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Abstract: Flexoelectricity is an electromechanical coupling between the electric field and the me-
chanical strain gradient, as well as between the mechanical strains and the electric field gradient,
observed in all dielectric materials, including those with centrosymmetry. Flexoelectricity demands
C1-continuity for straightforward numerical implementation as the governing equations in the gradi-
ent theory are fourth-order partial differential equations. In this work, an alternative collocation-based
mixed finite element method for direct flexoelectricity is used, for which a newly developed quadratic
element with a high capability of capturing gradients is introduced. In the collocation method,
mechanical strains and electric field through independently assumed polynomials are collocated
with the mechanical strains and electric field derived from the mechanical displacements and electric
potential at collocation points inside a finite element. The mechanical strain gradient and electric field
are obtained by taking the directional derivative of the independent mechanical strain and electric
field gradients. However, an earlier proposed linear element is unable to capture all mechanical
strain gradient components and, thus, simulate flexoelectricity correctly. This problem is solved in
the present work by using quadratic shape functions for the mechanical displacements and electric
potential with fewer degrees of freedom than the traditional mixed finite element method. A Fortran
user-element code is developed by the authors: first, for the linear and, after that, for the quadratic
element. After verifying the linear element with numerical results from the literature, both linear
and quadratic elements’ behaviors are tested for different problems. It is shown that the proposed
second-order collocation-based mixed FEM can capture the flexoelectric behavior better compared to
the existing linear formulations.

Keywords: flexoelectricity; mixed finite element method; collocation method; biquadratic elements

1. Introduction

With the theoretical identification of the flexoelectric effect by Mashkevich and Tolpygo
in 1957 [1] and the quantification of flexoelectric coefficients by Kogan in 1964 [2], a new
chapter in the research on microelectromechanical systems (MEMS) began. Like other
electromechanical effects, such as piezoelectricity, this opened the possibility of constructing
new types of sensors and actuators or energy-harvesting devices. Unlike piezoelectricity,
which only occurs in noncentrosymmetric crystals, flexoelectricity breaks the inversion
symmetry of the crystal structure by inducing mechanical strain gradients. Therefore,
flexoelectricity is observed in all dielectrics and is a universal electromechanical effect [3].
This property makes flexoelectricity particularly relevant for materials with high dielectric
parameters, such as ferroelectrics [4,5].

Flexoelectricity can be subdivided into direct and converse flexoelectric effects. The first
describes the generation of an electric field due to mechanical strain gradients, whereas
the converse effect defines the coupling between the electric field gradients and mechan-
ical strains. Typically, the flexoelectric coefficients have small values. High mechanical
strain gradients must be induced for flexoelectricity to become a dominant effect. Because
flexoelectricity is inversely related to the length scale, this is more easily accomplished

Solids 2023, 4, 39–70. https://doi.org/10.3390/solids4010004 https://www.mdpi.com/journal/solids

https://doi.org/10.3390/solids4010004
https://doi.org/10.3390/solids4010004
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/solids
https://www.mdpi.com
https://orcid.org/0000-0001-8294-9292
https://orcid.org/0000-0003-1799-450X
https://doi.org/10.3390/solids4010004
https://www.mdpi.com/journal/solids
https://www.mdpi.com/article/10.3390/solids4010004?type=check_update&version=2


Solids 2023, 4 40

in micro- and nanostructures. Due to the ongoing miniaturization in microelectronics,
size-dependent effects play an increasingly important role, making flexoelectricity an es-
sential topic in recent years. Various experiments including cantilever beam and truncated
pyramid setups [6–9] have been conducted to quantify flexoelectricity. In order to utilize
the flexoelectric effect in electronic devices, analytical formulations have been developed,
e.g., for flexoelectricity in one-dimensional nanosized cantilever beams. Based on the
theory developed in [10], the formulations for a Bernoulli–Euler beam are derived, in
which piezoelectricity and direct flexoelectricity are considered [11]. However, with more
complex structures involved, the problems become very difficult to solve analytically.
Therefore, different numerical methods were developed to solve this issue. The most
popular one is the conventional finite element method (FEM); however, it is not directly
suitable for simulating flexoelectricity because of the requirement of C0-continuous ele-
ments. Consequently, mesh-free formulation [12], isogeometric analysis [13,14], moving
least square [15], the hierarchical B-spline method [16], and mixed FEM have been devel-
oped to simulate flexoelectricity. For the latter method, numerical results for the “plate
with a hole” problem [17,18] and the “infinite length tube” problem [19] were obtained.
Furthermore, recently in [20], numerically robust mixed finite elements were proposed for
modeling size-dependent flexoelectric behavior in piezoelectric solids to highlight mutual
interactions of piezoelectricity and flexoelectricity. It is also possible to use C1-continuous
elements with higher-order shape functions and additional degrees of freedom (DOFs) as
given in [18].

If choosing mixed FEM for flexoelectric behavior simulation, the constraints between
the mechanical displacement field and its gradient are enforced by Lagrange multipli-
ers [17]. These Lagrange multipliers are set as extra DOFs. For a 2D quadrilateral element,
27 DOFs are used for mechanical displacements and electric potential on all nine nodes,
16 DOFs are needed for displacement gradients at corner nodes and four Lagrange mul-
tipliers are involved at the center node [19]. With this high number of DOFs involved,
the stiffness matrix, which has to be inverted to solve the numerical problem, becomes
weighty, leading to a low computational efficiency for this element. Furthermore, the
standard mixed/hybrid FEM has some drawbacks, like the requirement to satisfy the
Ladyzhenskaya–Babuška–Brezzi condition [21] which is, however, not possible a priori.

In the present work, the collocation-based mixed FEM is used. In this method, the
mechanical strains derived from the nodal displacements are collocated with indepen-
dently estimated mechanical strains assumed to be a polynomial. The collocation is done
on specific points inside the finite element. These points should be located at the Gaussian
points, as pointed out in [22]. The collocation-based mixed FEM was extended for the collo-
cation of an electric and magnetic contribution reducing the sensitivity to mesh distortion
and aspect ratio compared to the displacement-based elements [23]. Ref. [24] extended
the collocation method for higher-order and 3D elements. A collocation mixed FEM to
simulate flexoelectric behavior was developed in [25]. It uses C0-continuity and is capable
of accounting for the size effect of the mechanical strain gradients. The mechanical strain
gradients are thereby obtained by taking the directional derivatives of the independently
assumed mechanical strains. This linear collocation-based element only has 12 DOFs corre-
sponding to two mechanical displacements and one electric potential DOF at each node of a
four-noded element. Ref. [26] was recently extended for the simulation of semiconductors.

In the proposed manuscript, the collocation-based mixed FEM [25] is further extended,
introducing biquadratic elements. For this, independent mechanical strains and the electric
field are assumed as a quadratic polynomial. This increases the number of DOFs to 27.
However, there are fewer DOFs involved than in traditional mixed FEM [17,19,27]. In the
current work, a Fortran user element (UEL) for ABAQUS is developed from scratch to
simulate flexoelectricity by using linear and quadratic elements. First, the linear element
is verified by comparing the results given in [25] with the results of the linear element
developed by the authors, for which few specific mechanical strain gradient components
are neglected. Later, the performance of the newly developed quadratic element was
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compared to the linear element and studied in detail. The numerical examples presented in
our study are both the cantilever beam and the truncated pyramid problems.

The paper is organized as follows: Section 2 introduces the governing equations for
flexoelectric material behavior. Sections 3.1 and 3.2 present the collocation mixed FEM
formulations for the linear element and introduces the quadratic element by outlining the
new developments in the collocation method. Section 4.1 presents the result in which the
cantilever beam is used as a numerical example. There, in Section 4.1.1 the validation of the
results of the developed linear UEL with the numerical results obtained in [25] is shown.
The newly developed quadratic element is validated in Section 4.1.2 by neglecting specific
mechanical strain gradient components and comparing the obtained results with the results
of the linear element for the cantilever beam problem. Additionally, a convergence of
linear and quadratic elements are studied in Section 4.1.3. By comparing the linear and the
quadratic element in Section 4.1.4, considerable differences in the results are observed and
analyzed. Furthermore, in Section 4.1.5, the material behavior for both element types is
investigated for a wide range of flexoelectric coefficients. Also in Section 4.1.6, possibilities
for further improvements in the physical correctness of the obtained result for the quadratic
element are discussed. In Section 4.2, the numerical results for the truncated pyramid are
presented, in which the difference in the electric response is outlined. The final conclusions
and discussion are presented in Section 5.

2. Flexoelectricity: Constitutive and Governing Equations

The internal energy density U, which accounts for flexoelectricity [10], can be summarized as

U =
1
2

cijklεijεkl −
1
2

aijEiEj − ekijεijEk +
1
2

gijklmnηkjiηnml

− fijklEiηlkj − bijklεijEk,l −
1
2

hijklEi,jEk,l , (1)

where cijkl and aij are the components of the elastic and dielectric permittivity tensors,
respectively, ekij are the components of the piezoelectric tensor, fijkl , and bklij are the
component of the direct and converse flexoelectricity tensors, whereas gijklmn and hijkl are
the components of the strain gradient elasticity (SGE) tensor and the higher-order electric
field gradient tensor, respectively.

The mechanical strain tensor ε, mechanical strain gradient tensor η and the electric
field E are defined as

εij =
1
2
(
ui,j + uj,i

)
, (2)

ηkji = ηkij = εij,k =
1
2

(
ui,jk + uj,ik

)
, (3)

Ei = −φ,i, (4)

where ui are the components of the mechanical displacement and φ is the electric potential.
From the internal energy density Equation (1) the constitutive equations for stress σij,

higher-order stress τkji, electric displacement Di and higher-order electric displacement Qij
are obtained as partial derivatives with respect to εij, ηkji, Ei and Ei,j, respectively:
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σij =
∂U
∂εij

= cijklεkl − ekijEk − bijklEk,l , (5a)

τkji =
∂U

∂ηkji
= gijklmnηnml − flijkEl , (5b)

Di = −
∂U
∂Ei

= aijEj + eijkε jk + fijklηlkj, (5c)

Qij = −
∂U

∂Ei,j
= bklijεkl + hijklEk,l . (5d)

In order to account for the size effect of the mechanical strain gradients and electric
field gradients, internal length scale parameters l and q are introduced. These parameters
are multiplied with the elastic stiffness coefficients cijkl and the dielectric coefficients aij to
get the higher-order elastic parameters gjklmni and the higher-order electric parameters hijkl
of Equations (5b) and (5d), respectively [25,28]:

gijklmn = l2cjkmnδil , (6)

hijkl = q2aikδjl . (7)

Here, δij denotes the Kronecker delta and cjkmn and aik are given for orthotropic
material as

aij =a1δi1δj1 + a3δi3δj3, (8)

cijkl =δi1δj1(c11δk1δl1 + c13δk3δl3) + δi3δj3(c13δk1δl1 + c33δk3δl3)

+ c44
(
δi1δj3 + δi3δj1

)
(δk1δl3 + δk3δl1). (9)

For a 4 mm tetragonal crystal structure, the piezoelectric coefficients ekij are given
by [25,29]

ekij = −
(
e31δi1δj1 + e33δi3δj3

)
δk3 − e15

(
δi1δj3 + δi3δj1

)
δk1, (10)

where the indices 1 and 3 describe two dimensions of a 2D Cartesian coordinate system in
which 3 is the poling direction. So the stress due to piezoelectricity can be written as

σ11 = −e31E3, σ33 = −e33E3, σ13 = −e15E1. (11)

The direct and converse flexoelectric tensors have low symmetry. For a cubic crystal,
they can be expressed by three independent coefficients [30]. For converse flexoelectricity,
the coefficients bklij are represented as b1, b2 and b3 [30]:

bklij =− δi1δj1(b1δk1δl1 + b2δk3δl3)− δi3δj3(b2δk1δl1 + b1δk3δl3)

− b3
(
δi1δj3 + δi3δj1

)
(δk1δl3 + δk3δl1). (12)

The stress due to converse flexoelectricity can be written as

σ11 = −b1E1,1 − b2E3,3, (13a)

σ33 = −b2E1,1 − b1E3,3, (13b)

σ13 = σ31 = −b3(E1,3 + E3,1). (13c)

For direct flexoelectricity, the coefficients fijkl can be reduced further to two indepen-
dent components f1 and f2 when isotropic material is considered [19,30]:

fijkl = f1δijδkl + f2

(
δilδjk + δikδjl

)
. (14)
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By applying the Voigt notation, the constitutive Equations (5a)–(5d) can be presented
as [25] σ11

σ33
σ13

 = C

 ε11
ε33

2ε13

− e
[

E1
E3

]
− b

[
E1,1 E3,1 E1,3 E3,3

]T, (15a)

[
D1
D3

]
= eT

 ε11
ε33

2ε13

+ a
[

E1
E3

]
+ F

[
η111 η133 2η113 η311 η333 2η313

]T, (15b)

[
τ111 τ133 τ113 τ311 τ333 τ313

]T
= −FT

[
E1
E3

]
+ l2G

[
η111 η133 2η113 η311 η333 2η313

]T, (15c)

[
Q11 Q31 Q13 Q33

]T
= bT

 ε11
ε33

2ε13

+ q2H
[

E1,1 E3,1 E1,3 E3,3
]T, (15d)

with material tensors from Equations (6)–(10), (12) and (14) written as matrices G, H, a, C,
e, b, F, respectively:

C =

 c11 c13 0
c13 c33 0
0 0 c44

, e =

 0 e31
0 e33

e15 0

, a =

[
a1 0
0 a3

]
,

F =

[
f1 + 2 f2 f1 0 0 0 f2

0 0 f2 f1 f1 + 2 f2 0

]
, b =

 b1 0 0 b2
b2 0 0 b1
0 b3 b3 0

, (16)

G =



c11 c13 0 0 0 0
c13 c33 0 0 0 0
0 0 c44 0 0 0
0 0 0 c11 c13 0
0 0 0 c13 c33 0
0 0 0 0 0 c44

, H =


a1 0 0 0
0 a2 0 0
0 0 a1 0
0 0 0 a2

.

The governing equations for a piezoelectric solid with direct and converse flexoelectric
effects in the absence of the body forces and free charges can be written as [18,25]

σij,j − τijk,jk = 0, (17a)

Di,i −Qij,ji = 0. (17b)

The Dirichlet boundary conditions are prescribed as

ui = ūi on Γu, (18a)

wi =
∂ui
∂n

= w̄i on Γw, (18b)

φ = φ̄ on Γφ, (18c)

p =
∂φ

∂n
= p̄i on Γp (18d)

on the boundary Γ with normal derivative of mechanical displacement wi and normal
derivative of electric potential p. Γu, Γw, Γφ and Γp describe mechanical displacement bound-
ary, boundary of normal derivative of mechanical displacement, electrical potential bound-
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ary, and boundary of normal derivative of electric potential, respectively. The bar over the
variables indicates that it is a prescribed value. The Neumann boundary conditions are

ti = t̄i on Γt, (19a)

Ri = nknjτijk = R̄i on ΓR, (19b)

S = S̄ on ΓS, (19c)

Z = ninjQij = Z̄ on ΓZ, (19d)

where Ri denotes the higher-order traction and Z is the higher-order surface charge. Trac-
tion boundary, higher-order traction boundary, electrical surface charge boundary and
higher-order surface charge boundary are denoted as Γt, ΓR, ΓS and ΓZ, respectively:

Γt ∪ Γu = Γ, Γt ∩ Γu = ∅, (20a)

ΓR ∪ Γw = Γ, ΓR ∩ Γw = ∅, (20b)

ΓS ∪ Γφ = Γ, ΓS ∩ Γφ = ∅, (20c)

ΓZ ∪ Γp = Γ, ΓZ ∩ Γp = ∅. (20d)

The traction vector ti and the electrical surface charge S are defined as [25]

ti = nj

(
σij − τijk,k

)
− ∂ρi

∂π
+ ∑

k
||ρi(xk)||δ(x− xk), (21a)

S = nk

(
Dk −Qkj,j

)
− ∂α

∂π
+ ∑

k
||α(xk)||δ(x− xk), (21b)

where ρi = nkπjτijk and α = niπjQij. πi describes the Cartesian component of the unit
tangent vector on boundary Γ, and δ(x) is the Dirac delta function. ||ρi(xk)|| and ||α(xk)||
mean the jump at a corner xk on the oriented boundary contour Γ.

3. Collocation Mixed Finite Element Method (CMFEM)

For the numerical simulation of the direct and converse flexoelectricity, one needs to
calculate mechanical strains, mechanical strain gradients, electric field, and electric field gra-
dients. As mechanical strain gradients and electric field gradients are the second derivatives
of mechanical displacement and electric potential, respectively, C1-continuity is required
in traditional FEM. To avoid C1-continuous elements due to their complexity, mixed FEM
is traditionally used for simulating flexoelectricity [17,19,27]. To reduce the number of
DOFs and increase computational efficiency, CMFEM, used in this study, was proposed for
flexoelectricity and extensionally developed by [25]. In CMFEM, independently assumed
mechanical strains and independently assumed electric field are introduced and collocated
with the mechanical strains and electric field computed from the mechanical displacement
ui and electric potential φ. ui and φ are interpolated from the nodal values ua

i and φa inside
the finite element, respectively:

[
u1(x)
u3(x)

]
=

n

∑
a=1

Na(r)
[

ua
1

ua
3

]
=

n

∑
a=1

Na(r)ua, (22)

φ(x) =
n

∑
a=1

Na(r)φa. (23)
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Here, n is the total number of nodes and r =
[

r s
]T is the position vector in the local

curvilinear coordinate system. In order to calculate the gradient in the global coordinate
system, the following coordinate transformation equation is needed (Figure 1)

∂

∂x
= J−1(r)

∂

∂r
,[

∂
∂x1

∂
∂x3

]
=

[
jinv
11 jinv

13
jinv
31 jinv

33

][
∂
∂r
∂
∂s

]
. (24)

Therefore, the Jacobian matrix J in Equation (24) is calculated with the derivatives of
the shape functions Na and the coordinates of each node xa

i . We have

J(r) =
n

∑
a=1

[
∂Na(r)

∂r xa
1

∂Na(r)
∂r xa

3
∂Na(r)

∂s xa
1

∂Na(r)
∂s xa

3

]
. (25)

The global derivative of shape function Na with respect to x1 and x3 are introduced as
ba

1 and ba
3, respectively, by multiplying Equation (24) with shape functions Na:[

ba
1(r)

ba
3(r)

]
=

[
jinv
11

∂Na(r)
∂r + jinv

13
∂Na(r)

∂s
jinv
31

∂Na(r)
∂r + jinv

33
∂Na(r)

∂s

]
. (26)

Figure 1. General two-dimensional coordinate transformation of a quadrilateral element from local
curvilinear coordinates to a global Cartesian coordinate system.

The mechanical strains and electric field are derived from the mechanical displace-
ments and the electric potential, respectively,

ε(x) =

 ε11(x)
ε33(x)

2ε13(x)

 =
N

∑
a=1

 Ba,T
ε11(r)

Ba,T
ε33(r)

Ba,T
ε13(r)

ua
i , (27)

−E(x) = −
[

E1(x)
E3(x)

]
=

[
φ,1(x)
φ,3(x)

]
=

N

∑
a=1

[
ba

1(r)
ba

3(r)

]
φa. (28)

Here, Ba,T
ε11(r), Ba,T

ε33(r) and Ba,T
ε13(r) are the strain-displacement conectivity matrix components

Ba,T
ε11(r) =

[
ba

1(r) 0
]
, Ba,T

ε33(r) =
[

0 ba
3(r)

]
, Ba,T

ε13(r) =
[

ba
3(r) ba

1(r)
]
. (29)
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3.1. CMFEM for Linear Element

The idea of the collocation method is that a polynomial is assumed for each component
of the independent mechanical strain and electric field. These polynomials consist of a
P-vector and a coefficient vector β or α

εIn
ii = PT(r)αii, 2εIn

13 = PT(r)α13, (30)

−EIn
i = PT(r)βi. (31)

Here, the superscript "In" describes an independent quantity. The shape of the P-vector
and the coefficient vector depends on whether the collocated, independent component
is assumed to be constant, linear, or quadratic. For the linear element, all components of
mechanical strain and electric field are collocated linearly. Consequently, the independent
P-vector is defined as follows:

P(r) =
[

1 r s rs
]
. (32)

The corresponding coefficient vectors have to be assumed accordingly, so that the
number of components is the same as for the assumed P vector

α11 =
[ 1α 2α 3α 4α

]T, (33a)

α33 =
[ 5α 6α 7α 8α

]T, (33b)

α13 =
[ 9α 10α 11α 12α

]T, (33c)

β1 =
[ 1β 2β 3β 4β

]T
, (33d)

β3 =
[ 5β 6β 7β 8β

]T
. (33e)

The left top indices distinguish different coefficients. Because the coefficients iα and iβ
for the assumed polynomials are not known initially, these have to be computed by using
the collocation method. For this, the quantities which are derived from nodal values are set
to be equal to the independently assumed quantities at collocation points xc. The collocation
points must be at specific positions inside the finite element, which have to be the Gaussian
points to pass the patch test [22,23]. Consequently, εij and Ei are collocated at the 2×2
Gaussian points 5, 6, 7, and 8 in Figure 2.

Figure 2. Four-noded quadrilateral element in the local curvilinear coordinate system with 2 × 2
Gaussian quadrature points.
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We have

εIn
ii (xc) = εii(xc), 2εIn

13(xc) = 2ε13(xc), EIn
i (xc) = Ei(xc). (34)

By assembling P-vectors for all collocation points, A matrix is obtained. A contains the
coordinates of all considered collocation points, and hence can be precalculated for each
Gaussian point as

Aαij =
n

∑
a=1

Ba
εij(rc)ua, (35)

Aβi =
n

∑
a=1

Ba
Ei(rc)φ

a, (36)

where

A =


1 r5 s5 r5s5
1 r6 s6 r6s6
1 r7 s7 r7s7
1 r8 s8 r8s8

. (37)

The subscript of r and s denotes the collocation points. The Ba-matrices in
Equations (35) and (36) can be written as follows:

Ba,T
ε11(rC) =

[
ba

1(r5) ba
1(r6) ba

1(r7) ba
1(r8)

0 0 0 0

]
, Ba,T

ε33(rC) =

[
0 0 0 0

ba
3(r5) ba

3(r6) ba
3(r7) ba

3(r8)

]
, (38a)

Ba,T
ε13(rC) =

[
ba

3(r5) ba
3(r6) ba

3(r7) ba
3(r8)

ba
1(r5) ba

1(r6) ba
1(r7) ba

1(r8)

]
, Ba,T

Ei (rC) =
[

ba
i (r5) ba

i (r6) ba
i (r7) ba

i (r8)
]
. (38b)

From Equations (35) and (36) the coefficient vectors are obtained and inserted into
Equations (30) and (31) as

εIn(x) =

 εIn
11(x)

εIn
33(x)

2εIn
13(x)

 = ∑
a

Ba
u(r)u

a = Buu, (39)

EIn(x) =
[

EIn
1 (x)

EIn
3 (x)

]
= ∑

a
Ba

φ(r)φ
a = Bφφ, (40)

where u and φ contain the mechanical displacement and electric potential for all nodes,
respectively, and the newly introduced Ba

u- and Ba
φ-matrices are being calculated as

Ba
u(r) =

 PT(r)A−1Ba
ε11(rc)

PT(r)A−1Ba
ε33(rc)

PT(r)A−1Ba
ε13(rc)

, Ba
φ(r) =

[
PT(r)A−1Ba

E1(rc)

PT(r)A−1Ba
E3(rc)

]
. (41)

By taking the directional derivative of P, mechanical strain gradients and electric field
gradients are obtained [25] as

∂εIn(x)
∂xi

=

 PT
,i A
−1Bε11(rc)

PT
,i A
−1Bε33(rc)

PT
,i A
−1Bε13(rc)

u, (42)

∂EIn(x)
∂xi

=

[
PT

,i A
−1BE1(rc)

PT
,i A
−1BE3(rc)

]
φ, (43)
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where [
PT

,1
PT

,3

]
=

[
jinv
11 (r) jinv

13 (r)
jinv
31 (r) jinv

33 (r)

][ ∂PT(r)
∂r

∂PT(r)
∂s

]
. (44)

Applying the Voigt notation for the mechanical strain gradients and the electric field
gradients, the following equations are obtained:

ηIn(x) =



PT
,1A−1Bε11(rc)

PT
,1A−1Bε33(rc)

PT
,1A−1Bε13(rc)

PT
,3A−1Bε11(rc)

PT
,3A−1Bε33(rc)

PT
,3A−1Bε13(rc)


u = B∇uu, (45)

−EIn(x) =


PT

,1A−1BE1(rc)

PT
,1A−1BE3(rc)

PT
,3A−1BE1(rc)

PT
,3A−1BE3(rc)

φ = B∇φφ. (46)

The variational condition describes the equivalence of the variational internal work
and the variational external work. In gradient theory for FEM, it can be derived as [10]∫

V
(σijδεij + τkijδηkij − DkδEk −QijδEi,j)dΩ =

∫
Γt

tiδuidΓ +
∫

ΓR

RiδwiΓ

+
∫

ΓS

SδφΓ +
∫

ΓZ

ZδpΓ. (47)

In order to implement described formulations, the stiffness matrix for the flexoelectric
material has to be derived. Therefore, the expressions for mechanical strains, mechanical
strain gradients, electric field, and electric field gradients obtained by the collocation
method and the constitutive Equations (5a) and (5d) are inserted into the variational
condition Equation (47):

∑
e

∫
Ve

δuT
(

BT
u(r)CBu(r) + l2BT

∇u(r)GB∇u(r)
)

udVe

+∑
e

∫
Ve

δuT
(

BT
u(r)eBφ(r) + BT

u(r)bB∇φ(r) + BT
∇u(r)F

TBφ(r)
)

φdVe

+∑
e

∫
Ve

δφT
(

BT
φ(r)e

TBu(r) + BT
φ(r)FB∇u(r) + BT

∇φ(r)b
TBu(r)

)
udVe (48)

−∑
e

∫
Ve

δφT
(

BT
φ(r)aBφ(r) + q2BT

∇φ(r)HB∇φ(r)
)

φdVe =

∑
e

n

∑
a=1

δuT
(∫

Γe
t

Na t̄adΓ +
∫

Γe
R

njba
j R̄adΓ

)
+ δφT

(∫
Γe

S

NaS̄adΓ +
∫

Γe
Z

njba
j Z̄adΓ

)
.

Here, e denotes an element and Ve the volume of an element. t̄a and R̄a are given as

t̄a =
[

t̄a
1 t̄a

3
]T, (49)

R̄a =
[

R̄a
1 R̄a

3
]T, (50)



Solids 2023, 4 49

where the superscript is the node number. Because the variation δu and δφ can be arbitrary,
Equation (48) splits into two equations which can be written for each element as[

Kuu Kuφ

Kφu Kφφ

][
u
φ

]
=

[
Fu
Fφ,

]
(51)

with

Kuu =
∫

Ve
BT

uCBu + l2BT
∇uGB∇udVe, (52)

Kuφ = KT
φu =

∫
Ve

BT
ueBφ + BT

ubB∇φ + BT
∇uFTBφdVe, (53)

Kφφ =
∫

Ve
−BT

φaBφ − q2BT
∇φHB∇φdVe, (54)

Fu =
n

∑
a=1

∫
Γt

NatdΓ +
∫

ΓR

njba
j RbidΓ, (55)

Fφ =
n

∑
a=1

∫
ΓS

NaSdΓ +
∫

ΓZ

njba
j ZdΓ. (56)

Algorithm 1 presents schematically how the collocation method is implemented in
UEL.

Algorithm 1 Collocation method.

1: compute all J−1 . The inverse Jacobian matrix for all integration points (ip)
2:
3: compute Bu,N according to Equation (27) . Bu,N and Bφ,N contain the B-Matrices

derived
4: compute Bφ,N according to Equation (28) . from nodal values N for all collocation

points
5:
6: define A−1 . containing precalculated values of A according to Equation (37)
7:
8: for 1,...,nip do . Loop over all ip
9:

10: compute P according to Equation (32) . The P-vector for current ip
11: P = (1,rip,sip,ripsip)
12:
13: compute P,1 and P,3 Equation (44) . The directional derivatives
14: . of the P-vector for current ip
15: P,1 = (0,jinv

11 ,jinv
13 ,jinv

11 sip+jinv
13 rip)

16: P,3 = (0,jinv
31 ,jinv

33 ,jinv
31 sip+jinv

33 rip) . Use inverse Jacobian of current ip
17:
18: compute Bu according to Equation (41) . The collocated Bu-matrix
19:
20: compute B∇u according to Equation (42) . The directional derivative of Bu-matrix
21:
22: compute Bφ according to Equation (41) . The collocated Bφ-matrix
23:
24: compute B∇φ according to Equation (43) . The directional derivative of Bφ-matrix
25:
26: . . .
27: end for
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3.2. CMFEM for Quadratic Element

In this subsection, CMFEM is derived for a quadratic element. In this quadratic
element, quadratic shape functions [31] are used for interpolating the mechanical dis-
placement and electric potential. This creates the possibility to assume the independent
mechanical strains εij, as well as the independent electric field Ei to be quadratic. So in this
study, they are collocated over nine collocation points which are the 3 × 3 Gaussian points
10,11,12,13,14,15,16,17,18 in Figure 3 [24]. For such an element, P-vector could be defined as

P(r) =
[

1 r s rs r2 s2 r2s rs2 r2s2 ]. (57)

Figure 3. The nine-noded quadrilateral element in the local curvilinear coordinate system with 3 × 3
Gaussian quadrature points.

The corresponding coefficient vectors take the following form where the left top index
indicates that these are not the same coefficients as in Equations (33a) and (33e) :

α11 =
[ 13α 14α ... 21α

]
, (58a)

α33 =
[ 22α 23α ... 30α

]
, (58b)

α13 =
[ 31α 32α ... 39α

]
, (58c)

β1 =
[ 9β 10β ... 17β

]
, (58d)

β3 =
[ 18β 19β ... 26β

]
. (58e)

The A-matrix changes to A = Aquad with Aquad as

AT
quad =

[
PT(r10) PT(r11) . . . PT(r17) PT(r18)

]
. (59)

The Ba-matrices given in Equations (35) and (36) are required to be

Ba,T
ε11(rc) =

[
ba

1(r10) ba
1(r11) . . . ba

1(r17) ba
1(r18)

0 0 . . . 0 0

]
, (60a)

Ba,T
ε33(rc) =

[
0 0 . . . 0 0

ba
3(r10) ba

3(r11) . . . ba
3(r17) ba

3(r18)

]
, (60b)

Ba,T
ε13(rc) =

[
ba

3(r10) ba
3(r11) . . . ba

3(r17) ba
3(r18)

ba
1(r10) ba

1(r11) . . . ba
1(r17) ba

1(r18)

]
, (60c)

Ba,T
Ei (rc) =

[
ba

i (r10) ba
i (r11) . . . ba

i (r17) ba
i (r18)

]
. (60d)

The advantage of this quadratic element is that it can capture all mechanical strain
gradient components in contrast to the linear element, which is only capable of calculating
strain gradient components η133, η311, η131 and η313. In the linear element, the compo-
nents η111 and η333 cannot be captured. This means that the generated electric potential
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due to flexoelectricity and the element stiffness is essentially more accurate with this
quadratic element.

4. Numerical Examples

This section investigates the performance of the linear and the proposed quadratic
element. To begin with, the developed linear element is verified in the literature. A first
numerical example serves the cantilever beam problem. Thereafter, the correctness of
the quadratic element is verified by comparing it with the linear element results, setting
particular strain gradient components to zero in the quadratic element. In a convergence
study, the performance of both element types is evaluated, and the differences in the results
are investigated and analyzed. Thereafter, a parameter study in which the influence of
flexoelectric coefficients f1 and f2 on the deflection and the generated electric field measures
both linear and quadratic elements. Finally, the performance of the newly developed
quadratic element is illustrated on the truncated pyramid under the compression problem
and verified with the literature.

4.1. Cantilever Beam Problem
4.1.1. Verification of Linear Element

In this subsection, the results obtained from the developed UEL, based on Section 3.1,
are compared with the numerical results of the linear collocation mixed FEM element given
in [25]. For this purpose, a nanoscaled cantilever beam problem with a transverse force on
its end as in [25] is used as an example. The problem is assumed to be 2D plane strain.

As depicted in Figure 4, the beam has a length of L = 500 nm, a width of B = 10 nm a
height of H = 20 nm. The whole left side of the beam is horizontally fixed and one node
is fixed in the vertical direction. At the free end of the beam over the right side, a force F
is applied. Furthermore, the free end of the beam is electrically grounded. The boundary
conditions are summarized in Table 1.

Figure 4. Cantilever beam model with transverse load F on its end.

Table 1. Boundary conditions and loads for the cantilever beam [25].

Side/Corner Mechanical BC Electrical BC Prescribed Force

AB u1 = 0 - -
A u3 = 0 - -
CD - φ = 0 F = 1 nN in x3
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Piezoelectric material PZT-5H is used. As in [25], the material is chosen to be isotropic
with parameters presented in Table 2.

Table 2. Material properties for the cantilever beam [25].

E [GPa] ν [-] l [nm] a1, a3[
C2

Nm2 ] f1[
µC
m ] f2[

µC
m ]

126 0 2 13.0× 10−9 0.1 0

A Poisson’s ratio of ν = 0 and not the stated value of ν = 0.2 is used for the cantilever
beam simulation in [25]. This can be shown by analytical calculation of the deflection for the
case of the linear elastic beam and comparing the result with the analytical solution given in
the deflection plot. So ν is set accordingly in the current work and only direct flexoelectricity
is considered. In [25], 1600 elements for the cantilever beam are used. The same number of
elements is used in the current simulations to compare both results better.

Figure 5 shows the distribution of the deflection components u3 and u1, mechanical
strain ε11, and mechanical strain gradient η311 inside the cantilever beam. One can see that
not only u3 but also u1 is built up and so there exists mechanical strain ε11. The gradient of
mechanical strain ε11 along x3 is much higher than any other mechanical strain gradient
component, leading to the generation of the electric field.

0

−20

−40

nmu3

1.1

0

−1.1

nmu1

44

0

−44

10−4ε11

450

225

0

mm−1η311

Figure 5. Deflections u3 and u1, mechanical strain ε11, and mechanical strain gradient η311 distribution
along the cantilever beam.

Deflection u3 of the cantilever beam along its length is presented in Figure 6 for
different flexoelectric coefficients ( f1 = 0, f1 = 0.1 µC/m, f1 = 0.2 µC/m and f1 = 0.3 µC/m).
It can be seen that by accounting for the mechanical strain gradient effect and increasing
the flexoelectric coefficient f1, the beam becomes stiffer and the deflection decreases.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−50

−40

−30

−20

−10

0

x1/L

u 3
[n

m
]

cw, Classical beam
cw, f1 = 0.1 µC/m

cw, f1 = 0.2 µC/m

cw, f1 = 0.3 µC/m

(Tian, X. et al., 2021), Classical beam
(Tian, X. et al., 2021), f1 = 0.1 µC/m

(Tian, X. et al., 2021), f1 = 0.2 µC/m

(Tian, X. et al., 2021), f1 = 0.3 µC/m

Figure 6. Comparison of deflection of the cantilever beam between the results in the literature and
of the current work using linear element for different flexoelectric coefficients f1. “cw” denotes the
current work.

The electrical response is shown in Figure 7. Electric potential is mainly built up on the
fixed side of the beam where mechanical strain gradient η311 attains the highest value. In
Figure 8, the electric field along the length of the cantilever beam is illustrated. One can see
that the electric field has its maximum value at the fixed end and reduces linearly to the free
end. From Figures 6 and 8 it is apparent that the results obtained with the developed code
for the linear elements are in good agreement with the results presented in the literature.

However, with the linear element, only some components of the mechanical strain
gradient tensor can be calculated correctly. This means some components are nearly zero,
even if they should have a nonzero value. The reason for this lies in the coefficients of the
independently assumed mechanical strains. In the case of linear elements, the mechanical
strain gradient components ηiij are always zero because by taking the directional derivative
of εij along xi only components of the P-vector remain, the coefficients of which are zero.
The idea is to get more accurate results by extending CMFEM by using quadratic shape
functions for mechanical displacement and electric potential so that the element can capture
all mechanical strain gradient components.

34

0

−34

mVφ

0

−1.7

−3.4

kV
mmE3

Figure 7. Electric potential φ (top) and electric field E3 (bottom) distribution in the cantilever beam.
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cw, Classical beam
cw, f1 = 0.1 µC/m

cw, f1 = 0.2 µC/m

cw, f1 = 0.3 µC/m

[25], Classical beam
[25], f1 = 0.1 µC/m

[25], f1 = 0.2 µC/m

[25], f1 = 0.3 µC/m

Figure 8. Comparison of electric field of the cantilever beam between the results given in the literature
and of the current work by using linear element for different flexoelectric coefficients f1. cw denotes
the current work.

4.1.2. Comparison of Linear and Quadratic Elements

At this point, it is essential to compare the performance of linear and quadratic
elements with relevant boundary value problems (BVP). The numerical results are analyzed
and compared with those in the corresponding literature. In this subsection, only those
strain gradient components are considered which are nonzero in the linear elements. Other
mechanical strain gradient components are hardcoded as zeros in the UEL for the quadratic
element. From this, we can make the closest comparison with the known linear element
behavior (cf. Section 4.1.1). The full calculation without such restrictions are presented in
Section 4.1.4.

In Figures 9 and 10, the displacement u3 and electric field E3 are presented for different
flexoelectric coefficients. Both quantities are measured at x3 = H/2 along the length of
the beam. It can be seen that with an increasing value of f1, the mechanical displacement
reduces and the electric field increases. Although there is a negligibly small difference in
the results of the linear element and the analytical solution, the results of the quadratic
element appear to be in very good agreement with the linear element.

0 0.2 0.4 0.6 0.8 1
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x1/L

u 3
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m
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Linear, Classical beam
Linear, SGE
Linear, SGE + f1 = 0.1 µC/m

Linear, SGE + f1 = 0.2 µC/m

Linear, SGE + f1 = 0.3 µC/m

cw, Quadratic, Classical beam
cw, Quadratic, SGE
cw, Quadratic, SGE + f1 = 0.1 µC/m

cw, Quadratic, SGE + f1 = 0.2 µC/m

cw, Quadratic, SGE + f1 = 0.3 µC/m

analytical, Classical beam
analytical, SGE
analytical, SGE + f1 = 0.1 µC/m

analytical, SGE + f1 = 0.2 µC/m

analytical, SGE + f1 = 0.3 µC/m

Figure 9. Deflection u3 of the cantilever beam for linear and quadratic element with neglected strain
gradient components, along with analytical solution. cw denotes the current work.
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Linear, Classical beam
Linear, SGE + f1 = 0.1 µC/m

Linear, SGE + f1 = 0.2 µC/m

Linear, SGE + f1 = 0.3 µC/m

cw, Quadratic, Classical beam
cw, Quadratic, SGE + f1 = 0.1 µC/m

cw, Quadratic, SGE + f1 = 0.2 µC/m

cw, Quadratic, SGE + f1 = 0.3 µC/m

analytical, Classical beam
analytical, SGE + f1 = 0.1 µC/m
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analytical, SGE + f1 = 0.3 µC/m

Figure 10. Electric field E3 generated in the cantilever beam for linear and quadratic element with
neglected strain gradient components vs. analytical solution. cw denotes the current work.

4.1.3. Convergence Study

A convergence study is made to compare the linear and quadratic elements. The rel-
ative error between numerical results for developed linear and quadratic elements and
the analytical solution is analyzed for different mesh sizes. For this convergence study the
same parameters for the cantilever beam problem is used as described in Tables 1 and 2
with f1 = 0.1 µC/m and f2 = 0.

The relative error e(X) of the numerical simulations is calculated by using the l2-norm

e(X) =
||Xs − X||l2
||X||l2

(61)

where

||X||l2 =

√∫
Ω

XTXdΩ. (62)

Xs represents the numerical results and X is the analytical solution. As a reference solution,
the analytical results for the deformation of a Bernoulli–Euler beam are chosen where only
the result for direct flexoelectricity is available. The deflection of the flexoelectric cantilever
beam is given by [11]

u3(x1) = C1 + C2x1 + C3(x1)
2 + C4(x1)

3 + C5exp
(

λx1

L

)
+ C6exp

(
−λx1

L

)
, (63a)

λ2 =

c11 I +
(

c11l2 +
f 2
1

a3

)
BH

c11l2 I
L2. (63b)

The exponent of L is corrected in [25] and the correct sign is taken from [11]:
C4 = − FL2

6λ2g11 I .
The analytical solution for the generated electric field is given by [11]

E3 = − f1

a3
η311. (64)

However, this analytical solution depends only on x1, whereas the numerical results
are a function of both x1 and x3. Consequently, the quadratic element is considered more
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accurate than the analytical solution [25]. For the convergence analysis, eight different
meshes are analyzed, including 25, 100, 225, 400, 625, 900, 1225, and 1600 elements, respec-
tively. Figure 11 illustrates the finest and roughest mesh used.

Figure 11. Coarse (top) and fine (bottom) mesh used for the convergence analysis of the cantilever
beam problem with total element number n. Not all elements are shown for better visualization.

Figure 12 shows the relative error for the displacement u3 and electric field E3 for both
element types with different average element length h, which is calculated from the total
number of elements in the current mesh n as h =

√
HL/n. It can be seen that the results for

the linear elements are strongly mesh-dependent, and hence the relative error is higher for
a mesh model with fewer elements. The relative error of the quadratic element is lower
than the linear element, regardless of the coarseness of the meshed model. As presented,
the accuracy of the results of the quadratic element is way higher than that of the linear
element. This is expressed by the fact that the low accuracy of the linear elements when
using a coarse mesh increases by increasing the fineness of the mesh, but even for a very
fine mesh, it does not reach the performance of the quadratic elements for a very coarse
mesh. The accuracy of quadratic elements, on the other hand, is the same for the coarsest
and finest mesh.

−8.6−8.5−8.4−8.3−8.2−8.1−8−7.9−7.8−7.7
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log10(h)

lo
g 1

0(
e )

e(u3), Linear
e(E3), Linear
e(u3), Quadratic
e(E3), Quadratic

Figure 12. Relative errors and convergence rates of displacement u3 and electric field E3 for the
developed linear and quadratic element with neglected strain gradient components.

4.1.4. Investigation of Differences between Linear and Quadratic Elements

For the analysis performed in this and further sections, the mechanical strain gradient
components ηiij are no longer set to zero as in Section 4.1.2. Furthermore, apart from a
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Poisson’s ratio of ν = 0.3, the boundary conditions of Table 1 and material properties of
Table 2 are used.

The deflection and the electric field generated in the cantilever beam are presented
for SGE with flexoelectricity f1 = 0.1 µC/m in Figures 13 and 14, respectively. It can be
observed that the compliance of the beam for the quadratic element is increased compared
to the linear element. Due to oversimplification of the derivations for the linear elements,
the electromechanical coupling is overestimated by the linear element and therefore the
electric field for the linear element is higher compared to that of the quadratic element.

Displacement of u3 = 40 nm is prescribed for the cantilever beam to find the cause
for the differences in the current investigation results. The resulting mechanical strains
are presented in Figure 15 and is measured at x1 = 0.1L along the height of the beam. It
can be seen that mechanical strain ε11 rises, ε33 reduces and ε13 is nearly the same. Strain
ε33 insignificantly differs at the edges for the linear elements compared to the quadratic
element. The reason for this is explained in Section 4.1.6 (cf. Figure 27). The magnitude of
all mechanical strain components is the same for the linear and quadratic elements. For
the stress components, both types of elements gave similar results (Figure 16). The reason
for the small difference in stress components σ11, σ22 and σ33 at the edges is the same as
mentioned above for strain component ε33.

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Linear, SGE + f1 = 0.1 µC/m

cw, Quadratic, SGE + f1 = 0.1 µC/m

Figure 13. Comparison of deflection calculated by using linear and quadratic element along the
length of the beam.

However, differences in calculated mechanical strain gradients using linear and
quadratic elements are illustrated in Figure 17. For comparison reasons, in these can-
tilever beam simulations the material parameters of [25] are used where only the influence
of f1 is considered which means that f2 is set to be zero. Consequently, according to
Equation (68), the mechanical shear strains have in this example no direct influence on the
magnitude of the generated electric field E3. Therefore, only the gradients of ε11, ε33 are
considered for both element types in the following analysis.
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Figure 14. Comparison of electric field calculated by using linear and quadratic element along the
length of the beam.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−6

−4

−2

0

2

4

6
·10−3

x3/H

ε
[−

]

Linear, ε11
Linear, −ε33
Linear, ε13
Quadratic, ε11
Quadratic, −ε33
Quadratic, ε13

Figure 15. Comparison of the mechanical strain components calculated by using linear and quadratic
element through the height of the beam for prescribed mechanical displacement.

In this numerical example, among all the components of mechanical strain gradients,
only the two components η311 and η333 are of relevant magnitude. Strain gradient η311 is a
consequence of the distribution of mechanical strain ε11 that results from the bending of
the beam caused by the prescribed displacement u3. When u3 is prescribed, the bending
of the beam is the same for the linear and quadratic element, so η311 is identical in both
cases. Because of the usage of the nonzero Poisson’s ratio, mechanical strain ε33 is built
up that varies along x3 inside the cantilever beam, as shown in Figure 18. This results in a
strong mechanical strain gradient η333 at the beam’s left side, which reduces toward the
free end. In contrast to the quadratic element, the linear element is unable to capture this
mechanical strain gradient component. A comparison of the mechanical strain gradient
η333 distribution is presented in Figure 19.
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Figure 16. Comparison of mechanical stress components calculated by using linear and quadratic
element along the height of the beam for prescribed mechanical displacement.
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Figure 17. Comparison of mechanical strain gradient components calculated by using linear and
quadratic element along the length of the beam for prescribed mechanical displacement.
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Figure 18. Mechanical strain ε33 distribution along the cantilever beam.
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Figure 19. Comparison of mechanical strain gradient η333 distribution for the linear (top) and
quadratic (bottom) element along the cantilever beam.

The inability of the linear element to capture this mechanical strain gradient yields
comparatively different higher-order stress in contrast to quadratic elements visible in
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Figure 20. The higher-order stress τ is measured along the length at the midheight of the
beam. It can be observed that both higher-order stress components τ311 and τ333 reduce
for the quadratic element, in particular τ333 nearly vanishes. The components τ111 and τ133
remain zero. This reduces the beam’s stiffness, which explains the beam’s higher deflection
for the quadratic element (Figure 13). Based on Equation (15c), the higher-order stress
exclusively depends on the contributions from flexoelectrical coupling and pure SGE as

τ = τ f + τg, (65)

where the flexoelectric contribution is denoted with "f " and that from SGE with "g". For
τ311 and τ333, flexoelectric contributions are

τ
f

311 = − f1E3, (66a)

τ
f

333 = −( f1 + 2 f2)E3 (66b)

and the SGE contributions can be written as

τ
g
311 = l2(c11η311 + c13η333), (67a)

τ
g
333 = l2(c13η311 + c33η333). (67b)

Figure 21 compares the contributions between linear and quadratic elements to inves-
tigate the reason for the difference in higher-order stresses.
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Figure 20. Comparison of higher-order stress components calculated by using linear and quadratic
element along the length of the beam for prescribed mechanical displacement.
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Figure 21. Flexoelectric and mechanical strain gradient contributions to the higher-order stress
components τ311 and τ333 for linear and quadratic element along the length of the beam for prescribed
mechanical displacement.

The flexoelectric contribution to higher-order stress is the same for τ311 and τ333 when
f2 = 0, cf. Equation (66). τ

f
311 and τ

f
333 reduce proportionally to the electric field E3 as seen

in Figure 22. Furthermore, the SGE contribution to higher-order stress differs for linear and
quadratic elements because of the nonzero component η333 in the quadratic elements (cf.
Equation (67)). As a result, the contribution of SGE and flexoelectricity effectively cancel
each other for higher-order stress τ333 as illustrated in Figure 20.

0
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−4

kV
mm

Figure 22. Comparison of electric field E3 distribution based on linear (top) and quadratic (bottom)
element in the cantilever beam.

The resulting change in electric displacement that is measured along the height at
x1 = 0.1 L can be seen in Figure 23. For the quadratic element, electric displacement D1
reduces while D3 is zero for both element types along the height of the beam. The reason,
for D3 to come out to be zero, is that at the top and bottom side of the cantilever beam
no electric potential is prescribed. If D3 is zero and there is no piezoelectricity involved,
Equation (15b) simplifies to the following formula for the electric field E3:

E3 = − f1

a3
(η311 + η333)−

2 f2

a3
(η113 + η333). (68)

The resulting electric field for the quadratic element is drastically reduced compared
to the linear element. The reason for this is that the mechanical strain gradient component
η333 can be captured with quadratic elements and has a nonzero value. Additionally, η333
has a sign opposite to η311, as can be seen in Figure 17. This explains the difference in
intensity of the electric field in Figure 14. In this numerical example f2 is omitted as in [25].
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Figure 23. Comparison of electric displacement components calculated by using linear and quadratic
element along the height of the beam for prescribed mechanical displacement.

4.1.5. Parameter Study of Flexoelectric Coefficients

In this subsection, the influence of flexoelectric coefficients in case of the cantilever
beam problem described in Section 4.1.1 is studied. The boundary conditions of Table 1
and material properties of Table 2 with Poisson’s ratio ν = 0.3 are used. For both element
types, two simulation series are performed in which the flexoelectric coefficient f1 varies
between 0.01 and 50.0 µC/m. For one case scenario, f2 = 0 as commonly supposed in the
literature [25,32,33], whereas for the other, f1 and f2 are equal.

Figure 24 shows the maximum displacement u3 for different flexoelectric coefficients.
The flexoelectric coefficient axis has a logarithmic scale to cover a wider span of flexo-
electric coefficients. One can see that for the linear element the flexoelectric influence is
negligible when f1 and f2 are smaller than 0.02 µC/m. From f1 = 0.05 µC/m, the influence of
flexoelectricity on the beam’s stiffness increases until at f1 = 2 µC/m the beam becomes so
stiff that the maximum deflection saturates nearing zero. When f1 and f2 are equal, this
saturation value is reached for even smaller flexoelectric coefficients. On the other hand,
the quadratic element’s maximum deflection reaches a saturation value at 39 nm when
f2 = 0. When f2 = f1, the value of the flexoelectric coefficients has negligible influence on
the beam’s stiffness.

The electric field for different values of the flexoelectric coefficient f1, measured at the
fixed end, is presented in Figure 25. It can be seen that in the area of the small flexoelectric
coefficients, the magnitude of the electric field increases alongside the stronger flexoelectric
coupling. However, the electric field magnitude reaches a maximum value and with further
increased flexoelectric coefficients, the generated electric field inside the beam gets closer
to zero again.

Because from a physical standpoint the flexoelectric coefficients describe the ability
of the center atom in a unit cell to break the symmetry and to generate an electric field
as a result of the application of strain gradients, it is expected that for higher flexoelectric
coefficients this center atom can move easier. From a numerical standpoint, strain gradient
components η311 and η333 arise from the bending of the cantilever beam. However, if
Poisson’s ratio is zero [12,16,25], η333 is not generated. When SGE is involved, η311 and η333
build up higher-order stress τ311 and τ333, as stated in Equation (67). Due to flexoelectricity,
both strain gradient components contribute to the generation of an electric field E3 (cf.
Equation (68)). However, because of the two-way coupling of flexoelectricity, this generated
electric field E3 again influences τ311 and τ333, which affects the strain gradient components
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η311 and η333. As can be seen in Equation (66), the pure flexoelectric contribution to higher-
order stress components τ311 and τ333 is identical when f2 = 0. When considering that for
high flexoelectric parameters the pure flexoelectric contribution to higher-order stresses
becomes more dominant compared to the SGE contribution, this leads to the corresponding
strain gradients in a way that the magnitude of both strain gradients η311 and η333 become
closer in magnitude. As can be seen in Figure 17, η311 and η333 have the opposite sign,
which leads to their sum nearing zero for higher flexoelectric coefficients.
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Figure 24. Maximum deflection u3 of the cantilever beam calculated by using linear and quadratic
element for various flexoelectric coefficients.

With C1-continuity, η333 not only influences the strains inside each element separately,
but also influences the other results of the cantilever beam. This would lead to an electric
field which saturates at a specific value. When the strains are not continuous from element
to element, the magnitude of η333 due to the presence of E3 is overestimated, as discussed
in Section 4.1.6. This leads to the sum of η311 and η333 nearing zero at a faster rate than the
flexoelectric coefficients increase. According to Equation (68), this leads to a reduction of
electric field which explains why E3 is nearing zero for high flexoelectric coefficients. In
case of C1-continuity, this behavior would be more balanced out in a way that the electric
field reaches a saturation value. Because by using the linear element, η333 is always zero,
for high flexoelectric parameters, the sum of both strain gradient components only reaches
zero when η311 becomes zero, too. Mechanical strain gradient η311 describes the change of
ε11 along x3 resulting from the bending of the cantilever beam as visualized in Figure 5.

Figure 26 depicts the normalized deflection unorm = u3
|u3,max|

of the cantilever beam for
both linear and quadratic elements for f1 = 0.1 µC/m and f1 = 50.0 µC/m.
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Figure 25. Maximum electric field E3 of the cantilever beam calculated by using quadratic element
for various flexoelectric coefficients.
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Figure 26. Comparison of cantilever beam bending for a small and high flexoelectric coefficient by
using the linear and quadratic element.

One can see in Figure 26 that in the linear case in which there is nearly no deflection at
all (cf. Figure 24), the stiffness of the beam becomes so high that there is nearly no bending
of the beam. In contrast, there is no difference in the normalized bending profile between
low- and high-flexoelectric coefficients for the quadratic element. This means that η311 is
proportionally reduced compared to the quadratic element. To sum up this subsection, the
linear element is not suitable for flexoelectric simulations because of its inability to capture
all strain gradients, though for correct flexoelectric simulations, it is necessary to calculate
all strain gradient components correctly. By using quadratic shape function for the DOFs
and assuming the independent mechanical strain and electric field of a quadratic shape,
the quadratic element can compute all strain gradient components. Thereby, it can simulate
a physically more realistic flexoelectric behavior. However, the quadratic element can be
further improved by ensuring C1-continuity as discussed in Section 4.1.6.
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4.1.6. Discussion about the Advantages of Quadratic Element

As mentioned in Section 4.1.4, the linear and quadratic elements’ behavior partially
differs. This is because the quadratic element can capture all mechanical strain gradient
components, which is a priori not possible with the linear element. A higher resolution of
ε33 is presented in Figure 27. The mechanical strain gradient η333 behavior for linear and
quadratic cases is represented by the slope of ε33 for each element.
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Figure 27. Discontinuous strain ε33 for linear and quadratic element across the height of the
cantilever beam.

For the linear element, the mechanical strain in each element is constant; hence, the
mechanical strain gradient is zero, whereas for the quadratic element, the mechanical strain
inside each element is no longer a constant. The gradient in each element is slightly higher
than the overall mechanical strain gradient along the height of the beam. Consequently,
the linear element is not suitable for the description of some relevant strain gradient
components. The quadratic element is able to describe all of the components and only
overestimates slightly those mechanical strain gradient components that the linear element
does not capture. However, calculating the correct mechanical strain gradients is important
because in coupled systems like flexoelectricity, incorrectly calculated strain gradients lead
to drastically different results of mechanical displacement, electric potential, and their
derived quantities. The quadratic element is capable of simulating a realistic flexoelectric
material behavior. Further improvement can be achieved by ensuring C1-continuity.

4.2. Truncated Pyramid Compression Problem

Another typical example of modeling flexoelectricity is a truncated pyramid [8,34].
Because of the different sizes of the top and bottom surfaces, applied stress on the top
surface distributes toward the bottom surface, generating mechanical strain gradients.

Similar to the cantilever beam example, this is a plane strain problem for direct
flexoelectricity (q = 0, b1 = b2 = b3 = 0). The truncated pyramid has a height h, a top
surface of length h and a bottom surface of length 3h. The angle between the bases and
the oblique surfaces is π/4. The bottom surface is fixed in all directions. For compressing
the pyramid, a constant linear force F is prescribed on the top surface, as illustrated in
Figure 28. Furthermore, the pyramid is electrically grounded on the top surface. Due to the
different sizes of the top and bottom surfaces, strain gradients build up which generate an
inhomogeneous electric potential φ distribution. Typically, opposite the grounded surface,
a sensing electrode is attached. This electrode equals the electric potential on this surface
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to a constant value which is not known a priori. The boundary conditions as in [16] are
summarized in Table 3.

Figure 28. Truncated pyramid model with compressive load on top.

Table 3. Boundary conditions for the truncated pyramid.

Side Mechanical BC Electrical BC Prescribed Force

AD u1 = u3 = 0 φ = V = const -
BC - φ = 0 F = 4.5 N

mm in x3

The material properties used are shown in Table 4. All simulation results are obtained
for a mesh model containing 2500 elements.

Table 4. Material properties for the truncated pyramid [16].

E [GPa] ν [-] l [nm] a1, a3[
C2

Nm2 ] f1[
µC
m ] f2[

µC
m ]

100 0.37 0 11.0× 10−9 1.0 0

The results in Figures 29 and 30 are obtained for h = 7.5 µm. The contour plots of
the mechanical strain ε33 and electric potential φ are shown in Figure 29 for the linear
and quadratic element. It can be observed that the mechanical strain is identical for both
elements. In contrast, the electric potential using linear element is reduced by approximately
230% compared to the quadratic element and the reference solution [35]. Not only are
higher maximum values reached by using the linear element, but the nature of the electric
field distribution is physically invalid (cf. Figure 29 bottom right), even leading to a
negative electric potential at the bottom part of the pyramid.

Quadratic Element Linear Element

ε33

φ

2

−22

−46

10−4

0.7

0.23

−0.24

V

Figure 29. Contour plots for mechanical strain ε33 and electric potential φ in the truncated pyra-
mid using linear and quadratic elements. The same color scale is used for both elements for
better comparison.
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Quadratic Element B-splines (Codony, D. 2021)
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Figure 30. Contour plots of the electric potential φ in the truncated pyramid by [16,35] vs. the use of
the developed quadratic element. The color scale for the contour of the quadratic element is adjusted
for a higher contrast image.

Figure 30 shows the contour of the electric potential φ for the same simulation using
the quadratic element as in Figure 29 but with an adjusted scale for comparison with
the results obtained using B-spline method [16,35]. One can see that the nature of the
distribution of the electric field for the quadratic element is in good agreement with the
results of the B-spline formulation. However, small differences in the electric potential
distribution can be observed. For example at midheight, the electric potential gradient in
x1-direction from the center to the oblige sides is higher using quadratic elements. This
phenomena is physically more realistic, as can be seen in the computational results of [36].

Furthermore, an effective electric field Eeff = V/h can be calculated, which is the
voltage difference between the top and bottom bases. Figure 31 shows the effective electric
field for different sizes of the truncated pyramid. For this simulation series, the line force
F mentioned in Table 3 is used while h is different for each simulation. For different
pyramid sizes the mechanical strain distribution is similar, whereas for high values of h the
mechanical strain gradients are smaller compared to small pyramids. Moreover, the electric
field is smaller for bigger pyramid sizes and becomes negligible for h greater than 200 µm.
This phenomena is in accordance with the size effect of flexoelectricity. It is evident that the
results of the quadratic element and [16,35] are in good agreement.
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Figure 31. Effective electric field Eeff of the truncated pyramid for linear element, quadratic element
and [16] for different geometric sizes.

5. Conclusions

In the manuscript, a second-order collocation-based mixed FEM (CMFEM) for flexo-
electricty is established. First, CMFEM formulation for linear elements is presented and
tested. Because first-order CMFEM has deficiencies and cannot realistically capture flex-
oelectric material behavior, a quadratic CMFEM element is proposed and implemented.
Here, quadratic shape functions are used for the DOFs and, consequently, independent
mechanical strains and electric field are assumed to be quadratic polynomials for the collo-
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cation. The new elements are implemented as Fortran user elements and tested on several
boundary value problems.

The achieved results and drawn conclusions can be summarized as follows.

• A linear CMFEM element is developed and verified with numerical results for a 2D
cantilever beam problem from the literature.

• The correctness of the newly proposed quadratic element is verified through compar-
ison with the linear element and examples from the literature. To make the closest
comparison, the strain gradient components, which cannot be computed by the linear
element, are hardcoded to zero in the quadratic UEL.

• Based on a convergence study, it is shown that the quadratic element is more accurate
than the linear element. In particular, for meshes with very few elements, the accuracy
is drastically improved with the usage of the newly developed quadratic element.

• By no longer hardcoding specific strain gradient components to zero in the quadratic
UEL, CMFEM elements’ performance is analyzed. There, it is presented that me-
chanical strain gradient η333 cannot be captured by the linear element, but has a
relevant magnitude, leading to a strong overestimation of flexoelectric coupling and
mechanical stiffness.

• The abovementioned findings are further investigated by a parameter study in which
cantilever beam’s deflection and generated electric field are studied for a wide range of
flexoelectric coefficients. There, it is found that using the linear element, the cantilever
beams’ deflection nears zero for high flexoelectric coefficients and the remaining deflec-
tion is build-up only from shear stress. For the quadratic element, on the other hand,
the deflection saturates at a nonzero value mimicking a physically realistic behavior.

• In the flexoelectric truncated pyramid example, although the linear element produced
physically invalid results, the results of the quadratic element are in a very good
agreement with the literature. The newly proposed quadratic element yields realistic
results compared to those obtained in experiments [8,34] and a distribution of the
electric field similar to [12,16]. This is additionally outlined in a simulation series
wherein the flexoelectric size effect is visualized.

By using the newly developed second-order formulation, it is possible to model
flexoelectric behavior accurately with less computational cost than traditional mixed FEM.
This opens the possibility to apply the proposed quadratic element to the computationally
demanding nonlinear electromechanical problems. It should be mentioned that there is
scope for further improvement by ensuring C1-continuity.
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Abbreviations

The following abbreviations are used in this manuscript:
BVP boundary value problem
CMFEM collocation-based mixed finite element method
cw current work
FEM finite element method
MEMS microelectromechanical systems
SGE strain gradient elasticity
UEL user element
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