table 2. Assemblies consisted of between 18 and 136 contigs with N50 lengths ranging between 93 and 996 kb. CheckM reported each assembly as more than 99.6% complete and no more than 1.71% contamination (see Table A2 in Appendix B).

3.2. Phylogenomic Reconstruction

The phylogenetic positions of many of these pathovars had previously been inferred on the basis of partial sequences of the gyrB locus. Therefore, we used our newly generated genome assemblies to explore the levels of genomic similarity, going beyond that single locus. We used PhaME [50] to infer the phylogeny based on whole-genome sequence data (Figure 1). The resulting tree included a clade that includes the type-strain of X. euvesicatoria together with the pathotype strains of X. euvesicatoria pathovars perforans, alangii, allii, raphani and physalidis (Figure 1). Into this clade also fell pathovars blepharidis, carissae, clerodendri, convolvuli, coriandri, daturae, euphorbiae, fici, heliotropii, ionidii, lawsoniae, mirabilis, obscurae, paulliniae, pennamericanum, spermacoces, uppalii, vernoniae, viegasii and zingibericola, suggesting that these 20 pathovars phylogenetically fall within the species X. euvesicatoria. Consistent with previous studies [4,11], pathovars merremiae and trichodesmae showed phylogenetic proximity to X. citri. Pathovars aberrans, armoraciae, barbaraeae, incanae, papavericola, plantaginis and raphani all fall close to the type-strain of X. campestris, as expected. Pathovar passiflorae falls closer to the type-strain of X. phaseoli than to X. axonopodis.

3.3. Species Delineation Based on Average Nucleotide Identity

The results of the genome-based phylogenetic analysis supported the proposition that 20 pathovars are evolutionarily much closer to X. euvesicatoria than to X. campestris (Figure 1). However, to delineate the bounds of bacterial species, the standard approach is to use genome-wide average nucleotide identity (ANI). Therefore, we calculated pairwise ANI between each of the pathotype strains and type strains of relevant Xanthomonas species. These ANI values are summarised in Table 3.
Pathovars blepharidis, carissae, clerodendri, convolvuli, coriandri, daturae, euphorbiae, fici, heliotropii, ionidii, lawsoniae, mirabilis, obscurae, paulliniae, pennamericanum, spermacoces, uppalii, vernoniae, viegasii and zingibericola each share more than 97% ANI with the type-strain of X. euvesicatoria. This is above widely accepted thresholds for delineating species boundaries at 94–96% [57,58,59,60,61]. On the other hand, these pathovars showed less than 86% ANI with the X. campestris type strain, well below the threshold for inclusion. This supports the transfer of these 20 pathovars from X. campestris into X. euvesicatoria.
Consistent with phylogeny, pathovars aberrans, armoraciae, barbaraeae, incanae, papavericola, plantaginis and raphani show high levels of ANI with the X. campestris type strain. These ANI values are all above 96%, supporting their current taxonomic position with this species. As expected, X. citri pv. merremiae, X. citri, pv. trichodesmae, X. euvesicatoria pv. alangii and X. euvesicatoria pv. physalidis each had >96% ANI to their respective species type-strains. Pathovar passiflorae showed 98.16% ANI with X. phaseoli but only 93.42% with X. axonopodis LMG 982T. This supports the transfer of this pathovar from X. axonopodis to X. phaseoli.
Table 3. Percentage average nucleotide identities (ANI) between genomes of the newly sequenced X. campestris pathotype strains versus genomes of type strains of X. campestris, X. citri and X. euvesicatoria [10,62,63]. Values of ANI exceeding 96% are highlighted in bold.
Table 3. Percentage average nucleotide identities (ANI) between genomes of the newly sequenced X. campestris pathotype strains versus genomes of type strains of X. campestris, X. citri and X. euvesicatoria [10,62,63]. Values of ANI exceeding 96% are highlighted in bold.
Pathovar and NCPPB NumberX. euvesicatoria LMG 27970 TX. campestris ATCC 33913 X. citri LMG 9322 X. phaseoli 49119
X. campestris pv. aberrans 298685.8098.6685.6585.88
X. campestris pv. armoraciae 34785.7498.1685.7985.88
X. campestris pv. barbareae 98385.7997.3185.8485.95
X. campestris pv. incanae 93785.7897.2985.7985.89
X. campestris pv. papavericola 297085.6696.4985.6085.78
X. campestris pv. plantaginis 106185.8896.4585.7885.79
X. campestris pv. raphani 194685.8397.2385.7285.80
X. phaseoli pv. passiflorae 234693.8685.9693.6598.16
X. citri pv. merremiae 311493.8585.8196.2093.91
X. citri pv. trichodesmae 58593.7785.8396.1693.82
X. euvesicatoria pv. alangii 133698.0185.8694.3394.18
[X. campestris] pv. blepharidis 175797.9085.8694.4594.11
[X. campestris] pv. carissae 237397.5485.8094.7394.12
[X. campestris] pv. clerodendri 57597.9885.8594.3194.08
[X. campestris] pv. convolvuli 249898.1385.9394.5094.14
[X. campestris] pv. coriandri 175897.9885.8994.4794.10
[X. campestris] pv. daturae 293298.7385.8594.2794.01
[X. campestris] pv. euphorbiae 182897.5785.9194.4194.10
[X. campestris] pv. fici 237298.0085.9194.4094.19
[X. campestris] pv. heliotropii 205797.5385.9794.3194.06
[X. campestris] pv. ionidii 133497.9285.8894.3894.08
[X. campestris] pv. lawsoniae 57998.0485.9094.4594.12
[X. campestris] pv. mirabilis 434898.0085.8494.3694.17
[X. campestris] pv. obscurae 375998.4285.9394.3794.11
[X. campestris] pv. paulliniae 307997.6985.8594.3694.37
[X. campestris] pv. pennamericanum 434997.4585.8094.2794.04
X. euvesicatoria pv. physalidis 175698.7485.9294.3194.10
[X. campestris] pv. spermacoces 176097.8385.8694.5094.10
[X. campestris] pv. uppalii 58698.3885.9594.3794.09
[X. campestris] pv. vernoniae 178798.1085.9594.4194.18
[X. campestris] pv. viegasii 435198.0585.9494.3194.18
[X. campestris] pv. zingibericola 435298.1085.8894.4794.23

4. Discussion

The species Xanthomonas campestris has encompassed numerous pathovars, which are assemblages of strains sharing similar host ranges and pathology. With the advent of cheap and easy molecular sequencing, it has become apparent that there is great genetic heterogeneity among strains classified as X. campestris and at least 38 species have been described for this genus [64]. Previous studies [4,8,10,12,65] have highlighted that many pathovars classified within X. campestris are more closely related to other Xanthomonas species than to the type strain of X. campestris. Consequently, recent taxonomic revisions have transferred many X. campestris pathovars into different species [10,11,12,66]. Nevertheless, there remain X. campestris pathovars whose taxonomy remains to be resolved in the light of genetic and genomic evidence.
Here, the results of our genome sequencing and phylogenomic analysis are consistent with recently published taxonomic revisions that place pathovars merremiae and trichodesmae within X. citri and pathovars alangii and physalidis in X. euvesicatoria [10]. These results further support the transfer of pathovar passiflorae within X. phaseoli and a further 20 pathovars into X. euvesicatoria.
We also sequenced type strains of pathovars aberrans, armoraciae, barbaraeae, campestris, incanae, papavericola, plantaginis, and raphani and investigated their evolutionary relationships. Consistent with previous studies that were limited to sequencing a single genetic locus [4], we find that these are closely related to the type strain of X. campestris and fall within the boundaries of this species as delineated by ANI [67]. Therefore, we do not here propose any changes to the taxonomy of these pathovars. However, we previously noted [68] confusion and redundancy in the nomenclature for X. campestris isolates that cause nonvascular leaf spot disease on Brassica spp. We reiterate the previous proposal that such isolates should be classified as X. campestris pv. raphani rather than armoraceae [68].
In summary, 20 X. campestris pathovars examined in the current study have not been previously transferred from X. campestris, though analysis of limited available DNA sequence suggested that phylogenetically there would be a case for doing so [4]. Here, we present draft genome assemblies for the pathotype strains of these 20 pathovars for the purpose of assigning them to species. All of these could thereby be unambiguously assigned to either X. euvesicatoria on the basis of a 96% threshold for genome-wide ANI. Below, we present emended taxonomic descriptions to implement the proposed taxonomic transfers.
Emended description of X. euvesicatoria Jones et al., 2006 [69,70] emend. Constantin et al., 2016 [10].
The characteristics of the genus and species of X. euvesicatoria are as previously described (Ah-You et al. [71], Constantin et al. [10], Vauterin et al. [8]). In addition to the pathovars described in Constantin et al. [10], we provide phylogenomic evidence for additional pathovars to constitute X. euvesicatoria.
Emended description of X. euvesicatoria pv. blepharidis (Srinivasan and Patel 1956 [28], Dye 1978 [7]) comb. nov.
=X. campestris pv. blepharidis (Srinivasan and Patel 1956 [28]) Dye 1978 [7]
Description as provided by Srinivasan and Patel [28], Bradbury [72] and phylogenomic comparisons in the present study. Pathotype strain: NCPPB 1757, ATCC 17995, ICMP 5722, LMG 557.
Emended description of X. euvesicatoria pv. carissae (Moniz et al., 1964 [29], Dye 1978 [7]) comb. nov.
=X. campestris pv. carissae (Moniz et al., 1964 [29]) Dye 1978 [7]
Description as provided by Moniz et al. [29], Bradbury [72] and phylogenomic comparisons in the present study. Pathotype strain: NCPPB 2373, ICMP 3034, LMG 669.
Emended description of X. euvesicatoria pv. clerodendri (Patel et al., 1952 [30], Dye 1978 [7]) comb. nov.
=X. campestris pv. clerodendri (Patel et al., 1952 [30]) Dye 1978 [7]
Description as provided by Patel et al. [30], Bradbury [72] and phylogenomic comparisons in the present study. Pathotype strain: NCPPB 575, ATCC 11676, ICMP 445, CIP 106789, LMG 684, DSMZ 13067, CCUG 43811.
Emended description of X. euvesicatoria pv. convolvuli (Nagarkoti et al., 1973, Dye 1978) comb. nov.
=X. campestris pv. convolvuli (Nagarkoti et al., 1973 [31]) Dye 1978 [7]
Description as provided by Nagarkoti et al. [31], Bradbury [72] and phylogenomic comparisons in the present study. Pathotype strain: NCPPB 2498, ICMP 5380, LMG 685.
Emended description of X. euvesicatoria pv. coriandri (Srinivasan et al., 1961 [32], Dye 1978 [7]) comb. nov.
=X. campestris pv. coriandri (Srinivasan et al., 1961 [32]) Dye 1978 [7]
Description as provided by Srinivasan et al., 1961 [32], Bradbury [72] and phylogenomic comparisons in the present study. Pathotype strain: NCPPB 1758, ATCC 17996, ICMP 5725, LMG 867.
Emended description of X. euvesicatoria pv. daturae (Jain et al., (1975) [33], Bradbury 1986) comb. nov.
=X. campestris pv. daturae (Jain et al., 1975) [33] Bradbury 1986 [72]
Description as provided by X. campestris f.sp. daturi Jain et al. [33], Bradbury [72] and phylogenomic comparisons in the present study. The original description of X. campestris pv. Daturae [72] used the epiphet “daturi”. However, the correct genitive singular form is daturae since Datura is feminine [73]. We note that daturae (rather than “daturi”) is the name adopted by other authors [4,8,74,75] and by the NCBI Taxonomy database [73] txid487861. Pathotype strain: NCPPB 2932.
Emended description of X. euvesicatoria pv. Euphorbiae (Sabet et al., 1969 [34], Dye [7] 1978) comb. nov.
=X. campestris pv. Euphorbiae (Sabet et al., 1969 [34]) Dye 1978 [7]
Description as provided by Sabet et al. [34], Bradbury [72] and phylogenomic comparisons in the present study. Pathotype strain: NCPPB 1828, ICMP 5730, LMG 863.
Emended description of X. euvesicatoria pv. Fici (Cavara 1905 [35], Dye 1978 [7]) comb. nov.
=X. campestris pv. fici (Cavara 1905 [35]) Dye 1978 [7]
Description as provided by Cavara [35], Duff [76], Jindal and Patel [77], Bradbury [72] and phylogenomic comparisons in the present study. Pathotype strain: NCPPB 2372, ICMP 3036, LMG 701.
Emended description of X. euvesicatoria pv. heliotropii (Sabet et al., 1969 [34], Dye 1978 [7]) comb. nov.
=X. campestris pv. heliotropii (Sabet et al., 1969 [34]) Dye 1978 [7]
Description as provided by Sabet et al. [34], Bradbury [72] and phylogenomic comparisons in the present study. Bradbury [72] notes that gelatin is hydrolysed, but not starch. Pathotype strain: NCPPB 2057, ICMP 5778, LMG 73.
Emended description of X. euvesicatoria pv. ionidii (Padhya and Patel 1963 [36] Dye 1978 [7]) comb. nov.
=X. campestris pv. ionidii (Padhya and Patel 1963 [36]) Dye 1978 [7]
Description as provided by Padhya and Patel 1963 [36], Bradbury [72] and phylogenomic comparisons in the present study. Pathotype strain: NCPPB 1755, ATCC 17993.
Emended description of X. euvesicatoria pv. Lawsoniae (Patel et al., 1951 [37], Dye 1978 [7]) comb. nov.
=X. campestris pv. lawsoniae (Patel et al., 1951 [37]) Dye 1978 [7]
Description as provided by Patel et al. [37], Bradbury [72] and phylogenomic comparisons in the present study. Pathotype strain: NCPPB 579, ATCC 11674, ICMP 319, LMG 756.
Emended description of X. euvesicatoria pv. mirabilis (ex Durgapal and Trivedi 1976 [38], Dye et al., 1991 [38]) comb. nov.
=X. campestris pv. mirabilis (ex Durgapal and Trivedi 1976 [38]) Dye et al., 1991 [78]
Description as provided by Durgapal and Trivedi [38]) Dye et al. [78], and phylogenomic comparisons in the present study. Pathotype strain: NCPPB 4348, ICMP 8949.
Emended description of X. euvesicatoria pv. obscurae (Chand and Singh 1994 [39]) comb. nov.
=X. campestris pv. obscurae Chand and Singh 1994 [39]
Description as provided by Chand and Singh [39] and phylogenomic comparisons in the present study. Pathotype strain: NCPPB 3759 (incorrectly reported as NCPPB 3359 in Chand and Singh [39]), ICMP 12547.
Emended description of X. euvesicatoria pv. paulliniae (Robbs et al., 1982 [40]) comb. nov.
=X. campestris pv. Paulliniae Robbs et al. 1982 [40]
Description as provided by Robbs et al. [40] and phylogenomic comparisons in the present study. Pathotype strain (holotype): NCPPB 3079, ICMP 8919, LMG 9053.
Emended description of X. euvesicatoria pv. Pennamericanum (Qhobela and Claflin 1988 [41]) comb. nov.
=X. campestris pv. Pennamericanum Qhobela and Claflin 1988 [41]
Description as provided by Qhobela and Claflin [41] and phylogenomic comparisons in the present study. Pathotype strain: NCPPB 4349, ICMP 9627, ATCC 49152.
Emended description of X. euvesicatoria pv. Spermacoces (Srinivasan and Patel 1956 [28], Dye 1978 [7]) comb. nov.
=X. campestris pv. Spermacoces (Srinivasan & Patel 1956 [28]) Dye 1978 [7]
Description as provided by Srinivasan & Patel [28], Bradbury [72] and phylogenomic comparisons in the present study. Pathotype strain: NCPPB 1760, ATCC 17998, ICMP 5751, LMG 868.
Emended description of X. euvesicatoria pv. Uppalii (Patel 1948 [42], Dye 1978 [7]) comb. nov.
=X. campestris pv. uppalii (Patel 1948 [42]) Dye 1978 [7]
Description as provided by Patel [42], Bradbury [72] and phylogenomic comparisons in the present study. Pathotype strain: NCPPB 586, ATCC 11641, ICMP 5756, LMG 893.
Emended description of X. euvesicatoria pv. vernoniae (Patel et al., 1968 [43], Dye 1978 [7]) comb. nov.
=X. campestris pv. vernoniae (Patel et al., 1968 [43]) Dye 1978 [7]
Description as provided by Patel et al. [43], Bradbury [72] and phylogenomic comparisons in the present study. Pathotype strain: NCPPB 1787, ICMP 5758, LMG 9058.
Emended description of X. euvesicatoria pv. viegasii (Robbs et al., 1989 [44]) comb. nov.
=X. campestris pv. viegasii Robbs et al., 1989 [44]
Description as provided by Robbs et al. [44], and phylogenomic comparisons in the present study. Pathotype strain: NCPPB 4351, ICMP 9261, IBSF 575.
Emended description of X. euvesicatoria pv. zingibericola (Ren and Fang 1981 [45], Bradbury 1986 [72]) comb. nov.
=X. campestris pv. zingibericola (Ren and Fang 1981 [45]) Bradbury 1986 [72]
Description as provided by Ren and Fang 1981 [45], Bradbury [72] and phylogenomic comparisons in the present study. Pathotype strain: NCPPB 4352, ICMP 8787, LMG 9060.
Emended description of X. phaseoli (ex Smith 1897 [79]) Gabriel et al., 1989 [80] emend. Constantin et al., 2016 [10]
The characteristics of the genus and species of X. phaseoli are as previously described (Ah-You et al. [71], Constantin et al. [10], Vauterin et al. [8], Smith 1897 [79]) Gabriel et al., 1989 [80]). In addition to the pathovars described in Constantin et al. [10], we provide phylogenomic evidence for an additional pathovar to constitute X. phaseoli.
Emended description of X. phaseoli pv. passiflorae (Pereira 1969 [27], Dye 1978 [7], Goncalves and Rosato 2000 [53]) comb. nov.
=X. axonopodis pv. Passiflorae (Pereira 1969 [27], Dye 1978 [7]) Goncalves and Rosato 2000 [53]
Description as provided by Pereira [27], Bradbury [72], Goncalves and Rosato [53] and phylogenomic comparisons in the present study. Pathotype strain: NCPPB 2346, ICMP 3151, LMG 810.

Author Contributions

Conceptualization, D.J.S. and J.G.V.; methodology, R.M.F.H., J.H. and M.R.G.; formal analysis, J.H. and D.J.S.; investigation, J.H., R.M.F.H. and M.R.G.; resources, A.A.; data curation, J.H. and D.J.S.; writing—original draft preparation, D.J.S., J.H. and J.G.V.; writing—review and editing, J.H., R.M.F.H., A.A., M.R.G., J.G.V. and D.J.S.; supervision, D.J.S., M.R.G. and J.G.V.; funding acquisition, M.R.G., J.G.V. and D.J.S. All authors have read and agreed to the published version of the manuscript.

Funding

This work was funded by a grant from BBSRC, NERC, Defra, and the Scottish Government, under the Strategic Priorities Fund Plant Bacterial Diseases programme under the project ‘Xanthomonas plants diseases: mitigating existing, emerging and future threats to UK agriculture’ (BB/T010916/1, BB/T010908/1 and BB/T010924/1). This project utilised DNA sequencing equipment funded by the Wellcome Trust (Multi-User Equipment Grant award number 218247/Z/19/Z). Bioinformatics analysis was carried out using MRC CLIMB Infrastructure MR/L015080/1.

Data Availability Statement

Sequencing data, including genome assemblies and reads, are accessible under BioProject accessions PRJNA742925 and PRJNA774128 at: https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA742925 (accessed on 19 November 2022) and https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA774128 (accessed on 19 November 2022). The phylogenetic tree shown in Figure 1 can be downloaded in various formats (including Newick, Nexus, PhyloXML, PNG, PDF) from https://itol.embl.de/tree/1441732315289491645433545 (accessed on 19 November 2022). Tree files and configuration files are also available from https://github.com/davidjstudholme/phylogenomics-Xanthomonas-2 (accessed on 19 November 2022).

Acknowledgments

We thank Shea Bailey from the National Collection of Plant Pathogenic Bacteria (NCPPB) for assistance in supplying the strains. We acknowledge the use of the University of Exeter’s Isca high-performance computing platform and the expert technical assistance of the University of Exeter’s Sequencing Facility. The authors are grateful to past members of the Xanthomonas Threats project team for helpful discussions.

Conflicts of Interest

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Appendix A

Table A1. Genome sequences used in phylogenomic analysis.
Table A1. Genome sequences used in phylogenomic analysis.
GenBank AccessionTaxonReference
GCA_019201075.1 [X. axonopodis] pv. passiflorae NCPPB 2346This study
GCA_019201485.1 [X. campestris] pv. blepharidis NCPPB 1757This study
GCA_019201365.1[X. campestris] pv. carissae NCPPB 2373This study
GCA_019201225.1[X. campestris] pv. clerodendri NCPPB 575This study
GCA_019201245.1[X. campestris] pv. convolvuli NCPPB 2498This study
GCA_019201305.1[X. campestris] pv. coriandri NCPPB 1758This study
GCA_019201325.1[X. campestris] pv. daturae NCPPB 2932This study
GCA_019201425.1[X. campestris] pv. euphorbiae NCPPB 1828This study
GCA_019201375.1[X. campestris] pv. fici NCPPB 2372This study
GCA_019201405.1[X. campestris] pv. heliotropii NCPPB 2057This study
GCA_019201465.1[X. campestris] pv. ionidii NCPPB 1334This study
GCA_019201185.1[X. campestris] pv. lawsoniae NCPPB 579This study
GCA_019201545.1 [X. campestris] pv. merremiae NCPPB 3114This study
GCA_019201145.1[X. campestris] pv. mirabilis NCPPB 4348This study
GCA_019201105.1[X. campestris] pv. obscurae NCPPB 3759This study
GCA_019201285.1[X. campestris] pv. paulliniae NCPPB 3079This study
GCA_019201165.1[X. campestris] pv. pennamericanum NCPPB 4349This study
GCA_019201445.1[X. campestris] pv. spermacoces NCPPB 1760This study
GCA_019201525.1[X. campestris] pv. trichodesmae NCPPB 585This study
GCA_019201115.1[X. campestris] pv. uppalii NCPPB 586This study
GCA_019201345.1[X. campestris] pv. vernoniae NCPPB 1787This study
GCA_019201265.1[X. campestris] pv. viegasii NCPPB 4351This study
GCA_019201205.1[X. campestris] pv. zingibericola NCPPB 4352This study
GCA_002939705.1X. albilineans CFBP 2523 T-
GCA_001013475.1X. arboricola CFBP 2528 T[81]
GCA_001401595.1X. axonopodis LMG 982 T-
GCA_017163705.1X. bonasiae FX4 T[82]
GCA_002939755.1X. bromi CFBP 1976 T[83]
GCA_020813115.1 X. campestris pv. aberrans NCPPB 2986This study
GCA_020731405.1 X. campestris pv. armoraciae NCPPB 347This study
GCA_020813315.1 X. campestris pv. barbareae NCPPB 983This study
GCA_000007145.1X. campestris pv. campestris ATCC 33913 T[62]
GCA_020813295.1 X. campestris pv. incanae NCPPB 937This study
GCA_020813015.1 X. campestris pv. papavericola NCPPB 2970This study
GCA_020813005.1 X. campestris pv. plantaginis NCPPB 1061This study
GCA_020813075.1 X. campestris pv. raphani NCPPB 1946This study
GCA_000454545.1X. cassavae CFBP 4642 T[84]
GCA_002019225.1X. cissicola LMG 21719 T[11]
GCA_002018575.1X. citri LMG 9322 T[85]
GCA_002939885.1X. cucurbitae CFBP 2542 T-
GCA_002939865.1X. dyei CFBP 7245 T-
GCA_900476395.1X. euroxanthea CPBF 424 T[86]
GCA_019193005.1X. euvesicatoria pv. alangii NCPPB 1336This study
GCA_017724035.1X. euvesicatoria pv. alfalfae CFBP3836[87]
GCA_000730305.1X. euvesicatoria pv. allii CFBP6369[88]
GCA_001401555.1X. euvesicatoria pv. euvesicatoria LMG 27970 T-
GCA_019192985.1X. euvesicatoria pv. physalidis NCPPB1756This study
GCA_001642575.1X. floridensis WHRI 8848 T[89]
GCA_900380235.1X. fragariae PD 885 T[90]
GCA_003064105.1X. hortorum NCPPB 939 T[91]
GCA_009769165.1X. hyacinthi CFBP 1156 T[92]
GCA_905142475.1X. hydrangeae LMG 31884 T[93]
GCA_022669045.1X. indica PPL560 T[94]
GCA_009192945.1X. maliensis LMG 27592 T[95]
GCA_900018785.1X. massiliensis SN8 T[96]
GCA_020783655.1X. melonis NCPPB 3434 T-
GCA_001660815.1X. nasturtii WHRI 8853 T[89]
GCA_004136375.1X. oryzae ICMP 3125 T[97]
GCA_013112235.1X. perforans DSM 18975 T-
GCA_022749655.1X. phaseoli ATCC 49119 T-
GCA_001010415.1X. pisi DSM 18956 T[98]
GCA_002940065.1X. populi CFBP 1817 T-
GCA_002846205.1X. prunicola CFBP 8353 T[99]
GCA_002940085.1X. sacchari CFBP 4641 T-
GCA_008119715.1X. sontii PPL1 T[100]
GCA_014836395.1X. surreyensis Sa3BUA13 T[101]
GCA_014236795.1X. theicola CFBP 4691 T[102]
GCA_020880735.1X. translucens ATCC 19319 T[103]
GCA_000772705.2X. vasicola NCPPB 2417 T[12]
GCA_001908725.1X. vesicatoria ATCC 35937 T[104]

Appendix B

Table A2. Assessment of completeness and contamination using CheckM.
Table A2. Assessment of completeness and contamination using CheckM.
GenBank AccessionPathovarCompleteness (%)Contamination (%)
GCA_020813115.1aberrans99.890.03
GCA_019193005.1alangii99.940.61
GCA_020731405.1armoraciae99.890.03
GCA_020813315.1barbareae99.850.03
GCA_019201485.1blepharidis99.890.03
GCA_020813135.1campestris99.770
GCA_019201365.1carissae99.940.41
GCA_019201225.1clerodendri99.940.36
GCA_019201245.1convolvuli99.940.03
GCA_019201305.1coriandri99.890.3
GCA_019201325.1daturae99.870.53
GCA_019201425.1euphorbiae99.890.03
GCA_019201375.1fici99.940.68
GCA_019201405.1heliotropii99.820.32
GCA_020813295.1incanae99.640.53
GCA_019201465.1ionidii99.890.15
GCA_019201185.1lawsoniae99.640.03
GCA_019201545.1merremiae99.810.34
GCA_019201145.1mirabilis99.940.22
GCA_019201105.1obscurae99.940.07
GCA_020813015.1papavericola99.891.71
GCA_019201075.1passiflorae99.890.42
GCA_019201285.1paulliniae99.890.03
GCA_019201165.1pennamericanum99.890
GCA_019192985.1physalidis99.940.03
GCA_020813005.1plantaginis99.890.53
GCA_020813075.1raphani99.890.11
GCA_019201445.1spermacoces99.890.03
GCA_019201525.1trichodesmae99.760.93
GCA_019201115.1uppalii99.620.25
GCA_019201345.1veroniae99.890.37
GCA_019201265.1viegasii99.940.03
GCA_019201205.1zingibericola99.890.18

References

  1. Timilsina, S.; Potnis, N.; Newberry, E.A.; Liyanapathiranage, P.; Iruegas-Bocardo, F.; White, F.F.; Goss, E.M.; Jones, J.B. Xanthomonas diversity, virulence and plant–pathogen interactions. Nat. Rev. Microbiol. 2020, 18, 415–427. [Google Scholar] [CrossRef]
  2. Jacques, M.-A.; Arlat, M.; Boulanger, A.; Boureau, T.; Carrère, S.; Cesbron, S.; Chen, N.W.G.; Cociancich, S.; Darrasse, A.; Denancé, N.; et al. Using ecology, physiology, and genomics to understand host specificity in Xanthomonas. Annu. Rev. Phytopathol. 2016, 54, 163–187. [Google Scholar] [CrossRef] [PubMed]
  3. Dye, D.W.; Bradbury, J.F.; Goto, M.; Hayward, A.C.; Lelliott, R.A.; Schroth, M.N. International standards for naming pathovars of phytopathogenic bacteria and a list of pathovar names and pathotype strains. Rev. Plant Pathol. 1980, 59, 153–168. [Google Scholar]
  4. Parkinson, N.; Cowie, C.; Heeney, J.; Stead, D. Phylogenetic structure of Xanthomonas determined by comparison of gyrB sequences. Int. J. Syst. Evol. Microbiol. 2009, 59, 264–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  5. Elliott, C. Manual of Bacterial Plant Pathogens, 2nd ed.; Chronica Botanica Company: Waltham, MA, USA, 1951. [Google Scholar]
  6. Dye, D.D.W.; Lelliott, R.A.R. Genus II. Xanthomonas Dowson 1939. In Bergey’s Manual of Determinative Bacteriology; Buchanan, R.E., Gibbons, N.E., Eds.; Williams & Wilkins Co.: Baltimore, MD, USA, 1974; pp. 243–249. [Google Scholar]
  7. Young, J.M.; Dye, D.W.; Bradbury, J.F.; Panagopoulos, C.G.; Robbs, C.F. A proposed nomenclature and classification for plant pathogenic bacteria. New Zeal. J. Agric. Res. 1978, 21, 153–177. [Google Scholar] [CrossRef]
  8. Vauterin, L.; Hoste, B.; Kersters, K.; Swings, J. Reclassification of Xanthomonas. Int. J. Syst. Bacteriol. 1995, 45, 472–489. [Google Scholar] [CrossRef] [Green Version]
  9. Yang, P.; Vauterin, L.; Vancanneyt, M.; Swings, J.; Kersters, K. Application of Fatty Acid Methyl Esters for the Taxonomic Analysis of the Genus Xanthomonas. Syst. Appl. Microbiol. 1993, 16, 47–71. [Google Scholar] [CrossRef]
  10. Constantin, E.C.; Cleenwerck, I.; Maes, M.; Baeyen, S.; Van Malderghem, C.; De Vos, P.; Cottyn, B. Genetic characterization of strains named as Xanthomonas axonopodis pv. dieffenbachiae leads to a taxonomic revision of the X. axonopodis species complex. Plant Pathol. 2016, 65, 792–806. [Google Scholar] [CrossRef]
  11. Bansal, K.; Kumar, S.; Patil, P.B. Phylo-taxonogenomics supports revision of taxonomic status of twenty Xanthomonas pathovars to Xanthomonas citri. Phytopathology 2021. [Google Scholar] [CrossRef]
  12. Studholme, D.J.; Wicker, E.; Abrare, S.M.; Aspin, A.; Bogdanove, A.; Broders, K.; Dubrow, Z.; Grant, M.; Jones, J.B.; Karamura, G.; et al. Transfer of Xanthomonas campestris pv. arecae and X. campestris pv. musacearum to X. vasicola (Vauterin) as X. vasicola pv. arecae comb. nov. and X. vasicola pv. musacearum comb. nov. and description of X. vasicola pv. vasculorum pv. nov. Phytopathology 2020, 110, 1153–1160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  13. King, E.O.; Ward, M.K.; Raney, D.E. Two simple media for the demonstration of pyocyanin and fluorescin. J. Lab. Clin. Med. 1954, 44, 301–307. [Google Scholar] [PubMed]
  14. Knösel, D. Eine an Kohl blattfleckenerzeugende Varietas von Xanthomonas campestris (Pammel) Dowson. Z. Pflanzenkrankh. Pflanzenschutz 1961, 68, 1–6. [Google Scholar]
  15. Sahin, F.; Miller, S.A. A new pathotype of Xanthomonas campestris pv. armoraciae that causes bacterial leaf spot of radish. Plant Dis. 1997, 81, 1334. [Google Scholar] [CrossRef] [PubMed]
  16. Mcculloch, L. A bacterial leaf spot of horse-radish caused by Bacterium campestre var. armoraciae, n. var. J. Agric. Res. 1929, 38, 269–287. [Google Scholar]
  17. Starr, M.P.; Burkholder, W.H. Lipolytic activity of phytopathogenic bacteria determined by means of spirit blue agar and its taxonomic significance. Phytopathology 1942, 32, 598–604. [Google Scholar]
  18. Burkholder, W.H. The black rot of Barbarea vulgaris. Phytopathology 1941, 31, 347–348. [Google Scholar]
  19. Kendrick, J.; Baker, K.F. Bacterial blight of garden stocks and its control by hot-water seed treatment. Bull. Calif. Agric. Exp. Stn. 1942, 665, 1–23. [Google Scholar]
  20. Mary, K.; McWhorter, F.P.; Smythe, C.V.; Williams, H.H. Bacterial blight of poppy caused by Bacterium papavericola, sp. nov. J. Agric. Res. 1930, 40, 1–9. [Google Scholar]
  21. Thornberry, H.H.; Anderson, H.W. Some bacterial diseases of plants in Illinois. Phytopathology 1937, 27, 946–949. [Google Scholar]
  22. White, H.E. Bacterial spot of radish and turnip. Phytopathology 1930, 20, 653–662. [Google Scholar]
  23. Padhya, A.C.; Patel, M.K. A new bacterial leaf-spot on Alangium lamarckii Thw. Curr. Sci. 1962, 31, 196–197. [Google Scholar]
  24. Srinivasan, M.C.; Patel, M.K.; Thirumalachar, M.J. Two bacterial leaf-spot diseases on Physalis minima and studies on their relationship to Xanthomonas vesicatoria (Doidge) Dowson. Proc. Natl. Acad. Sci. India 1962, 56, 93–96. [Google Scholar] [CrossRef]
  25. Pant, N.M.; Kulkarni, Y.S. Bacterial leaf-spot of Merremia gangetica (L.) Cufod. Biovigyanam 1976, 2, 207–208. [Google Scholar]
  26. Patel, M.K.; Kulkarni, Y.S.; Dhande, G.W. Some new bacterial diseases in plants. Curr. Sci. 1952, 21, 345–346. [Google Scholar]
  27. Pereira, A.L.G. Uma nova doença bacteriana do maracujá (Passiflora edulis, Sims) causada por Xanthomonas passiflorae n. sp. Arq. Inst. Biológico São Paulo 1967, 36, 163–174. [Google Scholar]
  28. Srinivasan, M.C.; Patel, M.K.; Thirumalachar, M.J. Three undescribed Species of Xanthomonas. Curr. Sci. 1956, 11, 366–367. [Google Scholar]
  29. Moniz, L.; Sabley, J.E.; More, W.D. A new bacterial canker of Carissa congesta in Maharashtra. Indian Phytopathol. 1973, 3, 105. [Google Scholar]
  30. Patel, M.K.K.; Kulkarni, Y.S.S.; Dhande, G.W. Two new bacterial diseases of plants. Curr. Sci. 1952, 21, 74–75. [Google Scholar]
  31. Nagarkoti, M.S.; Banerjee, A.K.; Swarup, J. Xanthomonas convolvuli spec. nov. causing leaf spot of Convolvulus arvensis in India. Indian J. Mycol. Plant Pathol. 1973, 3, 105. [Google Scholar]
  32. Srinivasan, M.C.; Patel, M.K.; Thirumalachar, M.J. A bacterial blight disease of coriander. Proc. Indian Acad. Sci.-Sect. B 1961, 53, 298–301. [Google Scholar] [CrossRef]
  33. Jain, K.L.; Dange, S.R.S.; Siradhana, B.S. Bacterial leaf spot of Datura metel caused by Xanthomonas campestris f. sp. daturi f. spec. nov. Curr. Sci. 1975, 44, 447. [Google Scholar]
  34. Sabet, K.A.; Ishag, F.; Khalil, O. Studies on the bacterial diseases of Sudan crops: VII. New records. Ann. Appl. Biol. 1969, 63, 357–369. [Google Scholar] [CrossRef]
  35. Cavara, F. Bacteriosi del fico. Atti dell’Accademia Gioenia Sci. Nat. Catania Ser. 4 1905, 14, 1–17. [Google Scholar]
  36. Padhya, A.C.; Patel, M.K. A new bacterial leaf-spot on Ionidium heterophyllum Vent. Indian Phytopathol. 1963, 16, 98–99. [Google Scholar]
  37. Patel, M.K.; Bhatt, V.V.; Kulkarni, Y.S. Three new bacterial diseases of plants from Bombay. Curr. Sci. 1951, 20, 326–327. [Google Scholar]
  38. Durgapal, J.C.; Trivedi, B.M. Bacterial blight of “Four-O’Clock”—A new disease in India. Curr. Sci. 1976, 45, 111–112. [Google Scholar]
  39. Chand, R.; Singh, P.N. Xanthomonas campestris pv. obscurae pv. nov. causal agent of leaf blight of Ipomoea obscura in India / Xanthomonas campestris pv. obscurae pv. nov. als Verursacher einer Blattfleckenkrankheit an Ipomoea obscura in Indien. Z. Pflanzenkrankh. Pflanzenschutz/J. Plant Dis. Prot. 1994, 101, 590–593. [Google Scholar]
  40. Robbs, C.F.; Medeiros, A.G.; Kimura, O. Mancha bacteriana das folhas do guaranazeiro causada por um novo patovar de Xanthomonas campestris. Arq. Univ. Fed. Rural Rio Janeiro 1982, 5, 195–201. [Google Scholar]
  41. Qhobela, M.; Claflin, L.E. Characterization of Xanthomonas campestris pv. pennamericanum pv. nov., causal agent of bacterial leaf streak of pearl millet. Int. J. Syst. Bacteriol. 1988, 38, 362–366. [Google Scholar] [CrossRef] [Green Version]
  42. Patel, M.K. Xanthomonas uppalii sp. nov. pathogenic on Ipomoea muricata. Indian Phytopathol. 1948, 1, 67–69. [Google Scholar]
  43. Patel, M.K.; Desai, S.G.; Patel, A.J. A new bacterial leaf-spot on Vernonia cinerea Less. Sci. Cult. 1968, 34, 220–221. [Google Scholar]
  44. Robbs, C.F.; Rodrigues Neto, J.; Malavolta Junior, V.A.; Kimura, O. Bacterial spot and blight of yellow-shrimp (Pachystachys lutea) caused by a new pathovar of Xanthomonas campestris. Summa Phytopathol. 1989, 15, 174–179. [Google Scholar]
  45. Ren, X.-Z.; Fang, Z.-D. Identification of the causal organism of the bacterial wilt of ginger. Acta Phytopathol. Sin. 1981, 11, 51–56. [Google Scholar]
  46. Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [Green Version]
  47. Tatusova, T.; DiCuccio, M.; Badretdin, A.; Chetvernin, V.; Nawrocki, E.P.; Zaslavsky, L.; Lomsadze, A.; Pruitt, K.D.; Borodovsky, M.; Ostell, J. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 2016, 44, 6614–6624. [Google Scholar] [CrossRef]
  48. Parks, D.H.; Imelfort, M.; Skennerton, C.T.; Hugenholtz, P.; Tyson, G.W. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015, 25, 1043–1055. [Google Scholar] [CrossRef] [Green Version]
  49. Jain, C.; Rodriguez-R, L.M.; Phillippy, A.M.; Konstantinidis, K.T.; Aluru, S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 2018, 9, 5114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  50. Shakya, M.; Ahmed, S.A.; Davenport, K.W.; Flynn, M.C.; Lo, C.C.; Chain, P.S.G. Standardized phylogenetic and molecular evolutionary analysis applied to species across the microbial tree of life. Sci. Rep. 2020, 10, 1723. [Google Scholar] [CrossRef] [PubMed]
  51. Price, M.N.; Dehal, P.S.; Arkin, A.P. FastTree 2—Approximately maximum-likelihood trees for large alignments. PLoS ONE 2010, 5, e9490. [Google Scholar] [CrossRef]
  52. Letunic, I.; Bork, P. Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021, 1–4. [Google Scholar] [CrossRef]
  53. Gonçalves, E.R.; Rosato, Y.B. Genotypic characterization of xanthomonad strains isolated from passion fruit plants (Passiflora spp.) and their relatedness to different Xanthomonas species. Int. J. Syst. Evol. Microbiol. 2000, 50, 811–821. [Google Scholar] [CrossRef] [Green Version]
  54. Cerqueira Melo, R.D.C.; Dorea Braganca, C.A.; Nogueira Pestana, K.; da Silva, H.S.A.; Ferreira, C.F.; Alves Santos de Oliveira, S. Improvement of the specific detection of Xanthomonas phaseoli pv. manihotis based on the pthB gene. Acta Sci. Agron. 2019, 41, e42708. [Google Scholar] [CrossRef] [Green Version]
  55. Kodama, Y.; Shumway, M.; Leinonen, R. The Sequence Read Archive: Explosive growth of sequencing data. Nucleic Acids Res. 2012, 40, D54–D56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  56. Leinonen, R.; Sugawara, H.; Shumway, M. The Sequence Read Archive. Nucleic Acids Res. 2011, 39, D19–D21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  57. Richter, M.; Rosselló-Móra, R. Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl. Acad. Sci. USA 2009, 106, 19126–19131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  58. Kim, M.; Oh, H.-S.; Park, S.-C.; Chun, J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int. J. Syst. Evol. Microbiol. 2014, 64, 346–351. [Google Scholar] [CrossRef]
  59. Ciufo, S.; Kannan, S.; Sharma, S.; Badretdin, A.; Clark, K.; Turner, S.; Brover, S.; Schoch, C.L.; Kimchi, A.; DiCuccio, M. Using average nucleotide identity to improve taxonomic assignments in prokaryotic genomes at the NCBI. Int. J. Syst. Evol. Microbiol. 2018, 68, 2386–2392. [Google Scholar] [CrossRef]
  60. Goris, J.; Konstantinidis, K.T.; Klappenbach, J.A.; Coenye, T.; Vandamme, P.; Tiedje, J.M. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int. J. Syst. Evol. Microbiol. 2007, 57, 81–91. [Google Scholar] [CrossRef]
  61. Konstantinidis, K.T.; Tiedje, J.M. Genomic insights that advance the species definition for prokaryotes. Proc. Natl. Acad. Sci. USA 2005, 102, 2567–2572. [Google Scholar] [CrossRef] [Green Version]
  62. da Silva, A.C.R.; Ferro, J.A.; Reinach, F.C.; Farah, C.S.; Furlan, L.R.; Quaggio, R.B.; Monteiro-Vitorello, C.B.; Van Sluys, M.A.; Almeida, N.F.; Alves, L.M.C.; et al. Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature 2002, 417, 459–463. [Google Scholar] [CrossRef]
  63. Bansal, K.; Midha, S.; Kumar, S.; Patil, P.B. Ecological and evolutionary insights into Xanthomonas citri pathovar diversity. Appl. Environ. Microbiol. 2017, 83, e02993-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  64. Parte, A.C.; Carbasse, J.S.; Meier-Kolthoff, J.P.; Reimer, L.C.; Göker, M. List of prokaryotic names with standing in nomenclature (LPSN) moves to the DSMZ. Int. J. Syst. Evol. Microbiol. 2020, 70, 5607–5612. [Google Scholar] [CrossRef]
  65. Parkinson, N.; Aritua, V.; Heeney, J.; Cowie, C.; Bew, J.; Stead, D. Phylogenetic analysis of Xanthomonas species by comparison of partial gyrase B gene sequences. Int. J. Syst. Evol. Microbiol. 2007, 57, 2881–2887. [Google Scholar] [CrossRef] [PubMed]
  66. Jacobs, J.M.; Pesce, C.; Lefeuvre, P.; Koebnik, R. Comparative genomics of a cannabis pathogen reveals insight into the evolution of pathogenicity in Xanthomonas. Front. Plant Sci. 2015, 6, 431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  67. Dubrow, Z.E.; Bogdanove, A.J. Genomic insights advance the fight against black rot of crucifers. J. Gen. Plant Pathol. 2021, 87, 127–136. [Google Scholar] [CrossRef]
  68. Vicente, J.G.; Everett, B.; Roberts, S.J. Identification of isolates that cause a leaf spot disease of brassicas as Xanthomonas campestris pv. raphani and pathogenic and genetic comparison with related pathovars. Phytopathology 2006, 96, 735–745. [Google Scholar] [CrossRef] [Green Version]
  69. Jones, J.B.; Lacy, G.H.; Bouzar, H.; Stall, R.E.; Schaad, N.W. Reclassification of the xanthomonads associated with bacterial spot disease of tomato and pepper. Syst. Appl. Microbiol. 2004, 27, 755–762. [Google Scholar] [CrossRef] [Green Version]
  70. List of new names and new combinations previously effectively, but not validly, published. Int. J. Syst. Evol. Microbiol. 2006, 56, 925–927. [CrossRef]
  71. Ah-You, N.; Gagnevin, L.; Grimont, P.A.D.D.; Brisse, S.; Nesme, X.; Chiroleu, F.; Bui Thi Ngoc, L.; Jouen, E.; Lefeuvre, P.; Vernière, C.; et al. Polyphasic characterization of xanthomonads pathogenic to members of the Anacardiaceae and their relatedness to species of Xanthomonas. Int. J. Syst. Evol. Microbiol. 2009, 59, 306–318. [Google Scholar] [CrossRef] [Green Version]
  72. Bradbury, J.F. Guide to Plant Pathogenic Bacteria; CAB International: Wallingford, UK, 1986; ISBN 0851985572. [Google Scholar]
  73. Schoch, C.L.; Ciufo, S.; Domrachev, M.; Hotton, C.L.; Kannan, S.; Khovanskaya, R.; Leipe, D.; McVeigh, R.; O’Neill, K.; Robbertse, B.; et al. NCBI Taxonomy: A comprehensive update on curation, resources and tools. Database 2020, 2020, baaa062. [Google Scholar] [CrossRef]
  74. Bull, C.T.; De Boer, S.H.; Denny, T.P.; Firrao, G.; Saux, M.F.-L.; Saddler, G.S.; Scortichini, M.; Stead, D.E.; Takikawa, Y. Comprehensive List of names of plant pathogenic bacteria, 1980-2007. J. Plant Pathol. 2010, 92, 551–592. [Google Scholar]
  75. Young, J.M.; Bull, C.T.; De Boer, S.H.; Firrao, G.; Saddler, G.E.; Stead, D.E.; Takikawa, Y. Names of plant pathogenic bacteria, 1864–2004. Rev. Plant Pathol. 2004, 75, 721–763. [Google Scholar]
  76. Duff, J. Angular leaf spot of ornamental Ficus spp. due to Xanthomonas campestris pv. fici. Australas. Plant Pathol. 1991, 20, 1–2. [Google Scholar] [CrossRef]
  77. Jindal, J.K.; Patel, P.N. Angular leaf spot of pipal (Ficus religiosa) due to Xanthomonas fici sp. nov. Indian Phytopathol. 1972, 15, 164–166. [Google Scholar]
  78. Young, J.M.; Bradbury, J.F.; Davis, R.E.; Dickey, R.S.; Ercolani, G.L.; Hayward, A.C.; Vidaver, A.K. Nomenclatural revisions of plant pathogenic bacteria and list of names 1980–1988. Rev. Plant Pathol. 1991, 70, 211–221. [Google Scholar]
  79. Smith, E.F. Description of Bacillus phaseoli n. sp. Bot. Gaz. 1897, 24, 192. [Google Scholar]
  80. Gabriel, D.W.; Kingsley, M.T.; Hunter, J.E.; Gottwald, T. Reinstatement of Xanthomonas citri (ex Hasse) and X. phaseoli (ex Smith) to species and reclassification of all X. campestris pv. citri strains. Int. J. Syst. Bacteriol. 1989, 39, 14–22. [Google Scholar] [CrossRef] [Green Version]
  81. Garita-Cambronero, J.; Palacio-Bielsa, A.; López, M.M.; Cubero, J. Comparative genomic and phenotypic characterization of pathogenic and non-pathogenic strains of Xanthomonas arboricola reveals insights into the infection process of bacterial spot disease of sone fruits. PLoS ONE 2016, 11, e0161977. [Google Scholar] [CrossRef] [Green Version]
  82. Mafakheri, H.; Taghavi, S.M.; Zarei, S.; Portier, P.; Dimkić, I.; Koebnik, R.; Kuzmanović, N.; Osdaghi, E. Xanthomonas bonasiae sp. nov. and Xanthomonas youngii sp. nov., isolated from crown gall tissues. Int. J. Syst. Evol. Microbiol. 2022, 72, 005418. [Google Scholar] [CrossRef]
  83. Hersemann, L.; Wibberg, D.; Blom, J.; Widmer, F.; Kölliker, R. Draft Genome sequence of the Xanthomonas bromi type strain LMG 947. Genome Announc. 2016, 4, e00961-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  84. Bolot, S.; Munoz Bodnar, A.; Cunnac, S.; Ortiz, E.; Szurek, B.; Noël, L.D.; Arlat, M.; Jacques, M.-A.; Gagnevin, L.; Portier, P.; et al. Draft Genome sequence of the Xanthomonas cassavae type strain CFBP 4642. Genome Announc. 2013, 1, e00679-13. [Google Scholar] [CrossRef] [Green Version]
  85. Gordon, J.L.; Lefeuvre, P.; Escalon, A.; Barbe, V.; Cruveiller, S.; Gagnevin, L.; Pruvost, O. Comparative genomics of 43 strains of Xanthomonas citri pv. citri reveals the evolutionary events giving rise to pathotypes with different host ranges. BMC Genom. 2015, 16, 1098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  86. Fernandes, C.; Martins, L.; Teixeira, M.; Blom, J.; Pothier, J.F.; Fonseca, N.A.; Tavares, F. Comparative genomics of Xanthomonas euroxanthea and Xanthomonas arboricola pv. juglandis strains isolated from a single walnut host tree. Microorganisms 2021, 9, 624. [Google Scholar] [CrossRef] [PubMed]
  87. Jacques, M.A.; Bolot, S.; Charbit, E.; Darrasse, A.; Briand, M.; Arlat, M.; Gagnevin, L.; Koebnik, R.; Noël, L.D.; Portier, P.; et al. High-quality draft genome sequence of Xanthomonas alfalfae subsp. alfalfae strain CFBP 3836. Genome Announc. 2013, 1, e01035-13. [Google Scholar] [CrossRef] [Green Version]
  88. Gagnevin, L.; Bolot, S.; Gordon, J.L.; Pruvost, O.; Vernière, C.; Robène, I.; Arlat, M.; Noël, L.D.; Carrère, S.; Jacques, M.-A.; et al. Draft genome sequence of Xanthomonas axonopodis pv. allii strain CFBP 6369. Genome Announc. 2014, 2, e00727-14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  89. Vicente, J.G.; Rothwell, S.; Holub, E.B.; Studholme, D.J. Pathogenic, phenotypic and molecular characterisation of Xanthomonas nasturtii sp. nov. and Xanthomonas floridensis sp. nov., new species of Xanthomonas associated with watercress production in Florida. Int. J. Syst. Evol. Microbiol. 2017, 67, 3645–3654. [Google Scholar] [CrossRef]
  90. Gétaz, M.; Krijger, M.; Rezzonico, F.; Smits, T.H.M.; van der Wolf, J.M.; Pothier, J.F. Genome-based population structure analysis of the strawberry plant pathogen Xanthomonas fragariae reveals two distinct groups that evolved independently before its species description. Microb. Genom. 2018, 4, e000189. [Google Scholar] [CrossRef]
  91. Michalopoulou, V.A.; Vicente, J.G.; Studholme, D.J.; Sarris, P.F. Draft genome sequences of pathotype strains for three pathovars belonging to three Xanthomonas species. Microbiol. Resour. Announc. 2018, 7, 4–5. [Google Scholar] [CrossRef] [Green Version]
  92. Cohen, S.P.; Luna, E.K.; Lang, J.M.; Ziegle, J.; Chang, C.; Leach, J.E.; Le-Saux, M.F.; Portier, P.; Koebnik, R.; Jacobs, J.M. High-Quality Genome resource of Xanthomonas hyacinthi generated via long-read sequencing. Plant Dis. 2020, 104, 1011–1012. [Google Scholar] [CrossRef] [Green Version]
  93. Dia, N.C.; Van Vaerenbergh, J.; Van Malderghem, C.; Blom, J.; Smits, T.H.M.; Cottyn, B.; Pothier, J.F. Xanthomonas hydrangeae sp. nov., a novel plant pathogen isolated from Hydrangea arborescens. Int. J. Syst. Evol. Microbiol. 2021, 71, 005163. [Google Scholar] [CrossRef]
  94. Rana, R.; Madhavan, V.N.; Saroha, T.; Bansal, K.; Kaur, A.; Sonti, R.V.; Patel, H.K.; Patil, P.B. Xanthomonas indica sp. nov., a novel member of non-pathogenic Xanthomonas community from healthy rice seeds. Curr. Microbiol. 2022, 79, 304. [Google Scholar] [CrossRef] [PubMed]
  95. Triplett, L.R.; Verdier, V.; Campillo, T.; Van Malderghem, C.; Cleenwerck, I.; Maes, M.; Deblais, L.; Corral, R.; Koita, O.; Cottyn, B.; et al. Characterization of a novel clade of Xanthomonas isolated from rice leaves in Mali and proposal of Xanthomonas maliensis sp. nov. Antonie Van Leeuwenhoek 2015, 107, 869–881. [Google Scholar] [CrossRef]
  96. Ndongo, S.; Beye, M.; Dubourg, G.; Nguyen, T.T.; Couderc, C.; Fabrizio, D.P.; Fournier, P.-E.; Raoult, D.; Angelakis, E. Genome analysis and description of Xanthomonas massiliensis sp. nov., a new species isolated from human faeces. New Microbes New Infect. 2018, 26, 63–72. [Google Scholar] [CrossRef]
  97. Mücke, S.; Reschke, M.; Erkes, A.; Schwietzer, C.-A.; Becker, S.; Streubel, J.; Morgan, R.D.; Wilson, G.G.; Grau, J.; Boch, J. Transcriptional Reprogramming of rice cells by Xanthomonas oryzae TALEs. Front. Plant Sci. 2019, 10, 162. [Google Scholar] [CrossRef] [PubMed]
  98. Naushad, S.; Adeolu, M.; Wong, S.; Sohail, M.; Schellhorn, H.E.; Gupta, R.S. A phylogenomic and molecular marker based taxonomic framework for the order Xanthomonadales: Proposal to transfer the families Algiphilaceae and Solimonadaceae to the order Nevskiales ord. nov. and to create a new family within the order Xanthomonadales. Antonie Van Leeuwenhoek 2015, 107, 467–485. [Google Scholar] [CrossRef]
  99. López, M.M.; Lopez-Soriano, P.; Garita-Cambronero, J.; Beltrán, C.; Taghouti, G.; Portier, P.; Cubero, J.; Fischer-Le Saux, M.; Marco-Noales, E. Xanthomonas prunicola sp. nov., a novel pathogen that affects nectarine (Prunus persica var. nectarina) trees. Int. J. Syst. Evol. Microbiol. 2018, 68, 1857–1866. [Google Scholar] [CrossRef]
  100. Bansal, K.; Kaur, A.; Midha, S.; Kumar, S.; Korpole, S.; Patil, P.B. Xanthomonas sontii sp. nov., a non-pathogenic bacterium isolated from healthy basmati rice (Oryza sativa) seeds from India. Antonie Van Leeuwenhoek Int. J. Gen. Mol. Microbiol. 2021, 114, 1935–1947. [Google Scholar] [CrossRef]
  101. Gilroy, R.; Ravi, A.; Getino, M.; Pursley, I.; Horton, D.L.; Alikhan, N.-F.; Baker, D.; Gharbi, K.; Hall, N.; Watson, M.; et al. Extensive microbial diversity within the chicken gut microbiome revealed by metagenomics and culture. PeerJ 2021, 9, e10941. [Google Scholar] [CrossRef]
  102. Koebnik, R.; Burokiene, D.; Bragard, C.; Chang, C.; Saux, M.F.-L.; Kölliker, R.; Lang, J.M.; Leach, J.E.; Luna, E.K.; Portier, P.; et al. The Complete Genome Sequence of Xanthomonas theicola, the causal agent of canker on tea plants, reveals novel secretion systems in Clade-1 xanthomonads. Phytopathology 2021, 111, 611–616. [Google Scholar] [CrossRef]
  103. Jaenicke, S.; Bunk, B.; Wibberg, D.; Spröer, C.; Hersemann, L.; Blom, J.; Winkler, A.; Schatschneider, S.; Albaum, S.P.; Kölliker, R.; et al. Complete genome sequence of the barley pathogen Xanthomonas translucens pv. translucens DSM 18974T (ATCC 19319T). Genome Announc. 2016, 4, e01334-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  104. Richard, D.; Boyer, C.; Lefeuvre, P.; Canteros, B.I.; Beni-Madhu, S.; Portier, P.; Pruvost, O. Complete genome sequences of six copper-resistant Xanthomonas strains causing bacterial spot of solaneous plants, belonging to X. gardneri, X. euvesicatoria, and X. vesicatoria, using long-read technology. Genome Announc. 2017, 5, e01693-16. [Google Scholar] [CrossRef] [PubMed]
Figure 1. Phylogenetic tree, based on core genome sequences, for the newly sequenced strains, species type strains and relevant pathovar pathotype strains of Xanthomonas, generated using PhaME [50] and FastTree [51]. The tree was graphically rendered using the Interactive Tree of Life [52]. Configuration and tree files are available from https://github.com/davidjstudholme/phylogenomics-Xanthomonas-2 (accessed on 19 November 2022). Grey circles indicate genomes sequenced in the present study. Clades corresponding to X. euvesicatoria, X. citri, X. phaseoli and X. campestris are indicated by strips of orange, cyan, brown and green, respectively. A list of accession numbers and references for the genome sequences is provided in Appendix A as Table A1.
Figure 1. Phylogenetic tree, based on core genome sequences, for the newly sequenced strains, species type strains and relevant pathovar pathotype strains of Xanthomonas, generated using PhaME [50] and FastTree [51]. The tree was graphically rendered using the Interactive Tree of Life [52]. Configuration and tree files are available from https://github.com/davidjstudholme/phylogenomics-Xanthomonas-2 (accessed on 19 November 2022). Grey circles indicate genomes sequenced in the present study. Clades corresponding to X. euvesicatoria, X. citri, X. phaseoli and X. campestris are indicated by strips of orange, cyan, brown and green, respectively. A list of accession numbers and references for the genome sequences is provided in Appendix A as Table A1.
Taxonomy 03 00003 g001
Table 1. Bacterial pathotype strains used in this study. Fatty acid methyl ester (FAME) clusters are shown according to their designation in the study by Yang and colleagues [9]. Those that belong to Yang’s FAME clusters 1 and 14 are indicated with those respective numbers. (1) Strains are related (>0.4 similarity index) to FAME cluster 1. Strains are remotely related (0.2–0.4 similarity index) to FAME cluster 1 [1].
Table 1. Bacterial pathotype strains used in this study. Fatty acid methyl ester (FAME) clusters are shown according to their designation in the study by Yang and colleagues [9]. Those that belong to Yang’s FAME clusters 1 and 14 are indicated with those respective numbers. (1) Strains are related (>0.4 similarity index) to FAME cluster 1. Strains are remotely related (0.2–0.4 similarity index) to FAME cluster 1 [1].
PathovarStrain NCPPB NumberHostFAME ClusterReferences
Controls: X. campestris
aberrans2986Brassica oleracea var. capitata2[14]
armoraciae347 Iberis sp.1[15,16,17]
barbareae983 Barbarea vulgaris7[18]
incanae937 Matthiola sp.2[19]
papavericola2970 Papaver rhoeas2[20]
plantaginis1061 Plantago lanceolata3[21]
raphani1946 Raphanus sativus2[22]
Controls: X. euvesicatoria
alangii1336 Alangium lamarckii1[10,23]
physalidis1756 Physalis minima1[10,24]
Controls: X. citri
merremiae3114 Merremia gangetica1[11,25]
trichodesmae585 Trichodesma zeylanicum1[11,26]
Control: X. phaseoli
passiflorae2346 Passiflora edulis1[27]
Transfer to Xanthomonas euvesicatoria
blepharidis1757 Blepharis boarhaavifolia1[28]
carissae2373 Carissa carandas1[29]
clerodendri575 Clerodendron sp.1[30]
convolvuli2498 Convolvulus arvensis(1)[31]
coriandri1758 Coriandrum sativum1[32]
daturae2932 Datura metelN.d.[33]
euphorbiae1828 Euphorbia acalyphoides1[34]
fici2372 Ficus religiosa(1)[35]
heliotropii2057 Heliotropium sudanicum[1][34]
ionidii1334 Ionidium heterophyllum1[36]
lawsoniae579 Lawsonia inermis[1][37]
mirabilis4348 Mirabilis jalapaN.d.[38]
obscurae3759 Ipomea obscuraN.d.[39]
paulliniae3079 Paullinia cupana(1)[40]
pennamericanum4349 Pennisetum americanumN.d.[41]
spermacoces1760 Spermacoce hispida14[28]
uppalii586 Ipomoea muricata(1)[42]
vernoniae1787 Vernonia cinerea(1)[43]
viegasii4351 Pachystachys luteaN.d.[44]
zingibericola4352 Zingiber officinale(1)[45]
Table 2. Summary statistics for genome sequence assemblies. All data can be accessed via BioProjects PRJNA742925 and PRJNA774128. All sequences strains are the pathotype strains for their respective pathovars.
Table 2. Summary statistics for genome sequence assemblies. All data can be accessed via BioProjects PRJNA742925 and PRJNA774128. All sequences strains are the pathotype strains for their respective pathovars.
Assembly AccessionStrain (NCPPB Number)Length (b.p.)Number of ContigsN50 Length (b.p.)
GCA_020813115.1aberrans 2986 5,136,50675145,536
GCA_020731405.1armoraciae 347 5,063,57772149,552
GCA_020813315.1barbareae 983 4,982,36562208,499
GCA_020813295.1incanae 937 4,916,31850191,313
GCA_020813015.1papavericola 2970 5,509,04446220,536
GCA_020813005.1plantaginis 1061 5,214,26376153,285
GCA_020813075.1raphani 1946 4,898,27053196,893
GCA_019193005.1alangii 1336 4,984,13020399,322
GCA_019192985.1physalidis 1756 5,125,39437354,850
GCA_019201545.1merremiae 3114 5,092,41553310,143
GCA_019201525.1trichodesmae 585 5,572,31082194,166
GCA_019201075.1passiflorae 2346 5,022,32068164,613
GCA_019201485.1blepharidis 1757 4,969,58758167,765
GCA_019201365.1carissae 2373 5,089,14113693,135
GCA_019201225.1clerodendri 575 5,097,10939312,137
GCA_019201245.1convolvuli 2498 4,982,28954201,220
GCA_019201305.1coriandri 1758 5,049,25034522,126
GCA_019201325.1daturae 2932 5,173,27746333,897
GCA_019201425.1euphorbiae 1828 4,926,79226995,918
GCA_019201375.1fici 2372 4,880,20187109,976
GCA_019201405.1heliotropii 2057 5,161,499120107,075
GCA_019201465.1ionidii 1334 4,974,03750264,595
GCA_019201185.1lawsoniae 579 5,050,397112114,657
GCA_019201145.1mirabilis 4348 5,091,73925745,972
GCA_019201105.1obscurae 3759 5,007,60961242,019
GCA_019201285.1paulliniae 3079 4,806,54318540,544
GCA_019201165.1pennamericanum 4349 5,014,17487133,002
GCA_019201445.1spermacoces 1760 5,070,62645344,807
GCA_019201115.1uppalii 586 4,954,10437305,235
GCA_019201345.1vernoniae 1787 4,961,49398150,860
GCA_019201265.1viegasii 4351 PT5,007,86538232,093
GCA_019201205.1zingibericola 4352 4,926,47431267,819
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Harrison, J.; Hussain, R.M.F.; Aspin, A.; Grant, M.R.; Vicente, J.G.; Studholme, D.J. Phylogenomic Analysis Supports the Transfer of 20 Pathovars from Xanthomonas campestris into Xanthomonas euvesicatoria. Taxonomy 2023, 3, 29-45. https://doi.org/10.3390/taxonomy3010003

AMA Style

Harrison J, Hussain RMF, Aspin A, Grant MR, Vicente JG, Studholme DJ. Phylogenomic Analysis Supports the Transfer of 20 Pathovars from Xanthomonas campestris into Xanthomonas euvesicatoria. Taxonomy. 2023; 3(1):29-45. https://doi.org/10.3390/taxonomy3010003

Chicago/Turabian Style

Harrison, Jamie, Rana M. F. Hussain, Andrew Aspin, Murray R. Grant, Joana G. Vicente, and David J. Studholme. 2023. "Phylogenomic Analysis Supports the Transfer of 20 Pathovars from Xanthomonas campestris into Xanthomonas euvesicatoria" Taxonomy 3, no. 1: 29-45. https://doi.org/10.3390/taxonomy3010003

Article Metrics

Back to TopTop