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Abstract: This paper aims to investigate multiple large-strain topology-optimized structures, by
interpreting their overlay as a probability density function. Such a strategy is suited to finding an
optimum design of silicon electrodes subject to a random contact. Using this method, and prescribing
a zero net-force constraint on the global system, the optimum structure is identified with a Schwarz P
minimum-surface structure. Then, the optimum structure is subject to chemo-mechanically coupled
cycling, in terms of an irreversible thermodynamic process, which shows the interplay between the
mechanical and chemical fields. The Matlab-based optimization code is attached.
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1. Introduction

More than 60 years ago, Lucien Schmit [1] studied how to combine optimization
techniques with the finite element method (FEM), and later, Bensøe and Kikuchi reported
their seminal paper [2]. Since then, topology optimization techniques have been typically
used in lightweight design [3–7], where only a percentage of a given volume is occupied
by material, while meeting similar overall system stiffness requirements as the entire
body. Technological advances in additive manufacturing in particular, make it possible to
create structures that exceed conventional design [8]. However, optimum designs result
predominantly from prescribed static boundary condition problems [9,10], even if the
superordinate system is based on dynamic motion, e.g., a bicycle chain [11]. In such a
system, a tensile force acts on the individual link of the chain. The optimum shape of a plate
shows the positions for the bolted connections, see Figure 1. The resulting structure might
be subject to a low volume constraint, so recent optimization algorithms also account for,
e.g., buckling [12], fracture [13], or multi-material demands [14]. In addition, the optimum
structure might be part of a periodic structure (the chain) [15], and other manufacturing
constraints could be implemented by a projection-based approach [16].

(a) (b) (c)

F

F

initial volume
optimum structure

application

Figure 1. Optimizing a plate subjected to opposite forces at both ends leads to a bicycle chain link.
In (a), the initial volume is shown, (b) shows the optimum material distribution, and (c) is the
technical application.
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However, while it is similar, it is also different from the silicon (Si) electrode particles
in batteries, which are exposed to large deformations. According to [17], up to now, only
a few structural designs, such as porous, core-shell, yolk-shell, and solid nanostructures,
have been proposed for silicon anodes, some of them inspired by nature. However, recently,
the topology optimization of electrodes has gained more and more attention [18,19]. For
the anode design and the improvement of its electrochemical performance, it is crucial to
identify the repeated volume expansions (up to about 300% [20]) and contractions during
lithiation and de-lithiation, as the key failure mechanism of Si. Particle swelling leads
to structural pulverization, electrical disconnection between the active materials and the
current collector, continuous exfoliation, and consumption of the active Si and electrolyte
of active Si particles [17,21,22]. All these failures can be assigned to the topology of the
anode: (i) the increased consumption of the electrolyte (side reactions) could be related to a
high surface area, (ii) a materials-dependent fracture occurrence above a specific particle
size, and (iii) electrical conductivity issues due to point-to-point contact. As a result of
the swelling, interactions with adjacent particles occur randomly, as shown in Figure 2.
Most recently, contact has been added to the optimization, e.g., by [23–26]. Moreover,
it was found that the contact stress is in the range of diffusion-induced stress under the
free-expansion state [27].

Figure 2. Sketch of silicon particle contact during lithiation. The initially cylindrical rods swell over
time to balloon-shaped objects, and might touch each other.

A topology optimization problem is generally solved when finding the optimum
material distribution subject to specific demands such as maximum stiffness, maximum
conductivity, or others. The common algorithms rely on the finite element method, filtering
methods, and the formulation of an optimality criterion [28]. Although numerous tech-
niques exist in the scientific literature, e.g., evolutionary topology optimization (ETO [29]),
smooth-edged material distribution for optimizing topology (SEMDOT [30]), floating pro-
jection topology optimization (FPTO [31]), etc., there are two popular methods: the Solid
Isotropic Material with Penalization (SIMP) method and the Bidirectional Evolutionary
Structural Optimization (BESO) method. The SIMP method is the most widely utilized
approach, although the BESO method shows a fast convergence rate, with fewer iterations
than the SIMP method [32]. In the literature, mainly the optimization problems of a linear-
elastic material model are solved [32,33] and some studies address non-linear problems,
e.g., [34–36]. Recently, a two-dimensional BESO algorithm for non-linear problems has
been reported [32], which claims one can hardly find convenient and compact published code.

In this paper, the aim is to elaborate on the BESO approach, in terms of (i) extending
the code to 3D, (ii) making it comparable with the Matlab code reported in the SIMP
approach [37], (iii) validating the comparability between both approaches for small de-
formations, (iv) using the BESO approach for random large force interactions as typical
in silicon, and (v) defining an optimum structure at large strains by overlapping the single
results. Since we are interested in large deformations, we need to recap in Section 2.1, briefly,
some continuum mechanics-based essential equations of non-linear elasticity, cf. [38,39].
Then we proceed in Section 2.2 by solving the non-linear equations using FEM. Density-
based methods such as BESO and SIMP, and filtering techniques are briefly sketched in
Section 2.3. In Section 2.4, we state the optimization problem at large strains. How the
resulting structure must be modified to be used in a chemo-mechanically coupled inves-
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tigation is sketched in Section 2.5. Finally, we show and discuss the optimum results in
Section 3. The 3D non-linear optimization code is provided in Appendix A.

2. Materials and Methods

In the following, we elaborate on the governing equations and the method for solving
a non-linear optimization problem. In general, the structure of a software presupposes a
certain convention and symbolic expressions, which are declared in the following.

2.1. Continuum Mechanics

Any problem in elasticity is usually based on a strain–displacement relation, a constitu-
tive equation (stress–strain relation), a traction-stress relation, and the formulation of linear
and angular balance laws. Since all equations rely on the formulation of the displacement
of a material point, we embed it in the environment of continuous media first.

2.1.1. Displacement of Continuous Media

Let X refer to a point of a continuum in its reference (“material”) configuration
B0 ⊂ R3, and a motion moves the point to its actual (“spatial”) position x(X, t) at time t, in
the current configuration Bt ⊂ R3. Then, the corresponding displacement vector u, has the
shortest distance between x and X, and is defined by their difference as

u = x− X →


du = dx− dX (infinitesimal)
du = u(X + dX)− u(X) (finite difference)
u(X + dX) = u(X) + (∇u)dX + . . . (Taylor Series)

(1)

From Equation (1), there follows an expression for the differential line element

dx = [1 +∇u]dX = F dX (2)

directly, where 1 ∈ R3×3 is the identity matrix and F the deformation gradient. As usual,
variables are denoted with capital letters when referring to the reference configuration.
Moreover, the displacement has, in both configurations, the same values but different
arguments, U(X, t) = u(x, t).

2.1.2. Green–Lagrangian Strain Tensor

Both of the differential line elements in Equation (2), dx and dX, are associated with
a differential arc length, and their squares are coordinate-independent quantities. Thus,
the difference between the squares of the differential line elements

dx · dx− dX · dX =: dX · [ 2E dX] (3)

is considered as a measure of deformation, and defined as the Green–Lagrangian strain
tensor. Together with Equation (2), there follows an expression for the Green–Lagrangian
strain tensor

E = 1
2 [∇u + (∇u)T ] + 1

2 [∇u(∇u)T ] = ε + εN , (4)

which is based on the gradient of the displacement. As long as ‖∇u‖ � 1 is satisfied,
we are in the regime of infinitesimal strain theory, and then the strain tensor composes
additively, E ≈ ε = 1

2 (FT + F)− 1. Otherwise, the strain tensor composes multiplicatively,
E = 1

2 (FT F − 1), and measures how much the right Cauchy–Green tensor C = FT F differs
from 1.

2.1.3. Hooke’s Law

In a small strain regime, Hooke’s law for continuous media relates the Cauchy (“true”)
stresses σ ∈ R3×3 and the strains ε ∈ R3×3 by using a fourth-order elasticity tensor
C ∈ R3×3×3×3, σ = Cε. Due to the inherent and material symmetries, and the assumption
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of isotropic media, the elasticity tensor can be reduced to only two independent Lamé
parameters (λ, µ), and then the Cauchy stresses reads

σ = 2µε + λtr(ε)1 with λ =
Eν

(1 + ν)(1− 2ν)
and µ =

E
2(1 + ν)

(5)

Alternatively, the Lamé parameters can be expressed by using the Young’s modulus,
E, and Poisson number, ν.

2.1.4. Voigt Notation

Due to the symmetry of the Cauchy stress tensor, σ = σT , it can be condensed to an
array with six entries. Then, using a superscript V, to indicate Voigt notation, Hooke’s law
is rewritten as

σ = Cε → σV = CVεV where

{
σV = [σ11 σ22 σ33 σ23 σ13 σ12]

T

εV = [ε11 ε22 ε33 2ε23 2ε13 2ε12]
T (6)

Alternative arrangements of the off-diagonal stress-tensor entries are possible, e.g., as
used by the authors in [37], or given by the Nye notation which is often adapted due to
convention in other software coding. However, the elasticity tensor in Voigt notation is
dependent on the elasticity constants (E, ν) and partitioned into four 3× 3 blocks as

CV(E, ν) =
E

(1 + ν)(1− 2ν)

[
A 0
0 (1−2ν)

2 1

]
with A =

1− ν ν ν
ν 1− ν ν
ν ν 1− ν

 (7)

where 0 = 0 1 is a zero matrix.

2.1.5. Cauchy Traction Vector

Now, the stresses (6) are related to infinitesimal acting forces d f per infinitesimal area
of a region da, with outward normal n to the surface,

σn =
d f
da

=: t (8)

both in the spatial configuration, and defined as the Cauchy traction vector t.

2.1.6. Nanson’s Formula

The force-to-area ratio in Equation (8) refers to quantities in the current configuration.
Nanson’s formula links the area in the current configuration da, with its outward normal n,
to the same area in the reference configuration dA, with outward normal N, by

n da = JF−T N dA with J = det(F) =
dv
dV

(9)

The determinant of the deformation gradient J, is the ratio of the volume elements dv and
dV, from the actual and reference configurations.

2.1.7. Static Equilibrium

With Equation (9) at hand, the transformations of the area and volume elements from
the actual to the reference configuration are given. Let ∂Bt denote a surface within or on
the boundary of Bt. Then, the total force acting on this surface is given by

f
(8)
=
∫

∂Bt
t da

(8)
=
∫

∂Bt
σn da

(9)
=
∫

∂B0

JσF−T NdA
(D)
=
∫
B0

∇ · P dV (10)

where the Cauchy traction vector (8), the Nanson formula (9), the divergence theorem (D),
and the definition for the 1st Piola–Kirchhoff stress tensor
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P = JσF−T (11)

have been used. P relates the forces f , in the spatial configuration, with areas in the material
configuration. The forces f , can be assigned with a spatial body force density b,

f =
∫
Bt

b dv =
∫
B0

Jb dV where b =
d f
dv

and B̃ = Jb (12)

With Equations (10)–(12), the static equilibrium equation reads in differential form

∇ · P− B̃ = 0(quasi-static balance of linear momentum) (13)

with boundary conditions

PN = T̄ on ∂BT (Neumann boundary condition) (14)

u = ū on ∂Bu (Dirichlet boundary condition) (15)

where ∂B0 = ∂Bu ∪ ∂BT with ∂Bu ∩ ∂BT = ∅, and the quantities with a bar are prescribed.
Moreover, the 2nd Piola–Kirchhoff stress tensor

S = F−1P (16)

relates forces in the reference configuration to areas in the reference configuration.

2.1.8. Hyperelastic Material Model

For a hyperelastic material, the stress tensor (5) is derived from a strain energy density
function Ψ,

σ =
∂Ψε

∂ε
where Ψε =

1
2 λ(tr(ε))2 + µ tr(ε2) (17)

However, it is known that σ is variant to pure rotations, while ε is not. Therefore, it is
not suited as a constitutive model for large deformations. In the case of finite deformations,
instead of σ, often the 2nd Piola–Kirchhoff stress tensor S is used,

S =
∂ΨE

∂E
= 2

∂ΨE

∂C
where ΨE = 1

2 λ(tr(E))2 + µ tr(E2) = Ψε + Ψ∆ (18)

In Equation (18), the most straightforward hyperelastic strain energy density is formulated,
i.e., the Saint Venant–Kirchhoff model, which is an extension of Equation (17). This gives
S = 2µE + λtr(E)1, which is similar to Equation (5). The limitations of the Saint Venant–
Kirchhoff material model in large strain regimes are discussed in [40]. Alternatively, many
other strain energy density formulations, such as the Ogden model [41,42], neo-Hookean
model, Money–Rivlin model, Simo–Pister model [43], etc., could be adapted to match with
a specific material behavior of interest.

2.1.9. Non-Linear Hookes Law

In the case of non-linear strain, the 2nd Piola–Kirchhoff stress tensor in Voigt notation

SV = CEV → σV = CεV at small strains (19)

has a similar form to Equation (6), and for infinitesimal deformations, the difference be-
tween the Cauchy and Piola–Kirchhoff stress tensors is marginal. The strain in Equation (19)
has the components

Eij =
1
2 [∂iuj + ∂jui + ∂iu1∂ju1 + ∂iu2∂ju2 + ∂iu3∂ju3] ≡ Eji (20)

with indices as they are arranged for εV in Equation (6).
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2.2. Finite Element Analysis

Having formulated S in (18), the transformation of S to P in (16), and the equilibrium
Equation (13) on the reference domain B0, it is now discretized into nel elements within the
finite element analysis. In the following, the weak form of the problem (13) is formulated,
ansatz functions are declared, and the Newton–Raphson method is used to solve the
non-linear problem.

2.2.1. Weak Form of Problem

As usual, the multiplication of Equation (13) with a smooth test function vector λ, and
integration over the domain B0, gives∫

B0

λ · B̃ dV
(13)
= −

∫
B0

λ · (∇ · P)dV
(PI)
=

∫
B0

(∇λ) : P dV
(16)
=
∫
B0

(FT∇λ) : S dV (21)

where (PI) denotes partial integration, the Frobenius inner product reads A : B = tr(AT B),
the trace of a product tr(AT B) = tr(BAT), and the test function vector λ is chosen so that
it vanishes at the boundary ∂Bu. The integral expression in Equation (21) is called the weak
form of the problem.

2.2.2. Element ID, Connectivity, and Edof

As in the simplest case, the reference geometry is assumed to be a cuboid to solve
Equation (21). This reference cuboid is subdivided into (n1,n2,n3) equidistant elements,
such that the total number of elements is nel = n1n2n3. The elements are numbered
successively along the X1, then the X2, and lastly the X3 direction, see Figure 3a.

(a) (b) (c)

h

Figure 3. (a) Element ID, (b) global connectivity, and (c) local connectivity.

Each node, which is a corner stone of an element, has three degrees of freedom
(dof). Therefore, one element has in total 8 · 3 = 24 dofs and the total number of dofs
is ndof = 3(n1 + 1)(n2 + 1)(n3 + 1). According to [37], the global node identification is
ordered column-wise, with the rule: up-to-bottom, left-to-right, and back-to-front, see
Figure 3b. The local node identification of the eight nodes within a single element does
not necessarily follow the same convention, and is ordered in counter-clockwise direction
instead, see Figure 3c. The global connectivity of each single local element, i.e., the mapping
of the blue circled numbers to the red circled numbers, is stored for each element (index
“el”) within an array

edofel = [node1x node1y node1z node2x . . . node8z]
T ∈ N24 (22)

e.g., edof1 = [4, 5, 6, 10, 11, 12, 7, 8, 9, 1, 2, 3, 28, 29, 30, 34, 35, 36, 31, 32, 33, 25, 26, 27]T . With
this at hand, the nodal values of the local displacement vector

uel = ¯
u(edofel) ∈ R24 and λel = ¯

λ(edofel) ∈ R24 (23)

e.g., uel=1 =
¯
u(edofel=1) = [u4 u5 u6 u10 . . . u26 u27]

T (24)

can be extracted for each element from the global displacement vector
¯
u = [

¯
u1 ¯

u2 . . .
¯
undof ].

The underbar in the expression •̄, indicates that a quantity • refers to the ordered nodal values.
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2.2.3. Parametric Domain

Now, the solution field inbetween the nodal values must be interpolated. Let a local
coordinate vector ξ = (ξ1, ξ2, ξ3)

T and the parametric domain Bξ = {ξ ∈ R3|ξ1, ξ2, ξ3 ∈
[−1, 1]} be given. As we already performed the mapping from the current to the reference
domain, Bt → B0 in Equation (10), by using the integration by substitution∫

Bt
•dv =

∫
B0

• J dV (25)

We must map each element to the reference domain Bξ , to perform Gaussian quadra-
ture. In the following case, it is an affine transformation between the reference and the
parametric domain,∫

B0

•dV =
nel

∑
el=1

∫
Bξ

•el Jξ dΩ and Jξ = det
(

∂X
∂ξ

)
=

[
h
2

]3
≡ dV

dΩ
(26)

where h is the equidistant nodal spacing in the physical domain (see Figure 3a) and 2 is the
length of the parametric domain in each direction. Without loss of generality, we set h = 2
in the following.

2.2.4. Ansatz Functions

The ansatz functions for both the displacement and the test function on each element
are written in terms of the local coordinate vector ξ, as

uel(ξ) = ∑
i

Ni(ξ)uel i and λel(ξ) = ∑
j

Nj(ξ)λel j (27)

where it is necessary to note that the entire dependency of uel and λel on ξ, is carried by the
interpolation functions Ni only. For computational reasons, often low polynomial degree
functions are used, e.g., linear Lagrangian interpolation functions, which read

Ni(ξ) =
1
2 (1+ si

1 ξ1)
1
2 (1+ si

2 ξ2)
1
2 (1+ si

3 ξ3) where


si

1 = (−1)i

si
2 = sign(sin(π

4 (1− 2i))
si

3 = sign(i− 4.5)

(28)

and i ∈ {1, . . . , 8}. In accordance to the node identification of Section2.2.2, the sequence
of si

1 is {−1, 1,−1, 1,−1, 1,−1, 1}, the sequence of si
2 is {−1,−1, 1, 1,−1,−1, 1, 1}, and the

sequence of si
3 is {−1,−1,−1,−1, 1, 1, 1, 1}. In the case of derivatives, one should note that

∇X Ni(X) = ∇ξ Ni(ξ)Jξ = ∇ξ Ni(ξ)
2
h .

2.2.5. Strain–Displacement Matrix

With the ansatz functions at hand, and by using Equation (26), the weak problem (21)4
reads on each element∫

Bξ

(∇ξ Ni FT
el ) : Sel dΩ =

∫
Bξ

BT
elS

V
el dΩ and SV

el = CEV
el(uel) (29)

A quantity called the “non-linear nodal strain–displacement matrix”

Bi =



F11∂1Ni F21∂1Ni F31∂1Ni
F12∂2Ni F22∂2Ni F32∂2Ni
F13∂3Ni F23∂3Ni F33∂3Ni

F13∂2Ni + F12∂3Ni F22∂3Ni + F23∂2Ni F32∂3Ni + F33∂2Ni
F11∂3Ni + F13∂1Ni F21∂3Ni + F23∂1Ni F33∂1Ni + F31∂3Ni
F11∂2Ni + F12∂1Ni F22∂1Ni + F21∂2Ni F31∂2Ni + F32∂1Ni

 (30)
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is introduced, where Fij are the entries of the deformation gradient Fel, and ∂j ≡ ∂ξ j is the
derivative in the jth direction. The elemental strain–displacement matrix is composed by
the nodal matrices as

Bel = [Bi=1, . . . , Bi=8] ∈ R6×24 (31)

Alternatively, one can show that the elemental variation in the strain δEel = Bel δuel
relates the non-linear Bel-matrix to the variation in the elemental displacements.

2.2.6. Residual of Equilibrium Equation

Now, we can elaborate on the weak form (21) on element basis,

nel

∑
el=1

8

∑
j=1

λT
el j

(∫
Bξ

BT
elS

V
el dΩ−

∫
Bξ

NjB̃el dΩ

)
=

nel

∑
el=1

8

∑
j=1

λT
el j Rel = 0 (32)

where the term in parentheses is identified as elemental residuum Rel, which in turn is
given by the difference between internal and external forces on that element,

Rel(u) = fint − fext ∈ R24 (33)

and both, the internal and external elemental forces read

f int
el =

∫
Bξ

BT
elS

V
el dΩ and f ext

el =
∫
Bξ

Nj B̃el dΩ (34)

Since the nodal values λi, of the test function are arbitrary, we can find a residual expression

[λ1 λ2 . . . λndof ]



nel
∑

el=1

8
∑

j=1

∂λT
el j

∂λ1
Rel

...
nel
∑

el=1

8
∑

j=1

∂λT
el j

∂λndof
Rel

 =
¯
λT R(u) = 0 (35)

Practically, the assembly of the global residual vector R, is given by adding the local
values on the corresponding global position as

R(edofel) = R(edofel) + Rel ∀ el ∈ {1, . . . , nel} (36)

2.2.7. Tangential Stiffness Matrix

The tangential stiffness matrix follows from a variation in the residuum,

δRel(u) =
∫
Bξ

BT
el(δSV

el) + (δBT
el)S

V
el dΩ = Kel δuel (37)

Kel =
∫
Bξ

BT
el C Bel + GT

el Mel Gel dΩ ∈ R24×24 (38)

where Gel stores the linear derivatives of the ansatz functions,

Gel = [Gk=1, . . . , Gk=8] ∈ R9×24 with Gk =

∂1Nk 1
∂2Nk 1
∂3Nk 1

 ∈ R9×3 (39)

and the components of the 1st Piola–Kirchhoff stress tensor Sij are stored in

Mel =

S111 S121 S131
S211 S221 S231
S311 S321 S331

 ∈ R9×9 (40)
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Again, similar to Equation (33), the assembly of the global tangential stiffness matrix reads

K(edofel, edofel) = K(edofel, edofel) + Kel ∀ el ∈ {1, . . . , nel} (41)

2.2.8. Gaussian Quadrature

Equation (38) has polynomial degree d = 3, so exact integration of some function f ,
dependent on a polynomial expression of ξ,

∫
Bξ

f (ξ)dΩ =
ngp

∑
gp=1

f (ξgp)wgp (42)

by summation, is given if the number of Gauss points is ngp = d+1
2 = 2, at positions

ξgp = ± 1√
3

and weights wgp = 1.

2.2.9. Newton–Raphson Method

The nodal displacement is found iteratively by using the Newton–Raphson method,

¯
uit+1 =

¯
uit − [K(

¯
uit)]−1R(

¯
uit) =

¯
uit + ∆

¯
uit (43)

where it is the iteration number. To calculate the displacement update ∆
¯
uit, we use a direct

solver until ‖∆¯
uit‖
‖

¯
uit‖ < 0.001 as the termination condition.

2.2.10. Compliance

The compliance of the system is defined in accordance with the strain energy as

c = 1
2 ¯

uTK
¯
u ∈ R (44)

with tangential stiffness K, from Equation (41). Sometimes compliance is defined without
the factor 1

2 [37]. In terms of an optimization problem, it relates a maximum stiffness
demand by means of a minimum compliance.

2.3. Density Based Methods and Filtering Techniques

Although the term density, suggests that the method relies on a quantity extended in
space, the density variable xi ∀i ∈ {1, . . . , nel}, is considered only at the element’s center of
mass. It is conceived as an effective quantity during the FEM calculation. The SIMP and
BESO methods are based on the formulation that the density interpolates Young’s modulus,
see Equation (7). We first review the core idea of the SIMP method, then explain the filtering
methods used in the optimization procedure, and show parallels with the BESO method.

2.3.1. SIMP Method

There are many different approaches to keep the binary system, consisting of material
and void, from becoming singular in the stiffness tensor, by ascribing either a minimum
density xmin,

Ei(xi) = xp
i E0 xi ∈ [xmin, 1] ∀i ∈ {1, . . . , nel} (45)

or a minimum Young’s modulus Emin > 0, to the voids. Within the (modified) SIMP
approach the Young’s modulus is given by a convex combination between the solid material
(E0) and the void material (Emin0)

Ei(x̃) = Emin(1− x̃p
i ) + x̃pE0 xi ∈ [0, 1] ∀i ∈ {1, . . . , nel} (46)

which is a function of a (normalized) density x̃, with penalization power p > 1. Here, it is
important to distinguish between the (relative) element density x and the filtered (physical)
density x̃, as described in the following.
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2.3.2. Density Filter

According to [44], a basic linear filter density function is defined as

x̃i = ∑
j

wijxj e.g., with conical weights wij =


rmin−dist(i,j)

∑j rmin−dist(i,j) , j ∈ Ni

0 j /∈ Ni
(47)

where the weights should fulfill the partition of unity, ∑j wij = 1 ∀i, and rmin is an (user)
input radius defining the neighborhood Ni = (j : dist(i, j) ≤ rmin). In general, the weights
influence the resulting structure, and since there is no overall optimum result, they are
somehow arbitrary [45]. Other filter types could be defined by Gaussian weights [44],
Heaviside filter, dilate and erode filter [46], or filter based on the geometric mean [45].
Nevertheless, what is known for sure, without filtering, the optimum result tends to
become a scattered structure, often referred to as a checkerboard, with thin structural parts
and/or many tiny holes [45].

2.3.3. Sensitivity Filter

A similar procedure to Equation (47) is applied to the sensitivities, which are the
derivatives of the objective function, and reads

∂̃c
∂xi

=
1
xi

∑
j∈Ni

∂c
∂xj

wijxj ∀i ∈ {1, . . . , nel} (48)

which is strictly speaking not a density filter because no filtering is conducted regarding the
density itself. The sensitivities are used together with the design domain,

˜
v = [v1, . . . , vn]T

and a prescribed volume limit v̄, to solve the Karush–Kuhn–Tucker (KKT) condition, which
leads to an optimality condition Bi = 1, where

Bi = −
∂c(x̃)

∂xi

(
li

∂v(x̃)
∂xi

)−1

(49)

should be fulfilled. The value of the Lagrange multiplier li, satisfying the condition
v(x̃(xnew(li))), is the only unknown, and is found by the bisection method. With this,
the update reads

xnew
i =


max(0, xi −m) xiB

η
i ≤ max(0, xi −m)

min(1, xi + m) xiB
η
i ≥ min(1, xi −m)

xiB
η
i otherwise

(50)

where m is a positive move-limit, and η is a numerical damping coefficient.

2.3.4. BESO Method

The BESO method relies also on the penalty method of the Young’s modulus, but here,
the sensitivity of the objective function is assigned with the total strain energy, αi, of the
removed element,

∂c
∂xi
≈ ∆c

1
= −αi and αi =

1
2 uT

i f int
i (51)

Then, the element sensitivity is given by the linear density filter (47), and reads

α̃i =
∑ wijαj

∑ wij
(52)

To improve the convergence, [32], the sensitivity at the current iteration step (it) is averaged
with that from the previous step,
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α̃(it)
j ←

α̃(it)
j + α̃(it-1)

j

2
, it > 1 (53)

Introducing the two threshold constants, αth
del for material removal and αth

add for mate-
rial addition, the update reads

x(it+1)
i =


xmin αi ≤ αth

del
1 αi > αth

add
x(it)

i otherwise

(54)

The threshold constants are found by the bisection method. Moreover, the target volume

v(it) = max{v̄, (1− cerv(it-1))} (55)

where cer is the evolutionary ratio determining the percentage of material to be removed.
The evolutionary ratio is a number initialized in the previous iteration, and is zero when
the target volume is reached. Then, only the topology alters.

2.4. Problem Formulation

Finally, the optimization problem to be solved reads

find
˜
x = [x1, x2, ..., xnel ]

T (density)

minimize c = 1
2 ¯

uTK
¯
u (compliance)

subject to v =
˜
xT

˜
v = v̄ (volume)

R(
¯
u) =

¯
fint −

¯
fext = ¯

0 (residuum)

K(
¯
u) = δ

¯
uR(

¯
u) (tangential stiffness)

xi ∈ {xmin, 1} (density range)

where in the non-linear case, the displacement
¯
u is found iteratively, by using the Newton–

Raphson method. The tilde in the expression
˜
•, indicates that a quantity • refers to the

ordered elemental values. The optimum structure is found if a termination criterion is
fulfilled, e.g., if a certain number of iterations is reached (failure) or the density/compliance
difference is marginal between two iteration steps (success), as explained in the following.

2.4.1. Termination Criterion: Density Change

The first termination criterion is density-based, and states that an optimum structure
is found if the change between the densities

‖
˜
xnew −

˜
x‖∞ ≤ ε (56)

according to the L∞-norm is sufficiently small, ε ≈ 0.001. With this at hand, the updated
structure would not change in the next iteration step regarding the previous one.

2.4.2. Termination Criterion: Compliance Change

Another termination criterion is based on the change in compliance, defined as a
moving average

|∑(it−4)
i=(it−9) ci −∑

(it)
j=(it−4) cj|

∑
(it)
j=(it−4) cj

≤ ε it > 9 (57)

Here, the size of the moving window is somehow arbitrary, and found empirically.
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2.5. Chemo-Mechanically Coupled Model

If the optimum structure is found, we need a chemo-mechanically coupled material
model to test the particles’ performance. In [47], we formulated a multi-field model for
charging and discharging of lithium-ion battery electrodes. Briefly sketched, the model is
based on a multiplicative split of the deformation gradient

F = FeFi where Fi = J−2/3
i 1 (58)

into an elastic (index e) and purely volumetric inelastic (index i) deformation. The inelastic
part should depend on the lithium (Li) concentration cLi, and reads

Ji ≈ 1 + Ω̄(cLi − c0) (59)

where Ω̄ is a normalized partial molar volume and c0 a reference concentration. With this at
hand, the total free energy density of Equation (18) is now, besides the right Cauchy-Green
tensor C, dependent on another field variable cLi,

Ψ = Ψela(C) + Ψcon(cLi) + Ψint(∇cLi) (60)

where Ψela(C) is the elastic strain energy, e.g., Ψela(C) = ΨE from (18) but now with
concentration dependent elastic moduli, Ψcon(cLi) is a double-well potential and Ψint(∇cLi)
accounts for interfacial reactions. Moreover, besides the quasi-static balance of linear
momentum, the Cahn–Hilliard equation

ċLi = ∇ · (M∇δcLi Ψ) (61)

is an extension of Fickean diffusion, i.e., accounts for the irreversible temporal evolution
of the additional concentration field and follows from mass conservation; M, is called a
mobility tensor. The Cahn–Hilliard equation is a fourth-order partial differential equation
and needs, in the sense of finite element analysis at least, continuous differentiable ansatz
functions. Therefore, the obtained optimum structure should be re-meshed by using
quadratic B-Splines, and we follow the technique as proposed in [48]. Re-meshing is
needed to evaluate the optimum structure in a post-process only, and thus does not affect
the mesh during optimization.

3. Results

Here, we first compare the results obtained from linear and non-linear optimization.
Then, we elaborate on the force limit, where the results are comparable (within a 3%
deviation). With this, we show the simulation results obtained from a single force load.
In the next step, we generate structures that result from random force strengths, subject to
different constraints on the net force. Finally, all structures’ (normalized) overlays give the
most probable shape of a resistant structure to a random contact. This structure is subject
to a periodic mechanical motion, and the induced chemo-mechanically coupled change in
lithium concentration is studied.

3.1. Reference Parameter Definition

The optimization code listed in Appendix A, relies, according to [32], on the user
input (nx, ny, nz, v̄, cer, rmin) and some constants anchored inside the program (see Table 1).
If there is no user input, the parameters from the calibration calculation from Section 3.2,
are passed automatically. Moreover, the common linear density filter (47) is used in all
numerical examples, but can be exchanged by the user if necessary.
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Table 1. Variables (top row), their designation inside the Matlab code (middle row), and their
reference values (bottom row).

E ν xmin p v̄ rmin cer F0 ε

E nu xmin penal volfrac rmin er F0 tolx

1 0.3 3× 10−5 1 0.5 1.5 0.02 10−9 10−4

3.2. Calibration

For the calibration of the optimization algorithm, we first check that the results ob-
tained from the small strain BESO method are comparable with the small strain SIMP
method, in terms of a binarized density at threshold xi = 0.5 ∀i ∈ {1, . . . , nel}. To this
end, we choose the well-known cantilever beam, and set the number of elements to
(50, 16, 4), see Figure 4a. Next, we declare a desired volume of 50% and the normal-
ized force strength to be 10−9. The convergence plot is shown in Figure 4b and is very
similar to the 2D case reported in [32]. The resulting structure from the BESO method is
used as input structure for the SIMP optimization calculation, with similar parameters,
i.e., we adapted E0 = 1, p = 3, rmin = 1.5, v̄ = 0.5, and adjusted Emin = 3.1× 10−2 (see
Equations (45) and (46)) and tolx = 0.015. Since there is almost no difference (two elements
change) between the SIMP and the BESO solution at small force strengths, we declare this
structure as a reference solution. Then, we increase the force strength and define a deviation
D, by element-wise density comparison. Finally, we count only those elements (dark cubes)
that do not match the reference solution (see Figure 4c), i.e., the higher D, the more the
structure deviates from the reference solution. As expected, the higher the force strength,
the higher the deviation.
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Figure 4. Optimization of a cantilever beam: (a) boundary conditions and reference optimum design,
(b) evolutionary histories of the volume fraction and the compliance (×1015), and (c) deviation from
reference solution dependent on the force strength.

3.3. Central Single Force

Now, the reference geometry is given by a (16, 16, 16) cube, which is subject to a
fixture by Dirichlet boundary conditions on the bottom (see blue dots in Figure 5a), a single
force acting on top of the surface, and a prescribed volume, of 30% and 50%, respectively.
The optimization converges very fast (see Figure 5c) and leads to a conical structure (see
Figure 5b), which is almost independent of the force strength applied. Conical structures
have already been investigated experimentally in the context of Li-ion battery anodes,
by [49], and numerically by [50]. Nevertheless, this kind of structure is resistant to one-sided
loadings only, and therefore, we proceed with all-round random contact in the following.
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Figure 5. Optimization of a cube subjected to a single force: (a) boundary conditions, (b) optimum
structures at prescribed volumes, and (c) evolutionary histories of the volume fraction and the
compliance (×1018).

3.4. Forces with Random Strength and Zero Net Strength

Now, we consider again the (16, 16, 16) cube, which is fixed at the center of mass
(see blue dots in Figure 6a). We apply forces with random strength, but overall, they are
constrained to zero net force (see Figure 6b). Doing so makes the resulting structures look
arbitrary (see Figure 6c). The observed island phenomenon is likely due to the applied
boundary conditions in the center of the geometry. Due to the randomness of the force
strength, the optimum structures are not comparable if repeating the simulation. Especially
in Figure 6d, we have omitted the structure’s walls, which were mostly filled with material.
Therefore, we must consider a statistical interpretation of the internal structure, as explained
in the following subsection.

(a) (b) (c)

(d)

Figure 6. Optimization of a cube: (a) boundary conditions for the fixture, (b) random strength, as
boundary condition, with a zero net force constraint, (c) optimum structure, and (d) more optimum
structures showing different pattern.

3.5. Probability Density

Since the underlying domain is always kept the same, we can define a probability

Pi =

nsim
∑

s=1
(xi)s

nsim
∀i ∈ {1, . . . , nel} (62)

for each element, which indicates how often the optimized result in the specific domain is
provided with material. The cube’s core has the highest probability that it must be filled
with solid material, which decreases towards the cube’s corners. Instead of the prescribed
volume v̄, we can now consult the probability quantile as the superior optimization con-
straint, which we had to declare for the post-processing. Regarding the color distribution in
Figure 7, the most likely structure is a ball (yellow region), very unlikely a fully filled cube
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(dark blue), and a Schwarz P minimum surface delimits the transition area to an interme-
diate structure. The Schwarz P surface itself can be described analytically by the function

cos(X1) + cos(X2) + cos(X3) = 0 (63)

In the following, we will mesh it as a solid and expose it to chemo-mechanical cycling.

Figure 7. Color code overlay of optimization results and their decomposition into a box and a
Schwarz P structure (for P > 0.1).

3.6. Periodic Loading of Schwarz P Structure

The topology-optimized structure is now subjected to sinusoidal cyclic loading, and an
initial value problem is solved using the chemo-mechanically coupled model. In Figure 8,
the concentration distribution is shown, where the concentration is pushed outward in a
compressive motion and vice versa. Since the constitutive law follows the thermodynamics
of irreversible processes, it can be seen that after the first mechanical cycle, the concentration
distribution does not return to the uniformly distributed original state, but an induced
pattern persists.

0 s 1 s 2 s 3 s 4 s 5 s 6 s 7 s 8 s

Figure 8. Concentration distribution due to compression/tension, dashed line serves for guidance.

3.7. Forces with Random Strength and Non-Zero Net Strength

Previously we assumed the constraint of a vanishing total force. Now, a net force
on the object is prescribed, and then, the optimum topology changes to an eighth of a
bee-shaped structure, with spikes in the diagonal corners, see Figure 9.

Figure 9. Optimization of a cube, subject to forces with random strength and a net force constraint.

4. Discussion

The core question of this paper, was related to the optimal geometry of a silicon
anode exposed to a random contact. It is known that silicon anodes swell to multiples
of their original volume. Thus, depending on the charging behavior, the interaction
between the particles is somewhat random, regarding the force strength and the local
position of the occurrence. We have developed and provided a compact Matlab code to
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address the question of an optimal geometry that is as resistant as possible to this type
of force action. The code is based on the two papers by [32,37]. The published code of
the first reference is known for its particular simplicity of implementation of boundary
conditions, and the second reference for its fast convergence rate, whereas the latter code
had been published only in 2D. In addition, all studies we have performed using the new
code, provide symmetric structures under symmetric loading, which is infrequent in the
literature. Then, we subjected a cube to random loading but obtained structures challenging
to interpret. However, we considered the normalized overlap as the probability density
when overlapping the structures resulting from many simulations. As a result, we obtained
the symmetric Schwarz P structure at a specific threshold, which has a minimum surface
property. Such results sound promising in the context of electrodes, where structures with
minimum surface area are desired. Furthermore, this method also yields what one would
intuitively expect, e.g., a structure concentrated along the diagonal in the case of diagonal
loading. Finally, the material model is chosen, so that it can be extended in the future by a
crack density field, for a crack propagation study.

5. Conclusions

Here, we elaborated on large, geometrically non-linear deformations of battery an-
odes, intending to find an optimum (maximum stiff) electrode design when subject to
random contact, in terms of random forces. The optimization technique relies on the BESO
method, where the solution procedure includes non-linear finite element analysis, specific
sensitivity filtering, and an improved weighting of the historical information, to ensure fast
convergence. The existing 2D Matlab code reported in [32] was extended here to 3D, at-
tached in the appendix, and applied to several design problems. Even at moderate volume
fractions, the resulting topologies are hard to compare with each other. Thus, in such cases,
the optimum structures are found by performing multiple simulations and interpreting
their (normalized) overlap as a probability density.

Author Contributions: Conceptualization, M.W. and S.B.; methodology, M.W. and K.W.; software,
M.W.; validation, S.B. and K.W.; formal analysis, M.W. and K.W.; investigation, S.B. and M.W.; re-
sources, M.W.; writing—original draft preparation, M.W.; writing—review and editing, S.B. and K.W.;
visualization, M.W. and S.B.; supervision, K.W.; project administration, K.W.; funding acquisition,
K.W. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by DFG grant number 2525/11-1.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data can be reproduced by using the Matlab code from Appendix A.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
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BESO Bi-evolutionary structural optimization
dof Degree of freedom
ESO Evolutionary structural optimization
FEM Finite element method
Li Lithium
Si Silicon
SIMP Solid isotropic material with penalization
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List of Symbols
The following symbols are used in this manuscript:

•el •With respect to element
•it •With respect to iteration number
•T Transpose of •
•V Voigt notation of •
•̄ Prescribed quantity
•̄ Arranged with respect to nodal values

˜
• Arranged with respect to elemental values
tr(•) Sum of diagonal elements (trace)

0 Zero matrix
1 Identity matrix

a, A Area
Bi Optimality condition
b, B̃ Body force density
B Strain–displacement matrix
c Compliance
c0 Ref Lithium ion concentration
cer Evolutionary ratio
cLi Lithium ion concentration
C Right Cauchy–Green strain tensor
d Polynomial degree
D Deviation
edofel edof array for a specific element
E Young’s modulus
En Total strain energy of removed element
E Green–Lagrangian strain tensor
F0 Force strength
f Force
F Deformation gradient
Gel Linear derivatives matrix
h Equidistant nodal spacing
J Jacobian
K Stiffness matrix
l Lagrange multiplier
m Move limit
Mel Stress components matrix
nel Number of elements
ngp Number of Gauss points
nsim Number of simulations
Ni Interpolation function

n, N Normal vector
p Penalization power
P Probability density
P 1st Piola–Kirchhoff stress tensor
rmin Filter radius
R Residual vector
S 2nd Piola–Kirchhoff stress tensor
t time
t, T Cauchy traction vector
u, U Displacement vector
v, V Volume
v Design domain
w Weights
x, xmin Density variable, minimum density
x̃ Filtered density
x, X Point of a continuum

αi Total strain energy of removed element
αth Threshold constant
δ Variational derivative
ε Small number� 1
ε Small strain tensor
η Damping coefficient
λ, µ Lamé parameter
λ Test function
ν Poisson number
ξ Local coordinate vector
σ Cauchy stress tensor
Ψ Strain energy density function
Ω Volume (parametric domain)
Ω̄ Normalized partial molar volume

B Body (0 reference, t actual, ξ parametric)
∂B Boundary of body
C Elasticity tensor
M Mobility tensor
N Neighborhood

∇, ∂ Partial derivative
∅ Empty set
∪,∩ Union and intersection of sets

Appendix A. Matlab Code

In Listing A1, we show the condensed 3D Matlab source code with sufficient comments.
Of course, this code can be accelerated at the expense of readability.

Listing A1. 3D Matlab source code for non-linear topology optimization based on the BESO method.

1 function [x,U]=TopOptBesoNL3D_mdpi(nelx,nely,nelz,volfrac,er,rmin)
2 %−− if no input, then use some default values:
3 if nargin<6; nelx=50; nely=16; nelz=4; volfrac=0.5; er=0.02; rmin=1.5; end
4 %−− force strength (F0)
5 F0=1e-9; E=1; nu=0.3; xmin=3e-5; penal=1; tolx=0.0001; maxloop=500;
6 vol=1; loop=0; change=1; pos=1;
7 x=ones(nely,nelx,nelz); c=zeros(1,maxloop);
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8 nele=nelx*nely*nelz; ndof=3*(nelx+1)*(nely+1)*(nelz+1);
9 %−− loads, here: at right end along z−direction

10 [il,jl,kl] = meshgrid(nelx, 0, 0:nelz);
11 loadnid=kl*(nelx+1)*(nely+1)+il*(nely+1)+(nely+1-jl);
12 loaddof=3*loadnid(:)-1;
13 F=sparse(loaddof,1,F0,ndof,1);
14 %−− supports, here: at left end along y− and z−direction
15 [iif,jf,kf]=meshgrid(0,0:nely,0:nelz);
16 fixednid=kf*(nelx+1)*(nely+1)+iif*(nely+1)+(nely+1-jf);
17 fixeddof=[3*fixednid(:); 3*fixednid(:)-1; 3*fixednid(:)-2];
18 %−− get free dofs
19 freedofs=setdiff(1:ndof,fixeddof);
20 %−− edof
21 edofMat=zeros(nele,24); ID=reshape(1:ndof/3,nely+1,nelx+1,nelz+1);
22 for iz=1:nelz
23 for ix=1:nelx
24 for iy=1:nely
25 edofMat_1=ID([0,1]+iy,[0,1]+ix,[0,1]+iz);
26 edofMat_1=edofMat_1([2,4,3,1,6,8,7,5]);
27 edofMat_1=3*(edofMat_1(:)-1)’ + (1:3)’;
28 edofMat(pos,:)=edofMat_1(:)’;
29 pos=pos+1;
30 end
31 end
32 end
33 %−− START WITH ITERATION
34 while change>tolx && loop<maxloop
35 loop=loop+1;
36 if loop>1; olddc=dc; vol=max(vol*(1-er),volfrac); end
37 %−− displacement (U), sensitivities (dc) and compliance (c) from FEA
38 [U,dc,c(loop)]=FEA(nele,ndof,edofMat,x,penal,E,nu,F,freedofs);
39 %−− filtering of sensivities
40 dc=reshape(dc,nely,nelx,nelz); dc=check(nelx,nely,nelz,rmin,dc);
41 %−− stabilization of evolutionary process
42 if loop>1; dc=(dc+olddc)/2; end
43 %−− BESO design update
44 if loop>1; x=ADDDEL(nele,vol,dc,x,xmin); end
45 %−− convergence factor (change)
46 if loop>10; change=abs(sum(c(loop-9:loop-5))-sum(c(loop-4:loop)))/sum(c(loop-4:loop)); end
47 %−− print results
48 fprintf(’It.:%4i Obj.:%10.4f Vol.:%6.3f ch.:%6.3f\n’,loop,c(loop)*1e15,sum(x(:))/nele,change);
49 %−− plot densities
50 display_3D(x);
51 end
52 end
53 %−− BESO design update
54 function [x]=ADDDEL(nele,volfrac,dc,x,xmin)
55 l1=min(dc(:)); l2=max(dc(:));
56 while abs((l2-l1)/l2)>1e-5; th=(l1+l2)/2; x=max(xmin,sign(dc-th));
57 if sum(x(:))>volfrac*nele; l1=th; else; l2=th; end
58 end
59 end
60 %−− linear density filter
61 function [dcf]=check(nelx,nely,nelz,rmin,dc)
62 dcf=zeros(nely,nelx,nelz);
63 for k1=1:nelz
64 for i=1:nelx
65 for j=1:nely
66 zum=0;
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67 for k2=max(k1-floor(rmin),1):min(k1+floor(rmin),nelz)
68 for k=max(i-floor(rmin),1):min(i+floor(rmin),nelx)
69 for l=max(j-floor(rmin),1):min(j+floor(rmin),nely)
70 fac=rmin-sqrt((i-k)^2+(j-l)^2+(k1-k2)^2);
71 zum=zum+max(0,fac);
72 dcf(j,i,k1)=dcf(j,i,k1)+max(0,fac)*dc(l,k,k2);
73 end
74 end
75 end
76 dcf(j,i,k1)=dcf(j,i,k1)/zum;
77 end
78 end
79 end
80 end
81 %−− FEA
82 function [U,dc,cloop]=FEA(nele,ndof,edofMat,x,penal,E,nu,F,freedofs)
83 %−− initialization of global stiffness matrix (K), residuum (R) and displacement (U)
84 K=sparse(ndof,ndof); R=zeros(ndof,1); dU=R; U=R; dc=zeros(nele,1); del=1; loop=0;
85 %−− Iteratively solve the geometric nonlinear FE balance equation
86 while del>0.001 && loop<4 % or increase for more iterations
87 cloop=0; loop=loop+1;
88 %−− loop over elements
89 for ele=1:nele
90 %−− elemental quantities
91 xe=x(ele); edof=edofMat(ele,:)’; Ue=U(edof);
92 [RE,KE,dce]=solver(E,nu,Ue,xe,penal);
93 %−− assembly
94 K(edof,edof)=K(edof,edof)+KE; R(edof)=R(edof)+RE; dc(ele)=dce;
95 cloop=cloop+0.5*xe^penal*Ue’*KE*Ue;
96 end
97 %−− residual, tangent and displacement
98 R=sparse(R+F); K=sparse((K+K’)/2);
99 %−− direct solver

100 dU(freedofs,:)=K(freedofs,freedofs)\R(freedofs,:); U=U+dU; del=norm(dU,2)/norm(U,2);
101 end
102 end
103 %−− FE solver
104 function [RE,KE,dc]=solver(E,nu,Ue,xele,penal)
105 %−− initialization
106 RE=zeros(24,1); KE=zeros(24,24); dc=0; sq=1/sqrt(3); Y=eye(3); Z=zeros(3);
107 %−− displacements (uij) where i=number, j=direction
108 u11=Ue(1); u21=Ue(4); u31=Ue(7); u41=Ue(10); u51=Ue(13); u61=Ue(16); u71=Ue(19); u81=Ue(22);
109 u12=Ue(2); u22=Ue(5); u32=Ue(8); u42=Ue(11); u52=Ue(14); u62=Ue(17); u72=Ue(20); u82=Ue(23);
110 u13=Ue(3); u23=Ue(6); u33=Ue(9); u43=Ue(12); u53=Ue(15); u63=Ue(18); u73=Ue(21); u83=Ue(24);
111 %−− elasticity tensor (C)
112 C=xele^penal*E/((1+nu)*(1-2*nu))*[(1-2*nu)*Y+nu*(Z+1),Z;Z,(0.5-nu)*Y];
113 %−− Gaussian quadrature over 3^2=8 points and weights=1
114 for gp=1:8
115 %−−sign (si) of ansatz functions
116 s1=1-2*mod(gp,2); s2=sign(sin(pi/4*(1-2*gp))); s3=sign(gp-4.5);
117 p1=1+s1*sq; m1=1-s1*sq; p2=1+s2*sq; m2=1-s2*sq; p3=1+s3*sq; m3=1-s3*sq;
118 %−− derivative of ansatz functions Ni wrt j, (dNij) where e.g. dN21=−dN11
119 dN11=-m2*m3/8;dN31= p2*m3/8;dN51=-m2*p3/8;dN71= p2*p3/8;
120 dN12=-m1*m3/8;dN22=-p1*m3/8;dN52=-m1*p3/8;dN62=-p1*p3/8;
121 dN13=-m1*m2/8;dN23=-p1*m1/8;dN33=-p1*p2/8;dN43=-m1*p2/8;
122 dN1=[dN11,-dN11,dN31,-dN31,dN51,-dN51,dN71,-dN71];
123 dN2=[dN12,dN22,-dN22,-dN12,dN52,dN62,-dN62,-dN52];
124 dN3=[dN13,dN23,dN33,dN43,-dN13,-dN23,-dN33,-dN43];
125 %−− components of deformation gradient (Fij)
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126 F11=dN11*(u11-u21)+dN31*(u31-u41)+dN51*(u51-u61)+dN71*(u71-u81)+1;
127 F12=dN11*(u12-u22)+dN31*(u32-u42)+dN51*(u52-u62)+dN71*(u72-u82);
128 F13=dN11*(u13-u23)+dN31*(u33-u43)+dN51*(u53-u63)+dN71*(u73-u83);
129 F21=dN12*(u11-u41)+dN22*(u21-u31)+dN52*(u51-u81)+dN62*(u61-u71);
130 F22=dN12*(u12-u42)+dN22*(u22-u32)+dN52*(u52-u82)+dN62*(u62-u72)+1;
131 F23=dN12*(u13-u43)+dN22*(u23-u33)+dN52*(u53-u83)+dN62*(u63-u73);
132 F31=dN13*(u11-u51)+dN23*(u21-u61)+dN33*(u31-u71)+dN43*(u41-u81);
133 F32=dN13*(u12-u52)+dN23*(u22-u62)+dN33*(u32-u72)+dN43*(u42-u82);
134 F33=dN13*(u13-u53)+dN23*(u23-u63)+dN33*(u33-u73)+dN43*(u43-u83)+1;
135 F1=[F11,F21,F31]; F2=[F12,F22,F32]; F3=[F13,F23,F33];
136 %−− strain−displacement matrix (B)
137 B1=repmat([F1;F2;F3],1,8).*reshape(repmat([dN1;dN2;dN3],3,1),3,24);
138 B2=repmat([F3;F1;F2],1,8).*reshape(repmat([dN2;dN3;dN1],3,1),3,24);
139 B3=repmat([F2;F3;F1],1,8).*reshape(repmat([dN3;dN1;dN2],3,1),3,24);
140 B=[B1;B2+B3]; BT=B’; CB=C*B; SV=CB*Ue;
141 %−− elemental residuum (RE), stiffness matrix (KE), and compliance (dc) update
142 Fint=BT*SV; RE=RE-Fint; dc=dc+0.5*Ue’*Fint;
143 G=[dN11*Y,-dN11*Y,dN31*Y,-dN31*Y,dN51*Y,-dN51*Y,dN71*Y,-dN71*Y;
144 dN12*Y,dN22*Y,-dN22*Y,-dN12*Y,dN52*Y,dN62*Y,-dN62*Y,-dN52*Y;
145 dN13*Y,dN23*Y,dN33*Y,dN43*Y,-dN13*Y,-dN23*Y,-dN33*Y,-dN43*Y];
146 M=[SV(1)*Y,SV(6)*Y,SV(5)*Y;SV(6)*Y,SV(2)*Y,SV(4)*Y;SV(5)*Y,SV(4)*Y,SV(3)*Y];
147 KE=KE+BT*CB+G’*M*G;
148 end
149 end
150 %−−display
151 function display_3D(rho)
152 [nely,nelx,nelz]=size(rho); cla; face = [1 2 3 4; 2 6 7 3; 4 3 7 8; 1 5 8 4; 1 2 6 5; 5 6 7 8];
153 for z=0:(nelz-1)
154 for x=0:(nelx-1)
155 for y=nely:-1:1
156 R = rho(1+nely-y,x+1,z+1);
157 if R>0.5
158 vert=[x,-z,y;x,-z,y-1;x+1,-z,y-1;x+1,-z,y;x,-z-1,y;x,-z-1,y-1;x+1,-z-1,y-1;x+1,-z-1,y];
159 patch(’Faces’,face,’Vertices’,vert,’FaceColor’,(0.2+0.8*(1-R))*[1,1,1]); hold on;
160 end
161 end
162 end
163 end
164 axis equal; axis tight; axis off; box on; view([30,30]); pause(1e-9);
165 end
166 %−− Disclaimer:
167 %−− The authors reserves all rights for the program.
168 %−− The code may be distributed and used for educational purposes.
169 %−− The authors do not guarantee that the code is free from errors, and
170 %−− they shall not be liable in any event caused by the use of the code.
171 %−− contact: marek.werner@uni−siegen.de
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