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Abstract: The refractive index of solids gauges their transparency to incident light, while the energy
gap determines the threshold for light absorption. This paper provides a mathematical formulation
for the relationship between the refractive index and the energy gap. It is also established that this
formulation aided in the unification of the Moss, Ravindra, and Herve–Vandamme relationships.
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1. Introduction

Light interacts with solids through several ways, depending on the material and
incident frequency under consideration. Many semiconductors are normally opaque to
some higher frequencies and transparent to lower frequencies. Insulators or dielectrics
are mostly transparent to visible light and metallic solids appear shiny as they reflect
practically any frequency of light. The complex refractive index is adequate to assess light
interaction with solids. Depending on the frequency of incident light, a material with
a real refractive index closer to unity is generally transparent to that incident light, and
transparency decreases with increasing refractive index. The energy gap, on the other
hand, defines the threshold for light absorption in solids. In semiconductors, opacity is
defined by incident photon energy surpassing the energy gap. Visible light is not absorbed
by insulators or dielectrics due to their wider energy gap. Because metallic solids lack
an energy gap, mobile electrons reflect incident photons, making them shine. As a result,
one can simply conclude that the refractive index has an inverse relationship with the energy
gap. Furthermore, the refractive index and the energy gap are two fundamental variables
that play an important role in understanding electronic, optical, or optoelectronic properties
in semiconductor-based devices [1–3]. In general, a material’s refractive index is a function
of frequency and doping, and various studies in the literature highlight the refractive
index’s dependence on thickness, voids, grain boundaries, and other parameters [4–6]. To
avoid such variations, it is best practice to consider the static refractive index determined
from the time-independent electric field, and it should be noted that this article only
addresses the static refractive index.

In 1950, Moss was the first to establish the inverse relationship between the refractive
index (n) and the energy gap (Eg) [7]. This relationship was built on the broad assumption
that all energy levels in a solid are scaled down by a factor of 1

ε2
e f f

, where εe f f is the

effective dielectric constant (εe f f ≈ n2). The photo effect process that occurs in the lattice
defects found in alkali halides provides support for this claim. Such lattice defect spots
behave as hydrogen-like centers where the electron behaves as an electron in an isolated
atom with a bulk-material-based dielectric constant. As a result, there appears to be
some correlation between the scale factor and the ionization energy of the hydrogen
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atom. Moss observed a good relationship between the experimental data of the threshold
long wavelength λ for photoconductive substances with the corresponding refractive
index n and found that the ratio n4

λ close to 77/µm. Regarding the energy gap, the Moss
relation becomes,

n4Eg = 95 eV (1)

The constant on the right-hand side of Equation (1) is found by fitting the data and
depends on the solids’ lattice structure. One of the limitations of the Moss relation is
the lack of uniqueness of its constant. According to Moss, the constant for zinc blend
and diamond structures lies within ±8% of 174 eV [8]. Based on the nature of the
constant, numerous adjustments to the Moss relation are made by better fitting the
experimental data. Ravindra and Srivastava [9] proposed the following revised value of
the Moss constant:

n4Eg = 108 eV (2)

Similarly, Reddy and Ahammed [10] altered the Moss’s relationship as,

n4(Eg − 0.365) = 154 eV (3)

Since the energy levels in a solid are highly complex and require band structure theory,
all of these variations are caused by a structural restriction on the Moss relation. Second,
the constant can vary amongst solids, ranging from direct to indirect interband transitions.

In 1979, Ravindra et al. [11] proposed an alternative linear empirical relation linking n
with Eg as follows:

n = K1 − K2Eg (4)

where the values of the constants K1 and K2, which were determined through empirical
fitting, are 4.084 and 0.62 eV−1, respectively. After a year, the mathematical underpinnings
of this linear relation were provided by Gupta and Ravindra [12], based on the Penn
model [13] and the Wemple–DiDomenico single oscillator model [14,15]. Their formulations
made the assumption that the valence and conduction bands are more or less parallel to
each other, at least along the symmetry axes, and that the difference between the Penn
gap or the oscillatory resonance energy with the energy gap is constant. In contrast to the
Moss relation, the Ravindra relation has no structural constraints. The latter relation, on the
other hand, places an upper limit on the refractive index (do not predict refractive index
beyond 4.1) and provides a good approximation for the intermediate value of the energy
gap (from 0.3 eV to 3.5 eV) in semiconductors. One serious limitation of the Ravindra
relation is that it gives negative indices for Eg > 6.6 eV.

In 1994, Herve and Vandamme [16] presented another n-Eg relationship based on the
classical oscillatory theory as,

n =

√
1 + (

A
Eg + B

)2 (5)

where A and B are constants. The value of B is thought to reflect a constant difference
between the UV resonance energy and the energy gap, which is 3.4 eV, whereas the constant
A was found by fitting to be 13.6 eV, which corresponds to the hydrogen ionization energy.
Except for IV–VI materials (PbS, PbSe, PbTe), the Herve–Vandamme relation provides
a good fit to the related experimental data for the majority of materials.

Since 1950, multiple empirical relations have been proposed by various researchers
to account for both the structural and the refractive index restrictions of the Moss and
Ravindra relations. There is still a lack of a robust theoretical foundation in this discipline.
Finkenrath [17] used the band theory in 1988 to theoretically develop the Moss-like relation
((εe f f − 1)2Eg = constant) and the Ravindra relation.



Solids 2023, 4 318

This paper’s main goal is to establish a single mathematical framework for the formu-
lation of Moss, Ravindra, and Herve–Vandamme relationships. Since these relationships
are empirical, the physical knowledge of the fitting parameters (constants) is limited.
Additionally, this work aims to shed light on these fitting parameters.

2. Mathematical Formulation

This model suggests an arbitrary function f (Eg), which is expressed as a power series
of Eg as,

f (Eg) =
∞

∑
λ=0

(−1)λKλEλp
g = Ko +

∞

∑
λ=1

(−1)λKλEλp
g (6)

where p is a number and it will be shown here that for a suitable value of p, the series (6)
converges to

Ko

[
1 +

Ep
g

Kp

]−1/p

(7)

if

Kλ =
Ko

λ!pλKλp

λ

∏
i=1

[1 + (i− 1)p], ∀λ ∈ I & λ ≥ 1 (8)

Proof. Starting from

f (Eg) = Ko +
∞

∑
λ=1

(−1)λKλEλp
g (9)

and substituting the value of Kλ from Equation (8) yields,

f (Eg) = Ko

[
1 +

∞

∑
λ=1
{ (−1)λ

λ!pλ
(

Eg

K
)λp

λ

∏
i=1

[1 + (i− 1)p]}
]

(10)

evaluating the summation and rearranging yields,

f (Eg) =Ko

[
1 + (− 1

p
)(

Ep
g

Kp ) +
1
2!
(− 1

p
)(− 1

p
− 1)(

Ep
g

Kp )
2+

1
3!
(− 1

p
)(− 1

p
− 1)(− 1

p
− 2)(

Ep
g

Kp )
3 +

1
4!
(− 1

p
)(− 1

p
− 1)

(− 1
p
− 2)(− 1

p
− 3)(

Ep
g

Kp )
4 + . . . . . .

]
(11)

The bracketed term is a well-known binomial series, which converges to Equation (7)

whenever | Ep
g

Kp |< 1

f (Eg) = Ko

[
1 +

Ep
g

Kp

]− 1
p

(12)

Conversely, let us define a function

g(
Ep

g

Kp ) =

[
1 +

Ep
g

Kp

]− 1
p

(13)
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then, the value of g and its derivatives at zero can be found as,

g(0) = 1 (14)

g(i)(0) = − 1
p

(15)

g(ii)(0) = (− 1
p
)(− 1

p
− 1) (16)

g(iii)(0) = (− 1
p
)(− 1

p
− 1)(− 1

p
− 2) (17)

g(iv)(0) = (− 1
p
)(− 1

p
− 1)(− 1

p
− 2)(− 1

p
− 3) (18)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (19)

g(λ)(0) =
1
pλ

λ

∏
i=1

[1 + (i− 1)p] (20)

This allows to express g(
Ep

g
Kp ) and f (Eg) as,

g(
Ep

g

Kp ) =
∞

∑
λ=0

g(λ)(0)
λ!

(
Ep

g

Kp )
λ (21)

f (Eg) = Ko

∞

∑
λ=0

g(λ)(0)
λ!

(
Ep

g

Kp )
λ (22)

Comparing Equation (22) with Equation (6) yields,

Kλ =
Ko

λ!pλKλp

λ

∏
i=1

[1 + (i− 1)p] (23)

Furthermore, the convergence condition | Ep
g

Kp |< 1 yields the following two possibilities:

(i) positive p and K > Eg ⇒ |
Ep

g
Kp |< 1;

(ii) negative p and Eg > K⇒ | Ep
g

Kp |< 1.

This completes the proof. Here, it is not disclosed regarding Ko and K. In the next
section, the search for the physical meaning of Ko, K, and p is implemented.

3. Ko, K, and p

The well-known Sellmeier dispersion model [18] is

n2 − 1 = ∑
i

Ai (24)

Ai is the empirical parameter that corresponds to the strength of undamped Lorentz
oscillators. Using a generalized Lorentz oscillator model [19],

n2 − 1 = ω2
p ∑

i

fi

ω2
i

(25)

where ωp is the plasma frequency and fi is the oscillator strength associated with transitions
at frequency ωi. Wemple and DiDomenico (WD) [14,15] suggested a single oscillator model
that could be considered dominant among other oscillators and proposed,

n2 − 1 =
F
E2

o
(26)
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F being the overall oscillator strength and being given as,

F = h̄2ω2
p ∑

i

ω2
j

ω2
i

fi (27)

ωj is the dominant oscillator frequency. Using the rth moment of the optical spectra and the
Kramers–Kronig relation [14,15], WD found that F = EoEd, where the parameters Eo and Ed
are the oscillator resonance energy and the dispersion energy, respectively. In terms of the
Sellmeier model, this can also be written for the jth dominant oscillator as Aj =

Ed
Eo

, where
Aj is the dominant oscillatory strength instead of the electric–dipole oscillator strength
associated with transitions at a specific frequency. Thus, the well known WD model is,

n2 = 1 +
Ed
Eo

(28)

If K is the separation of the dominant oscillator energy Eo from the minimum energy
gap Eg, then under the condition K > Eg, the WD model can be written as,

n2 =
Eo + Ed

K

[
1− (

Eg

K
) + (

Eg

K
)2 − (

Eg

K
)3 + . . . . . .

]
(29)

Equation (29) satisfies the requirement shown by Equation (8), and therefore enables
us to compare with Equation (11), which yields, p = 1 and,

Ko =
Eo + Ed

K
(30)

where,
K = Eo − Eg (31)

Hence, the required model for the refractive index n can be written as,

n2 =
∞

∑
λ=0

(−1)λKλEλ
g = Ko +

∞

∑
λ=1

(−1)λKλEλ
g (32)

and based on the convergence condition (i),

n2 = Ko

[
1 +

Eg

K

]−1
(33)

According to Equation (33), the relationship between n and Eg is inter-related to Eo
and Ed. Eo is the electronic oscillator’s amplitude, while Ed is known to be connected to
the geometry and chemical composition [14,15]. In most semiconductors, the refractive
index’s dependence on the energy gap is mostly governed by the UV oscillator energy
and, thus, it is plausible to consider K usually exceeds Eg. Furthermore, if p > 0 then K
might be expressed as K = (Ep

o − Ep
g )

1/p and, thus, from the band structure point of view,
p as a unity is more preferable at least for direct band gap materials, which has also been
justified by the WD model. Moreover, one can clearly notice that Ko is a unitless quantity
and K has a unit of energy. In the next section, it will be shown that Equation (33) is the
basis equation that can connect the Moss, Ravindra, and Herve–Vandamme relations and
offer insight on the physical understanding of the constants used in these relations.

4. Results
4.1. Moss Relation

By squaring Equation (33) and simplifying, one can easily understand that,
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n4Eg =
K2

o K

2 + Eg
K + K

Eg

(34)

One can estimate the Moss constant from the WD’s constant–conductivity dielectric
model [14,15], which approximate the ratio Eo to Eg as,

Eo

Eg
=

√
3b2

b2 + b + 1
(35)

where b is a coefficient with a value of 3.4 for covalent solids and 2.1 for ionic solids.
Equation (35) allows us to write,

2 +
Eg

K
+

K
Eg

=
3b2

√
3b2
√

b2 + b + 1− (b2 + b + 1)
(36)

The term
[√

3b2
√

b2+b+1−(b2+b+1)
3b2

]
, therefore, has a value 0.217 for covalent solids and

0.185 for ionic solids. This suggests to write the Moss relation as,

n4Eg = [0.185, 0.217]× K2
o K ≈ 0.2× K2

o K (37)

The WD’s constant–conductivity dielectric model assumes the ratio Eo
Eg

= 0.8
√

b ≈ 1.33,
and in many solids, this ratio roughly ranges from 1.7 to 2.0, which might cause slight
changes in the Moss constant. Table 1 highlights the calculated values of the Moss constant
for different materials.

Table 1. The data in columns 3 and 4 are from sources [14,15] and the rest are calculated. Columns 5,
6, and 7 show the computed Ravindra, Herve-Vandamme (H-V), and Moss constants, respectively.
The data in the second and last columns are taken from source [20].

Eg(eV) Eo(eV) Ed(eV)
Ravindra
Constants:
K1; K2

H-V
Constants:
A; B

Moss
Constant n(exp)

C 5.4 10.9 49.7 3.32; 0.30 23.27; 5.5 166.91 2.35

Si 1.1 4.0 44.4 4.08; 0.70 13.32; 2.9 161.06 3.46

Ge 0.67 2.7 41.0 4.64; 1.14 10.52; 2.03 175.51 4.0

GaAs 1.43 3.55 33.5 4.18; 0.98 10.90; 2.12 155.76 3.3

GaP 2.24 4.46 36.0 4.27; 0.96 12.67; 2.22 184.34 2.9

InSb 0.18 2.3 35.0 4.19; 0.99 8.97; 2.12 47.34 3.95

AlP 2.45 5.6 34.9 3.58; 0.57 13.98; 3.15 128.14 2.75

AlAs 2.18 4.7 33.7 3.90; 0.77 12.58; 2.52 145.52 3.0

LiF 12.50 17.1 14.9 2.63; 0.28 15.96; 4.6 43.77 1.39

NaF 10.5 15 11.3 2.42; 0.27 13.01; 4.5 32.28 1.33

KF 10.3 14.8 12.3 2.45; 0.27 13.50; 4.5 34.53 1.36

NaCl 8.9 10.3 13.6 4.13; 1.47 11.83; 1.40 47.92 1.54

KCl 8.5 10.5 12.3 3.38; 0.84 11.96; 2 40.08 1.49

RbCl 8.3 10.4 12.2 3.28; 0.78 11.26; 2.1 39.19 1.49

CsCl 8 10.6 14 3.97; 0.59 12.18; 2.60 43.09 1.61

KBr 7.6 9.2 12.4 3.67; 1.15 10.68; 1.60 41.90 1.55

RbBr 7.2 9.1 12.1 3.34; 0.88 10.54; 1.90 39.08 1.55
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Table 1. Cont.

Eg(eV) Eo(eV) Ed(eV)
Ravindra
Constants:
K1; K2

H-V
Constants:
A; B

Moss
Constant n(exp)

KI 6.17 7.7 12.8 3.66; 1.19 9.92; 1.53 43.73 1.67

RbI 5.8 7.7 12.1 3.23; 0.85 9.65; 1.90 38.35 1.64

CsCl 8.0 10.6 17.1 3.26; 0.63 13.46; 2.6 54.63 1.61

CsBr 7.0 9.4 17 3.32; 0.69 12.64; 2.40 55.21 1.67

CsI 6.3 7.5 15.2 4.35; 1.81 10.67; 1.20 57.71 1.82

TlCl 2.11 5.8 20.6 2.67; 0.36 10.93; 3.69 43.71 2.08

TlBr 2.68 5.3 21.7 3.21; 0.61 10.72; 2.62 69.55 2.25

CaF2 11.8 15.7 15.9 2.84; 0.36 15.80; 3.90 47.80 1.43

BaF2 10.5 13.8 15.9 3.0; 0.45 14.81; 3.3 48.63 1.47

AgCl 5.13 7.4 22 3.6; 0.80 12.76; 2.27 80.97 1.9

CuCl 3.31 7.3 18.1 2.52; 0.31 11.49; 3.99 40.07 2.19

ZnO 3.7 6.4 17.1 2.95; 0.55 10.46; 2.70 49.88 1.92

CdS 2.4 4.9 20.4 3.18; 0.64 9.99; 2.5 63.98 2.38

CdSe 1.74 4.0 20.6 3.29; 0.73 9.08; 2.26 65.81 2.49

ZnS 3.54 6.15 25.2 3.46; 0.66 12.45; 2.61 91.98 2.27

MgO 7.8 11.3 22.0 3.08; 0.44 15.77; 3.5 67.74 1.62

CaO 6.26 9.9 22.6 2.98; 0.41 14.96; 3.64 67.46 1.39

Al2O3 6.96 13.4 27.5 2.52; 0.195 19.19; 6.44 64.84 1.63

Y3 Al5O12 6.5 11.1 25.4 2.82; 0.31 16.80; 4.60 70.28 1.71

TeO2 3.7 6.24 23.2 3.40; 0.67 12.03; 2.54 82.36 2.2

SrTiO3 4.10 5.68 23.7 4.31; 1.36 11.60; 1.58 109.70 2.38

BaTiO3 4.12 5.57 23.3 4.46; 1.54 11.40; 1.45 110.68 2.4

KTaO3 3.70 6.50 23.7 3.28; 0.58 12.41; 2.8 79.87 2.2

LiTaO3 4.7 7.49 26.1 3.47; 0.62 13.98; 2.80 94.53 2.18

LiNbO3 4.0 6.65 25.9 3.50; 0.66 13.12; 2.65 95.83 2.34

TiO2 3.2 5.24 25.7 3.89; 0.95 11.60; 2.04 111.56 2.72

MgAl2O4 7.80 12.1 23.3 2.87; 0.33 16.80; 4.3 66.76 1.52

CaWO4 4.20 9.15 23.3 2.56; 0.25 14.60; 4.95 52.82 1.81

ZnWO4 3.56 7.46 26.0 2.93; 0.37 13.93; 3.9 71.62 2.1

CaMoO4 4.50 8.26 23.0 2.88; 0.38 13.78; 3.76 64.45 1.90

PbMoO4 3.2 5.40 22.60 3.56; 0.81 11.04; 2.2 86.03 2.2

SrMoO4 4.16 8.60 21.30 2.60; 0.29 13.53; 4.44 50.28 1.85

SiO2 9.3 13.6 18.3 2.72; 0.32 15.77; 4.30 51.16 1.46

ZnS 3.54 6.36 26.1 3.39; 0.60 12.88; 2.82 92.21 2.27

ZnSe 2.58 5.54 27.0 3.31; 0.56 12.23; 2.96 89.0 2.43

ZnTe 2.26 4.34 27.0 3.88; 0.93 10.82; 2.08 117.85 2.70

CdTe 1.58 4.13 25.7 3.42; 0.67 10.30; 2.55 82.42 2.7

PbS 0.286 3.5 55.33 4.28; 0.66 13.91; 3.21 80.55 4.1

PbSe 0.165 3.0 66.12 4.94; 0.87 14.08; 2.83 87.58 4.8

PbTe 0.190 2.2 66.80 5.86; 1.46 12.12; 2.01 186.90 5.6
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4.2. Ravindra Relation

As the Ravindra relation is a linear relation, it is produced by expanding Equation (33)
and approximating it by just taking into account the linear parts. This results in,

n =
√

Ko −
√

Ko

2K
Eg (38)

The similar linear relationship was derived by Gupta and Ravindra [12], who found
the values of

√
Ko (≈4.084) and

√
Ko

2K (≈0.62) by empirical fittings. Table 1 highlights the
calculated values of K1 and K2 for different materials.

4.3. Herve–Vandamme Relation

Herve and Vandamme made the assumption that K = B, or the constant difference
of “Eo−Eg” had a B parameter with a value of 3.4 eV. Replacing K with B and performing
a simple computation of Equation (33) yields,

n2 = 1 +
EdEo

(Eg + B)2 (39)

This shows that A =
√

EdEo. Conversely, beginning with EdEo = A2 produces the expression,

(K + Eg)
2
[

KoK
K + Eg

− 1
]
= A2 (40)

This eventually leads to,

Ko

[
1 +

Eg

K

]−1
= 1 +

A2

(Eg + B)2 (41)

Using empirical fitting of the experimental data, they computed A to be 13.6 eV and
regarded it as the ionization energy of a hydrogen atom. Table 1 highlights the calculated
values of A and B for different materials.

5. Discussion
5.1. Empirical Fitting Constants

So far, it has been shown that the empirical fitting constants associated with the
Moss, Ravindra, and Herve–Vandamme relationships are connected to Ko and K, which
are functions of Eo and Ed. These constants are thus specific to each material, and their
numerical values were previously determined through empirical fitting. Table 1 highlights
the computed values of these constants for different materials. Originally, the Ravindra
constants K1 and K2 were estimated to be 4.084 and 0.62 eV−1, respectively. Moss utilized
the same original value of K2 as 0.62 eV−1 and computed K to be 6.6 eV, which is quite
unrealistic, and so proposed new values of K1 and K2 of 3.9 and 1.02 eV−1, respectively [21].
In contrast to Moss, this study (Equation (38)) calculates Ko to be 16.68 and K to be 3.29 eV
using the same original constants K1 and K2. Later on, Ravindra et al. [22] proposed
more updated values of K1 and K2 to be 4.16 and 0.85 eV−1. With the help of Ravindra
two constants, the single Moss constant can also be predicted using Equation (37). The
predicted value of the Moss constant using the original K1 and K2 is 183.24 eV; Moss
estimated K1 and K2 is 88.42 eV, and Ravindra later updated K1 and K2 is 146.47 eV. The
Herve–Vandamme relation can also be used to predict the lowest bound of the Moss

constant. As K2
o K = (Ed+Eo)2

K , and so K2
o K =

4(
Ed+Eo

2 )2

K . Since Ed+Eo
2 ≥

√
EdEo, this implies

K2
o K ≥ 4EdEo

K . Figure 1 shows the values of the refractive indices of various materials
calculated using the Moss, Ravindra, and Herve–Vandamme relationships, as well as with
Equation (33), and compared with their respective experimental values. The Moss and
Herve–Vandamme predictions have a root mean squared error of about 0.33, while the
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Ravindra predictions have a root mean squared error of about 1.80. Equation (33) shows
a prediction error of around 0.10.
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Figure 1. Calculated refractive indices in comparison to their respective experimental values.

According to Moss, the relationship between the refractive index and the energy gap
must be the result of a close relationship between the energy gap and the UV absorption
peak, with K = Eo − Eg being one of the simplest assumptions [21]. This notion is directly
used in the Herve–Vandamme relation, which assumes that the difference between the
UV resonance energy and the energy gap is constant and assigns it a value of 3.4 eV [16],
whereas the Ravindra relation implicitly assigns it a value of 3.29 eV. Unlike the Moss
relation, the presence of two constants in the Ravindra and Herve–Vandamme relations is
most likely due to one of the constants explicitly or implicitly representing this constant
difference. Moreover, this study also demonstrates that the WD model directly leads
to this simplest assumption of, K = Eo − Eg, which is sufficient to integrate the Moss,
Ravindra, and Herve–Vandamme relations. However, the true nature of the refractive
index dependence between the energy gap and the oscillator resonance energy remains
hidden. In other words, the WD model directly leads us to assume p as a unity, but whether
p = 1 is a true value or not is still unknown.

5.2. Convergence Criterion

The convergence criteria that leads to Equation (33) is | Eg
K |< 1. In order to satisfy the

requirement | Eg
K |< 1, Eo must be more than twice that of Eg (E0 > 2Eg), which, in turn,

satisfies the requirement K > Eg. Based on this criteria, one can claim that the Ravindra
relation should deviate when Eg > 3.29 eV and the Herve–Vandamme relation should
deviate when Eg > 3.4 eV. This claim is somehow true for the Ravindra relation but not
true for the Herve–Vandamme relation. Similarly for the Moss relation, it appears that the
denominator of the right-hand term in Equation (34) is quite independent of the condition
| Eg

K |< 1. Because if | Eg
K |< 1 then | K

Eg
|> 1, and if | Eg

K |> 1 then | K
Eg
|< 1, leaving

the term (2 +
Eg
K + K

Eg
) unchanged, resulting in the Moss constant being independent of

the condition. Moreover, there are materials such as KF, NaCl, NaBr (as one can see in
Table 1) where the convergence criteria | Eg

K |< 1 are violated but the indices predicted by
Equation (33) are close to their respective experimental values. This contradiction implies
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that n should fall exponentially on | Eg
K | until the ratio reaches unity, and then n should be

roughly constant with | Eg
K |. This means that two or more materials having similar Ed and

| Eg
K |> 1 have similar refractive indices. As a result, the variation of n with Eg should be of

an exponentially decreasing character, with asymptotes at n = 1.

5.3. Exceptional Materials

Moss stated in his work [21] that materials such as Ge, InSb, and PbS have almost the
same indices despite vastly different energy gaps. The Moss, Ravindra, and Herve–Vandamme
relationships also vary significantly in IV–VI materials such as PbS, PbSe, and PbTe, despite
these materials satisfying | Eg

K |< 1 [9,16,21]. These remarkable materials are infrared
materials, and the unique constant/constants generated by the empirical fitting of distinct
materials diverge substantially for such low gap materials. As previously demonstrated,
the constants are a function of Eo and Ed, and the variation in the refractive index is due to
the combined action of Eg or Eo, and Ed. The refractive indices of these materials are shown
in Table 2, and are well predicted by Equation (33).

Table 2. Computed values of refractive indices of different materials.

Eg(eV)
Moss Ravindra H-V Equation (33) n(exp)
(n) (n) (n) (n)

Ge 0.67 3.45 3.66 3.48 4.02 4.0

InSb 0.18 4.79 3.97 3.93 4.02 3.95

PbS 0.286 4.27 3.90 3.94 4.09 4.1

PbSe 0.165 4.89 3.98 3.94 4.79 4.8

PbTe 0.190 4.73 3.96 3.92 5.51 5.6

6. Conclusions

In conclusion, using the WD model, this paper formulates an accurate equation

relating n-Eg as n2 = Ko

[
1 + Eg

K

]−1
, where Ko and K can be found for each material based

on their respective Eo and Ed. It has been demonstrated that this equation can accurately
describe all types of materials (from low energy gaps to high energy gaps). Furthermore,
this formulation is sufficient for integrating the Moss, Ravindra, and Herve–Vandamme
relations and comprehending their empirical fitting constants.
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