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with Nonuniform Grain and Phase Boundaries and
Thermal-Residual Stress
John D. Clayton

Army Research Directorate, DEVCOM ARL, Aberdeen, MD 21005, USA; john.d.clayton1.civ@army.mil

Abstract: A phase field framework of elasticity, inelasticity, and fracture mechanics is invoked to
study the behavior of ceramic materials. Mechanisms addressed by phase field theory include defor-
mation twinning, dislocation slip, amorphization, and anisotropic cleavage fracture. Failure along
grain and phase boundaries is resolved explicitly, where Weibull statistics are used to characterize
the surface energies of such boundaries. Residual stress incurred by mismatching coefficients of
thermal expansion among phases is included. Polycrystalline materials of interest are the ultra-hard
ceramics boron carbide (B4C) and boron carbide-titanium diboride (B4C-TiB2), the latter a dual-phase
composite. Recent advancements in processing technology enable the production of these materials
via spark-plasma sintering (SPS) at nearly full theoretical density. Numerical simulations invoking
biaxial loading (e.g., pure shear) demonstrate how properties and mechanisms at the scale of the
microstructure influence overall strength and ductility. In agreement with experimental inferences,
simulations show that plasticity is more prevalent in the TiB2 phase of the composite and reduces
the tendency for transgranular fracture. The composite demonstrates greater overall strength and
ductility than monolithic B4C in both simulations and experiments. Toughening of the more brittle
B4C phase from residual stress, in addition to crack mitigation from the stronger and more ductile
TiB2 phase are deemed advantageous attributes of the composite.

Keywords: ceramic; boron carbide; titanium diboride; grain boundary; residual stress; fracture;
phase field

1. Introduction

Polycrystalline ceramic solids typically demonstrate high hardness, a high elastic mod-
ulus, and a low mass density relative to engineering metals. These mechanical properties,
as well as various thermal, electrical, and optical properties make ceramics attractive for
use in numerous industrial applications. However, the intrinsic susceptibility to fracture
limits the ductility of ceramic solids, and therefore, methods are continuously sought to
inhibit cracking and thereby improve mechanical performance for applications requiring
structural integrity.

One possible means of potentially improving mechanical properties involves mixing
two or more crystalline phases of differing chemical compositions to produce a poly-
crystalline ceramic composite. Examples include diamond-silicon carbide [1–3], silicon
carbide-titanium diboride [4], boron carbide-titanium diboride [5–7], boron carbide-silicon
carbide [8], boron carbide-zirconium diboride [9], and alumina-zirconium dioxide [10].
Such ceramic blends feature a host of potentially beneficial microstructure features, such as
grain and phase boundaries of various strengths, grains with contrasting mass densities and
thermoelastic and plastic properties, and residual stress fields. The latter have been noted to
improve fracture toughness in some cases [4,5]. Residual stresses often arise during cooling
from higher processing temperatures as a result of differing thermal expansion coefficients
of constituent phases. Hence, these stresses are referred to as thermal-residual stresses.
Such residual stresses may also emerge in single-phase materials from the thermoelastic
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anisotropy of non-cubic grains [11], though the magnitudes tend to be smaller and are
often ignored in the analysis of multi-phase ceramics [4]. The tendency of intergranular
versus transgranular fracture is altered by additional phases, and grains of higher strength
or ductility may block sharply propagating cracks.

The present work focuses on phase field modeling of the mechanical performance
of polycrystalline boron carbide (B4C), with or without a second phase of titanium di-
boride (TiB2). Numerical simulations explicitly resolve individual grains of each phase,
as well as grain and phase boundaries. The finite element (FE) method is used, wherein
constitutive models invoke phase field theory for elasticity, fracture, and other structural
changes. Titanium diboride has a higher elastic modulus, lower Poisson’s ratio, higher
fracture energy, lower hardness, and higher mass density than B4C. (Numerical values of
physical properties, with supporting references, are given later in Section 3 of this work).
They are also thought to be more ductile as evidenced by dislocation nucleation and mo-
tion [12,13], though both ceramics are brittle relative to typical metals at room temperature.
The particular material of study is produced by spark-plasma sintering (SPS), where fabri-
cation methods and material properties culled from physical experiments are discussed by
Rubink et al. [6]. Polycrystalline ceramics synthesized in this way are nearly fully dense
(≥99% theoretical density), with little to no graphitic inclusions and relatively uniform and
small grains (e.g., mean sizes on the order of several microns). X-ray diffraction (XRD) and
theoretical mechanics analyses show that residual stresses are tensile for TiB2 grains and
compressive for more brittle B4C grains [6]. Such residual stresses should prove beneficial
for impeding cleavage fractures in the latter phase.

The particular phase field model used in the current research, which includes resid-
ual stresses from possibly different physical sources, was developed in several recent
works [14,15]. State-of-the-art work implementing phase field fracture models accounts
for elastic and fracture anisotropy [16–19], finite strains [19,20], and dynamic effects from
material inertia [21]. Research closely related to the present study incorporates fracture
or deformation twinning in a dissipative phase field framework applied to B4C single
crystals [22]. Over the past decade within the mechanics research community, the phase
field method seems to have overtaken in popularity the cohesive zone FE method of mod-
eling fracture in crystalline solids [23–25]. The origins of the current variational phase field
framework for deformation twinning and fracture are found in prior works: [26,27], respec-
tively. Other recent applications to ceramics focus on the homogenized shock compression
response of polycrystalline B4C and TiB2 [14,28]. Generalizations incorporating geometric
concepts are reviewed in a recent article [29]. The effects of high confining pressure, which
can drastically increase resistance to fracture in ceramics, are not addressed in the current
investigation. Advancements in three-dimensional (3D) computational methods at the scale
of the microstructure are required to account for such effects, which have been modeled
only in a one-dimensional (1D) context for uniaxial strain compression [14,28].

A recent work [15] interrogated the mechanical response of B4C and B4C-TiB2 under
primarily tensile stress states, which are directly relevant to the flexure experiments re-
ported for these materials [6]. In the context of indentation experiments, tensile principal
stress components may arise in biaxial stress fields near the surface outside the indentation
region and along the contact perimeter, leading to radial cracking and/or ring cracking
depending on the geometry, whereas lateral cracks may arise in the subsurface [30,31]. Sur-
face crack length is used to quantify fracture toughness in the Vickers indentation method,
for example [32]. Most simulations by Clayton et al. [15] invoked uniform fracture strengths
(i.e., surface energies) for all grain and phase boundary facets, though a few exploratory
simulations considered completely random strength distributions [33]. The results showed,
for purely tensile loading, that fractures tended to initiate earlier in materials with random
versus uniform distributions, leading to a reduced peak strength on average. Other trends
regarding the benefits of plasticity and residual stresses, which agreed with experimental
inferences [6,34], persisted when either type of distribution was modeled.
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The objective of the current research is understanding the effects of composition, mi-
crostructure, residual stress, inelastic deformation mechanisms, and imposed biaxial strain
magnitude on B4C and B4C-TiB2. The current application of the variational phase field
theory with residual stress [14,15] includes the following innovations over previous studies:

• Weibull distributions of fracture strengths of grain and phase boundaries, which are
known to be more physically realistic for polycrystalline ceramics [35], including
B4C [36], than uniform or purely random distributions;

• Biaxial strain states more pertinent than uniaxial tensile states to surface cracking [37]
and also more relevant for failure by shear-driven median cracking in brittle elastic
materials for regions directly under the indenter [30,38];

• Revisited comparison of cumulative current and past simulation results with detailed
experimental findings [6,34].

The general phase field theory including fracture, inelasticity, and residual stresses is
described in Section 2. Material aspects pertinent to the present ceramic systems, including
grain and phase boundary descriptions and rendering of microstructures, are detailed in
Section 3. Numerical techniques including the imposition of boundary conditions and
averaging of field variables for subsequent analysis are explained in Section 4. Model
results, including a comparison with past experimental findings, are given in Section 5.
Conclusions appear in Section 6.

2. Phase Field Mechanics

The general phase field theory of Clayton [14] accounts for finite strains, temperature
changes, rate effects, and initial stresses of arbitrary origin. This theory was recently
extended [15] with a detailed, thermodynamically consistent treatment of residual stresses,
e.g., arising from thermal processing history. Here, a geometrically linearized theory is
implemented, which is sufficient for the loading protocols of the current study. The applied
strain rates are low enough that a quasi-static, variational approach suffices, wherein
viscous dissipation is negligible. The theory of Clayton et al. [14,15] is presented next in
Section 2 in abbreviated form, specialized thereafter in Sections 3–5 to low-rate loading of
B4C and B4C-TiB2.

2.1. Coordinates and Order Parameters

Denote by X, with covariant components XK, the position of a material particle.
Rectangular Cartesian coordinates are used exclusively, with {EK} the fixed coordinate
basis and EK = ∂X/∂XK = ∂KX a basis vector (K = 1, 2, 3 in ambient Euclidean three-
space). A solid body occupies a reference domain Ω0 with boundary ∂Ω0. The outward
unit normal to ∂Ω0 is N(X). For a quasi-static theory, the explicit time (t) dependence of
fields is omitted.

Two order parameter fields are η(X) and ξ(X). Field η measures structural changes
such as slip and deformation twinning, depending on the crystal type. Field ξ measures
fracture, i.e., damage in the solid involving the formation of free surfaces. In the phase field
method, slip bands, twin boundaries, and fracture surfaces are diffuse or regularized, rather
than resolved discretely. The values of order parameters η ∈ [0, 1], ξ ∈ [0, 1] physically
represent the following:

η


= 0 : parent crystal,
∈ (0, 1) : partially slipped/twinned state,
= 1 : fully slipped or twinned state;

ξ


= 0 : undamaged material,
∈ (0, 1) : partially degraded state,
= 1 : fractured or failed state.

(1)
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2.2. Kinematics

Particle displacement u and its gradient h are denoted, respectively, with x the dis-
placed particle position:

u(X) = x(X)−X, h(X) = ∇u(X), (2)

where∇(·) = ∂K(·)⊗ EK. The total strain tensor is the symmetrized displacement gradient:

εεε = 1
2

(
h + hT

)
↔ εI J =

1
2 (∇IuJ +∇JuI). (3)

The displacement gradient and strain are partitioned into thermoelastic (·)E and residual
¯(·) parts:

h(X) = hE(X) + h̄(η(X), ξ(X)), εεε(X) = εεεE(X) + ε̄εε(η(X), ξ(X)). (4)

Residual distortion and strain are decomposed into contributions from η and ξ:

h̄(η(X), ξ(X)) = hξ(ξ(X)) + hη(η(X)), ε̄εε(η(X), ξ(X)) = εεεξ(ξ(X)) + εεεη(η(X)). (5)

Structure tensors are derivatives of residual distortion with respect to the order parameters:

Aξ = ∂h̄/∂ξ, Aη = ∂h̄/∂η. (6)

2.3. Balance Laws and Thermodynamics

The symmetric Cauchy stress tensor field is P(X); the associated traction vector is
t = P ·N. The original and current mass densities are ρ0 and ρ. Local static balance laws
for mass, linear momentum, and angular momentum conservation are, in the geometrically
linear approximation,

ρ0 = (1 +∇ · u)ρ, ∇ · P = 0, P = PT. (7)

Internal microforces πη and πξ , microscopic stress vectors sη and sξ , and the corresponding
surface forces tη and tξ are introduced, along with local microforce balances [14,39]:

tη = sη ·N, tξ = sξ ·N [on ∂Ω0]. (8)

∇ · sη + πη = 0, ∇ · sξ + πξ = 0 [in Ω0]. (9)

The Helmholtz free energy per unit reference volume is the scalar field Ψ(X). The functional
forms of free energy, stress, microforces, and microstresses are

Ψ = Ψ(h, η, ξ,∇η,∇ξ), P = P(h, η, ξ,∇η,∇ξ); (10)

sη = sη(h, η, ξ,∇η,∇ξ), sξ = sξ(h, η, ξ,∇η,∇ξ);

πη = πη(h, η, ξ,∇η,∇ξ), πξ = πξ(h, η, ξ,∇η,∇ξ).
(11)

From thermodynamic arguments requiring non-negative dissipation [14,39] with rate
independence restrictions,

P =
∂Ψ
∂h

=
∂Ψ
∂εεε

, sη =
∂Ψ

∂∇η
, sξ =

∂Ψ
∂∇ξ

, πη = −∂Ψ
∂η

, πξ = −∂Ψ
∂ξ

. (12)

Governing equations can alternatively be derived with variational methods [26,27]. Assume
Ψ is of the functional form in (10) and that the following variational principle holds:

δ
∫

V
ΨdΩ0 =

∮
S
[t · δu + tηδη + tξ δξ]d∂Ω0, (13)
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with V a region enclosed by surface S upon which natural boundary conditions are applied.
Assuming field variables are sufficiently differentiable, (13) produces [26,40]

∇ · ∂Ψ
∂h

= ∇ · ∂Ψ
∂εεε

= ∇ · P = 0; [in V] (14)

δΨ
δη

=
∂Ψ
∂η

∣∣∣∣
h
−∇ · ∂Ψ

∂∇η
= 0,

δΨ
δξ

=
∂Ψ
∂ξ

∣∣∣∣
h
−∇ · ∂Ψ

∂∇ξ
= 0; [in V] (15)

t = P ·N =
∂Ψ
∂h
·N, tη =

∂Ψ
∂∇η

·N = sη ·N, tξ =
∂Ψ

∂∇ξ
·N = sξ ·N. [on S] (16)

Equations (14)–(16) are consistent with (7)–(9) and (12). These hold for quasi-statics, isother-
mal states, and inviscid kinetics. The variational derivative with respect to generic argument
x is δ(·)/δx [41]. The dependence of Ψ on h is now replaced with εεεE of (4):

Ψ = Ψ̂(εεεE, η, ξ,∇η,∇ξ). (17)

Note
εεεE(h, η, ξ) = 1

2

(
h + hT

)
− ε̄εε(η, ξ), ∂εE

I J/∂hKL = 1
2 (δIKδJL + δJKδIL). (18)

A change of variables from h to εεεE with (6) leads to

∂(·)
∂η

∣∣∣∣
h
=

∂(·)
∂η

∣∣∣∣
εεεE

+
∂(·)
∂εεεE

∣∣∣∣
η

:
∂εεεE

∂η

∣∣∣∣
h
=

∂(·)
∂η

∣∣∣∣
εεεE
− 1

2
∂(·)
∂εεεE

∣∣∣∣
η

:
[
Aη + (Aη)T

]
, (19)

∂(·)
∂ξ

∣∣∣∣
h
=

∂(·)
∂ξ

∣∣∣∣
εεεE

+
∂(·)
∂εεεE

∣∣∣∣
ξ

:
∂εεεE

∂ξ

∣∣∣∣
h
=

∂(·)
∂ξ

∣∣∣∣
εεεE
− 1

2
∂(·)
∂εεεE

∣∣∣∣
ξ

:
[
Aξ + (Aξ)T

]
. (20)

Recalling the present theory is geometrically linear, Cauchy stress obeys, from (12), (17),
and (18),

PI J = ∂Ψ/∂hI J = (∂Ψ̂/∂εE
KL)(∂εE

KL/∂hI J) = ∂Ψ̂/∂εE
I J ⇒ P = ∂Ψ̂/∂εεεE. (21)

The internal microforces in (12) become, with (19), (20), and the symmetry of P,

πη = −∂Ψ̂
∂η

∣∣∣∣
εεεE

+ P : Aη , πξ = −∂Ψ̂
∂ξ

∣∣∣∣
εεεE

+ P : Aξ , (22)

where thermoelastic driving forces are the rightmost terms after each equality involving the
structure tensors of (6). Denote by WΨ the strain energy, f Ψ

η a phase energy with prominent
dependence on η and its gradient, and f Ψ

ξ on ξ and its gradient. Then,

Ψ̂(εεεE, η, ξ,∇η,∇ξ) = WΨ(εεεE, η, ξ) + f Ψ
η (η, ξ,∇η) + f Ψ

ξ (η, ξ,∇ξ); (23)

f Ψ
η (η, ξ,∇η) = f Ψ

η 0(η, ξ) + f Ψ
η∇(η, ξ,∇η), f Ψ

ξ (η, ξ,∇ξ) = f Ψ
ξ 0(η, ξ) + f Ψ

ξ∇(η, ξ,∇ξ); (24)

P =
∂WΨ

∂εεεE , sη =
∂ f Ψ

η∇
∂∇η

, sξ =
∂ f Ψ

ξ∇
∂∇ξ

. (25)

2.4. Twinning, Plastic Shear, and Dilatation

Distortion hη arises from twinning shear or localized slip, described here on a single
plane with unit normal m. The shearing direction is the unit vector s, and s ·m = 0.
The saturation magnitude of shear is γ0; for deformation twinning, this is often known
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from the crystal structure [42]. Isochoric inelastic distortion, inelastic strain, and the second
structure tensor of (6) are, respectively,

hη(η) = γ0φ(η)s⊗m, εεεη(η) = 1
2 γ0φ(η)[s⊗m + m⊗ s], Aη(η) = γ0φ′(η)s⊗m. (26)

The interpolation function φ is defined, for argument x, as follows, with the correspond-
ing derivative:

φ(x) =


0 ∀ x < 0,
x2(3− 2x) ∀ x ∈ [0, 1],
1 ∀ x > 1,

φ′(x) =
dφ(x)

dx
=


0 ∀ x < 0,
6x(1− x) ∀ x ∈ [0, 1],
0 ∀ x > 1.

(27)

In ductile solids, residual dilatation may arise from nucleated voids. In brittle solids,
dilatation may be caused by shear-induced bulking, especially in high-pressure regimes [43]
or granular flow regimes upon impact and dynamic comminution [28,44]. In the present
applications, the average pressure and strain rates are small, fragmentation is minimal,
and bulking is assumed negligible. Thus,

hξ = εεεξ = 0, Aξ = 0 ⇒ h̄ = hη , ε̄εε = εεεη . (28)

2.5. Isotropic Elastic Formulation

In a heterogeneous polycrystal with grains of different crystal types or phases, each
crystal is assigned to a different sub-body Ω0 with potentially different physical properties.
Elasticity is isotropic, but fracture is not when α̂ > 0, where α̂ is defined briefly. Slip and
twinning are, by the kinematic definition (26), always anisotropic.

Elastic strain energy includes isotropic elasticity and isotropic residual stress of ther-
modynamic origin [15]:

WΨ(εεεE, η, ξ) = 1
2B(η, ξ, ω̄) · (trεεεE)2

[
1− 1

3 β′0 · (trεεεE)
]

+ G(η, ξ) · (εεε′E : εεε′E) + σ̃0(η) ·Λ(trεεεE, ξ).
(29)

The deviatoric thermoelastic strain is εεε′E = εεεE − 1
3 (trεεε

E)1, where 1 is the unit tensor:
(1)I J = δI J . The tangent bulk modulus is B, and the tangent shear modulus is G. A nonlinear
pressure–volume response is enabled via β′0 ≈ 2B′0 − 1 [14], where B′0 is the ambient
pressure derivative of the bulk modulus. Thermoelastic coefficients are usually constants
in a homogeneous single crystal, but generally can depend on the order parameters:

B(η, ξ, ω̄) = B0(η) · [χ(ξ) · ω̄ + (1− ω̄)], G(η, ξ) = G0(η) · χ(ξ); (30)

B0(η) = B0|0 + (B0|1 − B0|0) · φ(η), G0(η) = G0|0 + (G0|1 − G0|0) · φ(η),
σ̃0(η) = σ̃0|0 + [σ̃0|1 − σ̃0|0] · φ(η).

(31)

Superscripts (·)0|0 and (·)0|1 correspond to undamaged states before and after structural
transformation, with (ξ = 0, η = 0) and (ξ = 0, η = 1), respectively. The bulk modulus
is preserved under compressive pressure, but the shear modulus is not [20,27,45]. The
indicator function for volumetric elastic compression versus extension (corresponding to
positive versus negative pressure) is ω̄; the interpolator φ is defined in (27); the degradation
function is χ(ξ) ∈ [ζ0, 1], with 0 < ζ0 � 1 [40]:

ω̄ = H(trεεεE); χ(ξ) = ζ0 + (1− ζ0)(1− ξ)2. (32)

The right-continuous unit Heaviside function is {H : H(x) = 0 ∀ x < 0; H(x) = 1 ∀ x ≥ 0}.
For each anisotropic domain, cleavage fracture may localize on a critical crystallo-

graphic plane with unit normal vector M(η(X)). Denote the cleavage anisotropy factor [45]
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by α̂ ≥ 0, where for isotropic f Ψ
ξ , α̂ = 0. The fracture regularization length is lξ > 0; the

fracture surface energy is Υ. Then,

f Ψ
ξ (η, ξ,∇ξ) = Υ(η)

[
ξ2/lξ + lξ ·ωωω : (∇ξ ⊗∇ξ)

]
, ωωω(η) = 1 + α̂(η) · [1−M(η)⊗M(η)]; (33)

− ∂WΨ

∂ξ

∣∣∣∣
εεεE
−

∂ f Ψ
η

∂ξ
=

2
lξ

[
Υξ − l2

ξ∇ · (Υωωω∇ξ)
]
. (34)

Energy functions for η-equilibrium contain surface energy Γ, bulk energy Â, and phase
field regularization length lη . The damage-transformation coupling function [40] is χ̂(ξ),
typically assumed as χ̂ = χ or χ̂ = 1 (i.e., full or no coupling). Assigning the first of (24),
the first of (9) follows:

f Ψ
η 0(η, ξ) = χ̂(ξ) · f̄ Ψ

η 0(η), f Ψ
η∇(∇η, ξ) = χ̂(ξ) · f̄ Ψ

η∇(∇η); (35)

f̄ Ψ
η 0(η) = 12[Γ/lη ]η2(1− η)2 + Âη2, f̄ Ψ

η∇(∇η) = 3
4 Γ · lη · |∇η|2; (36)

− ∂Ψ̂
∂η

∣∣∣∣
εεεE

= −P : Aη − 3
2 lη∇ · (Γ∇η). (37)

Total stress P is computed from (29), where the residual contribution σ̃0 is spherical
for isotropy:

P =
∂WΨ

∂εεεE = B
[
1− 1

2 β′0(trεεε
E)
]
(trεεεE) 1 + 2Gεεε′E + σ̃0

[
∂Λ

∂(trεεεE)

]
1. (38)

Elastic strain εεεE is measured with respect to a datum state ( εεεE = 0) at which P = σ̃01.
In a cubic or an isotropic (poly)crystalline solid, lattice spacing at the datum state could
be determined from the inversion of a pressure–volume equation of state at ambient
temperature and datum pressure σ̃0.

A few remarks regarding terms entering the free energy function of (23) are in order.
The surface energy of cracks is contained in the term f Ψ

ξ , which follows the usual sum
of quadratic forms in ξ and ∇ξ of phase field fracture models [46], further extended for
damage anisotropy [17,45]. The surface energy of twin boundaries and stacking faults,
as well as the possible energy of phase transformations and dislocation lines, is contained
in the term f Ψ

η , which again follows the usual sum of quadratic forms [41]. The energy
f Ψ
η also degrades with local damage through function χ̂(ξ) [40], regardless of the local

stress/strain state. Elastic strain energy density WΨ consists of three terms in (29): the
volumetric strain energy scaled by the tangent bulk modulus B, the deviatoric strain energy
scaled by the tangent shear modulus G, and the residual strain energy scaled by the factor
Λ defined later in Section 2.6. According to (30) and (31), the tangent bulk modulus is
interpolated from the bulk moduli of coexisting phases, where the interpolated value is
degraded by local damage ξ under tensile elastic strain states (tensile pressure), but not
for compressive elastic strain states (compressive pressure) [27,47]. The tangent shear
modulus is interpolated from the shear moduli of coexisting phases, degraded by local
damage ξ regardless of local stress/strain state. The residual strain energy attributed to
thermal-residual stress, which is hydrostatic for isotropic materials, is degraded similarly,
but not identically, to the bulk strain energy according to (39) and (40), i.e., a reduction for
tensile states, but not compressive states. Accordingly, fracture will not occur if the loading
is of purely hydrostatic compression, while Mode I cracks can nucleate and propagate for
tensile states, regardless of shear. For combined compressive pressure and shear stress, the
fracture tendency is reduced, but not eliminated, since the reduction of the shear modulus
acts as a driving force for Mode II-/III-type cracks. Under such compressive–shear states,
a brittle material can become pulverized (e.g., severely reduced tangent shear modulus),
yet fluid-like, since the bulk modulus is not degraded. Further details are available in
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related work [14,15], noting that alternative schemes for tensile versus compressive stress
states have also been implemented, e.g., [46].

2.6. Initial Stress

The model of Clayton et al. [15] is invoked for residual stresses in the ambient state.
Define function y = tr εεεE/εC, with εC > 0 a constant. The integral of the first of (27) is,
with y the argument,

Φ(tr εεεE) =
∫ tr εεεE

0
φ(ε/εC)dε =


0 if trεεεE < 0,
εC · (trεεεE/εC)

3[1− (trεεεE/εC)/2] if 0 ≤ trεεεE ≤ εC,
trεεεE − εC/2 if trεεεE > εC.

(39)

Function Λ(trεεεE, ξ) controls the degradation of initial stress due to increasing ξ, for ten-
sile states:

Λ = Φ · (1− ξ)2 + (1−Φ) ⇒ ∂Λ/∂(trεεεE) = φ(y) · (1− ξ)2 + (1− φ(y)). (40)

Then the total isotropic stress contribution from σ̃0 and its contribution to the thermody-
namic driving force for fracture are, respectively,

σ̃(trεεεE, ξ, η) = σ̃0(η) ·
[
1 + (ξ2 − 2ξ) · φ(tr εεεE/εC)

]
, −σ̃0 · (∂Λ/∂ξ) = 2σ̃0 · (1− ξ)Φ. (41)

The critical tensile pressure PC and critical volume strain εC are defined as [15]

PC = 3
16

√
6B0Υ/lξ , εC = 16

9 PC/B0 =
√
{(1− 2ν0)Υ}/{(1 + ν0)G0lξ}. (42)

The initial elastic modulus is E0 = (2 + 2ν0)G0, and Poisson’s ratio is ν0. In (42), these
elastic constants are all evaluated at the initial (parent) state with η = 0 if nominally
phase-dependent.

3. Material Properties and Polycrystalline Microstructures

The materials of study are B4C-23 vol. % TiB2 and, for comparison, polycrystalline
B4C. Differences from [15] implemented here are the Weibull statistics for grain bound-
ary fracture properties [35] and a focus on the effects of different physical mechanisms
(i.e., residual stresses, plasticity) under biaxial strain boundary conditions. Fracture and
plasticity incurred deep in the material directly under indentation are affected by the con-
fining pressure of the surrounding material. In the stress field for Vickers indentation of
a homogeneous isotropic elastic body, all principal stresses are compressive, so fractures
are shear-induced [37,38]. However, biaxial residual stress fields with a tensile component
(typically smaller than the compressive component) arise in elastic–plastic or fractured ma-
terials [38]. Pure shear (biaxial) loading is thus thought more qualitatively representative
than uniaxial tensile loading for stress fields incurred during indentation, though sur-
face stress distributions for pyramidal indenters are non-uniform and not equi-biaxial at
most locations.

Tensile loading conditions, with and without superposed simple shear, were thor-
oughly investigated [15] with the intent of comparison to flexure experiments. Only a few
demonstrative simulations with biaxial and simple shear were executed in prior work [15],
without the isolation of the individual effects of the full range of physical mechanisms
available in the phase field model.

3.1. Boron Carbide Phase

The properties and parameters for bulk grains of B4C are listed in Table 1. Isotropic
elasticity is assumed [34,48], and nonzero β′0 is invoked in the compressive regime. To
prevent tensile numerical instabilities [15], 1

3 β′0 · (trεεεE)→ − 1
3 β′0 · 〈−(trεεεE)〉 in (29), where

〈(·)〉 = 1
2 [(·)+ |(·)|]. Twinning occurs on 〈101̄0〉{0001} and fracture on basal {0001} planes,
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giving M. Amorphous shear bands are enabled to form within twinned domains [49–51]
as η → 1. Twinning shear is γ0 = 2

3 a/c, with a and c lattice parameters. The surface energy
resisting twinning is Γ. The energy barrier Â is obtained from the difference between the
free energies of crystalline and amorphous phases. The preferred twinning system in a
randomly oriented B4C grain is the one of among three possible basal twinning systems
with the maximum Schmid factor, producing s and m [52]. Cleavage anisotropy α̂ is
prescribed similarly based on prior works [27,45,52], and χ̂ = χ in (35) [40].

The choices of the regularization lengths lξ and lη were analyzed in detail in a prior
work on ceramic composites [52]; that discussion is now summarized. Here, the minimum
acceptable length permitted by the mesh resolution and dimensions of the simulation
domain [45,48] is assigned, with lξ = lη for convenience. If explicitly resolving atomic-
scale phenomena, regularization lengths can correlate physically with perturbed atomic
displacements in the vicinity of crack faces [53] or twin boundaries [26,54]. In such nano-
scale simulations, parameters correlate with molecular mechanics and take values of nm
or smaller. Parametric studies with different regularization lengths for twinning, phase
transformations, and fractures are reported in several prior works [26,45,52,55]. Generally,
increasing the regularization length while holding the surface energy constant leads to a
reduction in nucleation stress and peak strength, though the relative importance depends
on the particular problem. In one prior study [52], varying the ratio lη/lξ from 1

2 to
2 produced similar mechanisms in the simulation results, but the predicted widths of
regularized cracks and twin boundaries increased and the homogenized peak stresses
decreased, with increasing regularization lengths.

Partial twinning is reversible upon unloading, as observed in other investigations [56,57].
The irreversibility of amorphization is imposed for η ≥ ηT , with ηT = 0.9, and likewise
for fracture, with ξT = 0.9. Constraints enforcing irreversibility in numerical simulations
are described in prior work [40,51]. Different choices of ξT were further investigated in
the preparation of prior works on phase field fracture [27] and fracture with twinning [40].
Too small a value of the threshold for the irreversibility of fracture locks in permanent,
diffuse damage contours, especially under relatively homogeneous loading protocols,
wherein sharp cracks do not nucleate immediately. On the other hand, omitting the
threshold for fracture irreversibility entirely leads to healing of fully developed cracks upon
elastic unloading as the system seeks to minimize total elastic and surface energy. Similar
remarks apply for amorphized, twinned, or slipped regions. The aforementioned prior
investigations found that, for the present constitutive theory and variational numerical
implementation, the presently prescribed value of 0.9 for ξT and ηT provides a suitable
compromise, producing physically realistic results for relatively brittle materials of study.

3.2. Titanium Diboride Phase

The properties and parameters for grains of TiB2 are likewise listed in Table 1. Cleavage
occurs on {0001}, giving M, where Υ is obtained from DFT [34]. Slip occurs on families
of systems with the lowest stacking fault (SF) energy barrier Γ from DFT [34]: basal slip
〈112̄0〉{0001}with (full) Burgers vector b0 = a. In the phase field model for restricted slip in
TiB2 [34,48], η is related to the magnitude b of the Burgers vector of a partial dislocation and
cumulative dislocation density ρD. It is is used to interpolate from null to saturation shear
γ0 on a single system in (26). Regularization length, cleavage anisotropy, and irreversibility
are addressed similarly to B4C; values are justified in prior work [15]. The active slip system
was chosen among six possible basal systems (three pairs with parallel s of opposing signs)
by the maximum applied Schmid factor [52], giving s and m. The maximum distance a
typical dislocation travels prior to arrest is x̄ = 50 nm [12]. Denote by ρS = 1015m−2 the
saturation density of dislocations. The stored elastic energy density of dislocation lines is
1
2G0b2ρD [42]. Then [34,48],

η = (b/b0)
√

ρD/ρS, γ0 = ρSb0 x̄, Â = 1
2G0b2

0ρS. (43)
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Table 1. Physical parameters for B4C, TiB2, and boundary regions.

Parameter (Units) B4C TiB2 Boundary Description (Refs.)

ρ0 (g/cm3) 2.52 4.52 - mass density 1 [34,58,59]
B0 (GPa) 205 240 211 initial bulk modulus [14,59,60]
G0 (GPa) 187 255 200 initial shear modulus [14,59,60]
β′0 (-) 8.40 3.04 7.16 bulk stiffening in (38) [14,61,62]
Υ0 (J/m2) 3.27 4.14 3.47 nominal fracture energy [34,48,63]
α̂ 10 100 - cleavage anisotropy [27,34,48,52]
Γ (J/m2) 0.54 0.12 - twin boundary or SF energy [12,34,48]
γ0 0.31 0.015 - max twin shear or plastic slip [12,34,48]
Â (MPa) 188 11.4 - phase or dislocation energy [34,48,64]
lξ = lη (µm) 0.1 0.1 0.1 regularization length [34,48,65]
σ̃0 (GPa) −0.496 1.660 - nominal residual stress in (46) [4,6,34]
KR (MPa·m1/2) 1.54 - 1.25 residual toughening in (47) [4]

1 B4C-23 vol. % TiB2 composite ρ0 = 2.99 g/cm3 [6,34].

3.3. Grain and Phase Boundaries

As in some prior work [3,15,52], larger crystals of each phase are encapsulated in
an isotropic binder with effective elastic and fracture properties. This binding matrix
accounts for the effects of phase and grain boundaries and very small grains that cannot
be resolved discretely in FE simulations. Fracture properties can vary among boundary
regions (e.g., different grain and phase boundary facets), each defined by initial position
vector X̄. The matrix has the same volume fractions of constituents as the entire composite.
Thus, isotropic elastic properties of the composite [14] are used for the matrix.

Superscripts (·)(0), (·)(1), (·)(2) correspond to (B4C, TiB2, boundary) phases. Let
(υ(0), υ(1)) = (0.77, 0.23) be the initial volume fractions of the (B4C, TiB2) phases of the
composite, where υ(0) = 1− υ(1). In the absence of experimental or atomic simulation
data, the fracture surface energy for boundary regions follows a mixture rule with possible
heterogeneity, the latter scaled according to global Weibull statistics via location-dependent
function r̂:

Υ(2)(X̄) =

{
υ(0)Υ(0) + υ(1)Υ(1) = Υ0 (homogeneous),
(υ(0)Υ(0) + υ(1)Υ(1)) · r̂(X̄) (Weibull);

r̂(X̄) = f̂ 2(Υ0, m)(X̄). (44)

When homogeneous boundary energies are imposed, Υ(2) = Υ0 is independent of X̄. When
heterogeneous energies are imposed, Υ(2) contains dimensionless multiplier r̂, where a
different instantiation of r̂ is applied at each boundary region X̄. Previous works [15,33]
considered completely random (uniform) fracture energy distributions on the approximate
interval r̂ ∈ (0, 2). Weibull distributions on the fracture toughness and strengths of grain
boundaries were investigated in cohesive FE simulations of polycrystalline alumina [35]
with Weibull modulus m = 10, roughly characteristic of macroscopic strength statistics [36].
The macroscopic Weibull modulus has not been measured for B4C-TiB2, so m = 10 was
used for the present phase field simulations, with the shape factor given by tensile failure
stress P0 ∝

√
Υ0 [14,66]. The Weibull probability density function f for failure stress P ≥ 0

is then

f (P; P0, m) =
m
P0

(
P
P0

)m−1
exp

[
−
(

P
P0

)m]
. (45)

In a given simulation, field f̂ was initialized over all grain boundary facets such that P
follows (45) in discretized form, squared in (44) to account for Υ ∝ P2 in the phase field
approach ( f̂ 6= f ). The median value of P from (45) is P0 · (ln 2)1/m ≈ 0.964P0, so the
median energy is 0.929Υ0, which is slightly lower than that of the homogeneous condition
(m → ∞). The anisotropic mechanisms of twinning and dislocation slip were omitted
in isotropic boundary regions, and α̂ = 0 accordingly. For simulations of pure B4C, a
distinction was neither necessary nor imposed between the properties of bulk crystals
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and grain boundary regions. Since pure B4C tends to fracture transgranularly, rather than
intergranularly [6], the resolution of the distributions of its boundary energies was deemed
uncritical here, though the distributions could be considered given sufficient microscopic
data. Macroscopic failure statistics emerged regardless, due to grain-to-grain variations of
cleavage plane orientations.

3.4. Residual Stresses

The B4C-TiB2 composite is processed at temperature TP � T0, where T0 is room
temperature. Cooling from TP leads to unequal contraction among B4C and TiB2 grains due
to different coefficients of thermal expansion A0 of each phase. Values of σ̃0 were calculated
for each bulk phase using the analytical solution of Taya et al. [4]. In the simulations,
each crystal was assigned a uniform value of σ̃0 during a seeding step. Initial residual
stresses were redistributed as an outcome of the solution, to maintain stress and order
parameter equilibrium, before (see Figure 1b) and after displacement boundary conditions
were applied. Boundary regions have σ̃0 = 0 since they are nominally self-equilibrated;
however, after equilibration, boundary regions can be initially stressed depending on the
morphology and composition of the surrounding microstructure. As in the original deriva-
tions [4], isotropic thermal expansion was assumed, where α(i) = 1

3 A(i)
0 is the linear thermal

expansion coefficient of the bulk phase i = 0, 1. Young’s modulus and Poisson’s ratio
were E

(i)
0 and ν

(i)
0 , and Ξ = [(1 + ν

(0)
0 )/(1− 2ν

(1)
0 )][E

(1)
0 /E(0)0 ]. Residual stresses of thermal

origin (σ̃(0)
0 , σ̃

(1)
0 ) for (B4C, TiB2) grains are calculated from analytical micromechanics [4] as

σ̃
(0)
0 = −υ(1)

υ(0)
σ̃
(1)
0 =

2υ(1)E
(0)
0 Ξ · (α(1) − α(0))(T0 − TP)

(1− υ(1))(Ξ + 2)(1 + ν
(0)
0 ) + 3Ξυ(1)(1− ν

(0)
0 )

. (46)

Residual stresses are self-equilibrated: υ(0)σ̃
(0)
0 + υ(1)σ̃

(1)
0 = 0. The fracture toughness of a

given phase with compressive residual stress was increased by KR [4]:

K(i)
R = 2〈−σ̃

(i)
0 〉
√
(2/π)(1.085d/υ(1) − d). (47)

The mean grain diameter of the less-abundant phase is d. Fracture energy is updated
via [15]

Υ(i) = (K(i)
C + K(i)

R )2[1− (ν
(i)
0 )2]/(2ψRE

(i)
0 ), ψR ≈ 2, (48)

with KC the fracture toughness corresponding to Υ0 via the usual linear elastic fracture
mechanics relation [14,15]. The outcomes of this model were σ̃0 < 0 for B4C (residual
compression) and σ̃0 > 0 for TiB2 (residual tension). Fracture energy Υ(2) increased by
K(0)

R via Υ(0) from (48) inserted into (44), since negative (i.e., compressive) residual stress

toughens subscale B4C constituents. The corresponding K(2)
R was extracted from (48)

applied to the binder. The values in Table 1 were obtained from α(0) = 4.8× 10−6/K [58],
α(1) = 8× 10−6/K [59], d = 3µm, and TP − T0 = 1873 K [6]. Parameter εC was found
from (42).



Solids 2022, 3 654

(a) (b)

Figure 1. Boron carbide-titanium diboride initial rendering for phase field simulations: (a) FE mesh
of phases (yellow = TiB2, white = B4C, dark = binder); (b) equilibrated initial stress component P22

prior to biaxial tension–compression loading in the X1X2 plane.

4. Numerical Methods

The FE method with an implicit formulation is invoked for solution of boundary value
problems of deforming polycrystals that implement the variational phase field theory and
constitutive models and parameters of the respective Sections 2 and 3.

4.1. Geometric Rendering and Investigated Parameters

Each polycrystal contains on the order of 50 polyhedral bulk grains. These belong to
the B4C or TiB2 phase with the associated parameters of Table 1. As discussed in Section 3.3,
a very thin layer of binder material, just wide enough to resolve cracks in the regularized
phase field approach, covers each bulk grain. This layer is partitioned into many domains.
Each domain corresponds to a boundary layer facet between neighboring crystals, and each
domain has a centroidal coordinate vector X̄. Heterogeneous fracture properties were
implemented from (44).

A representative FE mesh of a B4C-TiB2 polycrystal is shown in Figure 1a. The volume
of the domain, Ω0, is 103 µm3. The three phases (B4C, TiB2, and boundary) are differentiated
by color in Figure 1a. Volume fractions of (B4C, TiB2), denoted (υ(0), υ(1)) = (0.77, 0.23),
were exactly reproduced. The average grain diameter was 3 µm; too few grains were
included to attempt matching experimentally determined size and orientation distributions.
Random lattice orientations were assigned. Some simulations modeled pure B4C rather than
the composite, in which case, all domains were logically assigned properties of B4C. Meshes
consisted of approximately 1.5 M hexahedral elements with full integration. As discussed
in prior 3D phase field modeling works on boron carbide- and silicon carbide-based ceramic
composites with comparable mesh densities [15,52,67], FE meshes are sufficiently refined
to resolve regularization lengths for fracture, slip, and twinning and, thereby, mitigate the
potential mesh size dependence of solutions.

The simulation results of Section 5 investigated the effects of the following for biaxial
loading conditions corresponding to pure shear, rather than uniaxial extension prioritized
in a prior study [15]:

• Composition: B4C-23 vol. % TiB2 versus pure B4C;
• Residual stress: nonzero σ̃0 enabled via (46) or suppressed (σ̃0 = 0);
• Twinning and slip: η > 0 enabled or suppressed (η = 0);
• Boundary properties: Weibull distributions (as opposed to random [15]) according to (44);
• Grain morphology: effects examined via different loading directions;
• Lattice orientation: randomized to activate different cleavage, habit, and slip planes.
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4.2. Boundary Conditions and Homogenization

Conjugate gradient energy minimization was applied in implicit FE simulations at each
imposed displacement increment δi. Fields u(X), η(X), ξ(X) were sought that minimized
Ψ subject to boundary constraints, in accordance with (13). A load parameter ε̄ is defined as

ε̄ = (1/L0)∑
i

δi ≥ 0, (49)

where the edge length of domain Ω0 is L0 = 10 µm; ε̄ quantifies the average strain. Displace-
ment boundary conditions imposed on ∂Ω0 correspond to pure shear (i.e., biaxial tension–
compression). For example, the macroscopic strain tensor ε̄εε for tension–compression in the
X1X2-plane (J, K = 1, 2) is

ε̄εε = ε̄[E1 ⊗ E1 − E2 ⊗ E2]. (50)

Principal directions EJ and EK were permutated among J, K = 1, 2, 3, where J 6= K. (In
contour figure legends, X1 → X, X2 → Y, X3 → Z.) The aggregate is traction-free in the
direction orthogonal to the plane of shear. An equilibrated stress distribution at ε̄ = 0
for a residually stressed B4C-TiB2 aggregate is shown in Figure 1b. Note that B4C grains
were initially compressed, TiB2 initially extended, and boundaries may be in tension
or compression depending on location. Free natural boundary conditions tξ = 0 and
tη = 0 [40,66] are assigned in (16) over all faces of the cube comprising ∂Ω0 upon which
tensile displacement boundary conditions are not applied. On faces of ∂Ω0 where essential
tensile increments δi are enforced, conditions ξ = 0 and η = 0 are invoked to eliminate
premature fracture or yielding of the material on such boundaries [15] (i.e., failure at
specimen grips is inhibited). The average stress, fracture parameter, and twinned or slipped
fraction are

P̄ =
1

Ω0

∫
Ω0

P dΩ0, ξ̄ =
1

Ω0

∫
Ω0

ξ dΩ0, η̄ =
1

Ω0

∫
Ω

η dΩ0. (51)

Local pressure is p(X) = − 1
3 trP(X), and the local von Mises stress is Σ(X) = { 1

2 [(P11 −
P22)

2 + (P22 − P33)
2 + (P33 − P11)

2 + 6(P2
12 + P2

23 + P2
31)]}1/2 ≥ 0, where PI J = PI J(X).

When found from (51),

p̄ = − 1
3 trP̄, Σ̄ =

{ 1
2 [(P̄11 − P̄22)

2 + (P̄22 − P̄33)
2 + (P̄33 − P̄11)

2 + 6(P̄2
12 + P̄2

23 + P̄2
31)]
}1/2 (52)

are the average pressure and average effective shear stress.

5. Model Results

Eighteen simulations (Sims), all differing from those in prior work [15], were under-
taken with the pure shear boundary conditions of (50). The features are listed in Table 2.
Polycrystals were assigned one of two material categories, either B4C-23 vol. % TiB2
(Sims 1–12) or all B4C (Sims 13–18), one of three lattice orientation distributions, and one
of three permutations of loading directions J, K corresponding to applied strain ε̄JK. Only
three out of a maximum of six permutations, when sign reversals were considered, were
simulated. Twinning and slip were disabled in Sims 4–6 and 16–18. Residual stresses were
omitted in Sims 7–9 and 13–18, where the latter six contain all B4C. Weibull distributions
of grain and phase boundary fracture stress, (44) with r̂ differing from unity, were used in
most representations of the composite (Sims 1–9); otherwise, Υ(2) is spatially constant.
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Table 2. Phase field simulations: biaxial loading, different microstructures, and physics. Right four
columns: peak average von Mises stress and average pressure and order parameters at peak stress.

Sim. Material Lattice Bound. Slip/Twin Res. Stress Weibull Σ̄ p̄
η̄ ξ̄

Cond. η > 0 |σ̃0| > 0 Υ(2) (GPa) (GPa)

1 B4C-TiB2 1 ε̄11 − ε̄22 Y Y Y 1.6349 0.006347 0.1451 0.1196
2 B4C-TiB2 2 ε̄22 − ε̄33 Y Y Y 1.4603 0.006776 0.1390 0.1261
3 B4C-TiB2 3 ε̄33 − ε̄11 Y Y Y 1.6419 0.007327 0.1420 0.1359

4 B4C-TiB2 1 ε̄11 − ε̄22 N Y Y 1.1341 0.005450 0.0000 0.1584
5 B4C-TiB2 2 ε̄22 − ε̄33 N Y Y 1.1302 0.003949 0.0000 0.1232
6 B4C-TiB2 3 ε̄33 − ε̄11 N Y Y 1.2422 0.004801 0.0000 0.1480

7 B4C-TiB2 1 ε̄11 − ε̄22 Y N Y 1.1776 0.005507 0.0758 0.1128
8 B4C-TiB2 2 ε̄22 − ε̄33 Y N Y 1.0666 0.005629 0.0766 0.1064
9 B4C-TiB2 3 ε̄33 − ε̄11 Y N Y 1.1479 0.007116 0.0784 0.1122

10 B4C-TiB2 1 ε̄11 − ε̄22 Y Y N 1.8663 0.009083 0.1782 0.1478
11 B4C-TiB2 2 ε̄22 − ε̄33 Y Y N 1.7105 0.008339 0.1618 0.1323
12 B4C-TiB2 3 ε̄33 − ε̄11 Y Y N 1.8670 0.010320 0.1813 0.1662

13 B4C 1 ε̄11 − ε̄22 Y N N 1.2460 0.008489 0.0707 0.1485
14 B4C 2 ε̄22 − ε̄33 Y N N 1.1580 0.007554 0.0749 0.1392
15 B4C 3 ε̄33 − ε̄11 Y N N 1.1903 0.006258 0.0612 0.1217

16 B4C 1 ε̄11 − ε̄22 N N N 1.0212 0.006541 0.0000 0.2383
17 B4C 2 ε̄22 − ε̄33 N N N 1.0240 0.005984 0.0000 0.2374
18 B4C 3 ε̄33 − ε̄11 N N N 1.0203 0.006182 0.0000 0.2383

Shown in Figure 2 are the results for Sim 2, which corresponds to the B4C-23 vol. %
TiB2 composite with slip and twinning enabled, residual stresses enabled, and a Weibull
distribution of effective grain and phase boundary strengths. Stress normal to the extension
direction is visualized in Figure 2a, where local relaxation is evident in many fractured
regions. The fracture parameter contour for ξ of Figure 2b demonstrates a preponderance
of fractures along grain and phase boundaries, with very sparse fractures within large
grains of either phase. Inelasticity order parameter η in Figure 2c shows the largest values
in TiB2 grains (0.5 . η ≤ 1.0) preferentially oriented for basal plane slip. Low values in
B4C crystals (0.05 . η . 0.25) correspond to diffuse twinning or stacking fault formation
prior to shear localization. However, a few localized zones where η approaches unity do
arise in B4C, which correspond to amorphous shear band formation.

(a) stress (b) fracture

Figure 2. Cont.
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(c) inelasticity

Figure 2. Simulation 2, ε̄ = 8.4× 10−3 (solid rendering): (a) normal stress component P22; (b) fracture
order parameter ξ; (c) slip/twinning order parameter η.

Fracture contours for six simulations (Sims 1, 4, 7, 10, 14, 17), i.e., one of each grouping
with similar characteristics in Table 2, are presented in Figure 3. Comparing Figure 3a
with Figure 3b, transgranular fractures, particularly in the TiB2 phase, are more prevalent
when η representing basal slip is suppressed. Similarly, in Figure 3c, the tendency for
transgranular fracture is increased in the absence of residual stress. When uniform (i.e.,
constant) grain and phase boundary strengths were imposed rather than Weibull statistics,
fewer distinct cracks emerged and at different locations, as is evident in Figure 3d.

With or without twinning and shear localization (i.e., amorphous banding) enabled,
the pure B4C material is dominated by transgranular fractures, along the same plane
of maximum shear stress in Figure 3e,f. The fractured zone is physically wider in the
latter case at the same ε̄, but η does not appreciably alter the crack morphology. It was
found, however, that the shear strain at peak load was reduced by an average of 0.08%
when inelastic shear was incorporated in the simulations of pure B4C. Thus, ductility is
compromised by the transition from twinning to amorphous banding, leading to earlier
catastrophic fracture in the monolithic material.

(a) B4C-TiB2, all physics (b) B4C-TiB2, no plasticity

Figure 3. Cont.
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(c) B4C-TiB2, no residual stress (d) B4C-TiB2, uniform boundaries

(e) B4C, inelasticity (f) B4C, no inelasticity

Figure 3. Fracture order parameter ξ (transparent rendering): (a) Sim 1, ε̄ = 7.8× 10−3; (b) Sim 4,
ε̄ = 7.2× 10−3; (c) Sim 7, ε̄ = 6.0× 10−3; (d) Sim 10, ε̄ = 8.4× 10−3; (e) Sim 14, ε̄ = 8.4× 10−3;
(f) Sim 17, ε̄ = 8.4× 10−3.

The effective average stress Σ̄ of (52) is reported versus the applied strain ε̄ of (50) for
15 simulations in Figure 4, where results from the full composite model (Sims 1, 2, 3) are
contrasted with those with other model features enabled/disabled in Sims 4 through 15 in
each subfigure. For every simulation, the maximum value of Σ̄ attained is listed in Table 2,
along with the following average field variables at the applied strain corresponding to peak
stress: average pressure p̄, average inelasticity order parameter η̄, and average fracture
order parameter ξ̄. The following trends are noted from Figure 4, Table 2, and visual
inspection of individual contour plots for all 18 simulations:

• Plasticity, when it occurs, is much more prevalent in the TiB2 phase (basal slip) than
the B4C phase (twinning, shear bands).

• Plasticity reduces the tendency for transgranular fracture, especially in TiB2 grains of
the composite.

• Average peak pressure p̄ is always slightly compressive, but average pressure is negli-
gible compared to effective deviatoric stress Σ̄, as expected for equi-biaxial loading.

• Thermal-residual stress enhances overall strength and ductility, primarily via tough-
ening of the B4C phase initially under residual compression.

• Heterogeneous grain and phase boundary energies from the Weibull strength statistics
lead to more cracks and lower overall strength, in general, than constant boundary
energies, which correspond to fewer very weak links in the microstructure.

• The composite, in which intergranular fractures dominate (with transgranular frac-
tures arising sometimes, but less often) demonstrates greater overall strength and
ductility than pure B4C, in which transgranular fractures dominate.

• Peak effective stress for the B4C-TiB2 composite, averaged over Sims 1, 2, and 3 from
Table 2, is 1.58 GPa. Peak effective stress for pure B4C, averaged over Sims 13, 14,
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and 15, is 1.20 GPa. The ratio of composite-to-monolithic material effective strength is
1.58/1.20 = 1.32.

• When plasticity is suppressed in constitutive models of both materials (Sims 4, 5, and
6 vs. 16, 17, and 18), the ratio of composite-to-monolithic material effective strength
is 1.17.
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Figure 4. Effective average stress Σ̄ versus applied biaxial strain ε̄: (a) Sims 1, 2, and 3 vs. Sims 4, 5,
and 6; (b) Sims 1, 2, and 3 vs. Sims 7, 8, and 9; (c) Sims 1, 2, and 3 vs. Sims 10, 11, and 12; (d) Sims 1, 2,
and 3 vs. Sims 13, 14, and 15.

When slip and twinning mechanisms are potentially active, peak Σ̄ appears higher,
as noted in related work under different boundary conditions [15]. However, further
analysis revealed that the applicability of this trend is sensitive to modeling assumptions
and parameters for the phase field representation of inelasticity, as well as the microstruc-
ture (e.g., lattice orientation) and other details entering the stress state homogenization
procedures. For example, peak strength was found to decrease, but ductility was found
to increase, when twinning was more profuse in a diamond-SiC ceramic composite [52].
In another study [34], the tendency for strength increase or decrease was found to depend
on lattice orientation affecting the activity, or lack thereof, of inelastic deformation systems.
Above a small threshold, or with the availability of more systems, plasticity may reduce
hardness and peak load capacity as the tendency to flow inelastically increases [52]. As
noted in the present findings and experiments [68], a transition from inelastic shear (e.g.,
twinning) to amorphization may inhibit ductility in B4C. Regardless, a consistent trend
among current and prior work is a decrease in average fracture activity ξ̄ with increasing
average slip or deformation twinning η̄. Along with local crack tip blunting, this should
contribute to a higher toughness, even if ultimate strength is reduced.

Comparison with Experiments and Prior Modeling

Mechanical experiments reported by Rubink et al. [6] include static and dynamic flex-
ure via three-point bending, Chevron notched bending for fracture toughness, and Vickers
indentation for hardness and fracture toughness. Scanning electron microscopy (SEM)
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was used to investigate post-mortem fracture paths in samples recovered from these tests.
Transmission electron microscopy (TEM) was used to further investigate fracture and
dislocation plasticity mechanisms at finer resolution, where a focused ion beam (FIB) was
used to extract small-scale samples in the vicinity of cracks induced by Vickers indentation.
Synchrotron X-ray diffraction (XRD) was used to measure lattice spacing and infer residual
stress states of grains of each phase.

Analysis of SEM images showed crack deflection and crack bridging by second-phase
TiB2 particles. The high surface roughness of the cracked material suggested intergranular
fracture in the composite. In contrast, pure B4C failed predominantly by transgranular
fracture, similar to observations in other studies [68]. The same physical mechanisms were
observed in both static and dynamic flexure. The analysis of TEM images corroborated the
fracture tendencies from SEM, i.e., more crack branching in the composite than the pure
B4C. The TEM images further showed stacking faults and dislocations in the TiB2 grains,
as observed in earlier work [12,13].

The analysis of XRD peaks in the composite showed definitive compressive lattice
strains for B4C and milder tensile lattice strains for TiB2. The addition of TiB2 to B4C
yielded higher flexure strength, a higher elastic modulus, and higher fracture toughness [6].
The lower toughness of pure B4C was quantified by longer cracks produced by Vickers
indentation; however, the higher hardness of pure B4C was quantified by smaller residual
indents. Similar improvements in the mechanical properties were measured in earlier
work on a previous generation of SPS ceramics [34]. Improvements in tensile strength
and toughness were likewise measured in hot-pressed B4C-TiB2 composites of lower TiB2
content (10%) and with Si/B doping [68,69].

The following differences in the experimental findings are summarized for the dual-
phase composite with 23% by volume of the second phase, i.e., B4C-23 vol. % TiB2 versus
pure B4C, both produced by SPS [6]:

• Elastic modulus increase of approximately 20%;
• Static flexure strength increase of approximately 20%;
• Dynamic flexure strength increase of approximately 30%;
• Static fracture toughness increase on the order of 100%;
• Increased dislocation mechanisms;
• Increased tendency for intergranular over transgranular fracture;
• Vickers hardness decrease of approximately 10%;
• Mass density increase of approximately 20%.

The first six items listed above are beneficial for the composite, the last two detrimental.
The apparently beneficial properties of dislocation plasticity for mitigating fracture in the
TiB2 phase have been noted for other ceramics such as aluminum nitride [70]. Twins and
amorphous shear bands have been observed in the B4C phase. Twins have been suggested
to improve the mechanical properties of B4C [71,72], while solid-state amorphization is
thought to degrade strength, since it tends to be accompanied by fracture and fragmenta-
tion [73]. Doping with silicon (Si) and boron (B) has been shown to reduce the tendency
for amorphization in B4C [68,69]; the addition of TiB2 to such doped materials produces
increased flexure strength and toughness through the mechanisms listed above [6], as well
as grain refinement.

The present model results corroborate the above experimental findings. Under biax-
ial loading, when the Weibull distributions of boundary strengths and thermal-residual
stresses (where compressive stresses intrinsically toughen the more brittle B4C phase) are
implemented, the phase field predictions of improved peak strength, reduced fracture
tendency (i.e., increased overall toughness), and increased plasticity and ductility with
the addition of TiB2 all concur with experimental data [6,34]. For supporting quantitative
evidence, see Figure 5, which compares numerical averages, over three simulation cases,
for the composite with and without residual stress and pure B4C. Average strength, ductil-
ity, and plastic deformation are all higher in the composite with residual stress than in the
composite when residual stress is omitted and are also all higher in the composite relative
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to pure B4C. In both the model and experiment, intergranular fracture arises more often
than transgranular fracture in the composite, as opposed to strongly preferential cleavage
fracture in the monolithic B4C, which is clear in the model results upon comparison of
Figure 3a with Figure 3e. Prior recent work [15] for tensile loading conditions and uniform
boundary strengths produced similar trends; furthermore, the toughness, albeit at a lower
scale of resolution than the Vickers experiments, was quantified for pre-cracked samples,
providing a respectable validation of the model and parameters. The reduction in peak
strength with increased variability of the properties, attributed to more weak links for
fracture in a probabilistic sense, is shared among tensile and shear loading conditions
and among random and Weibull boundary strength distributions.

Overall, including TiB2 is recommended to improve strength and ductility. However,
hardness is reduced and mass density is increased with the addition of TiB2. Thus, ap-
plications requiring simultaneously high hardness, strength, and ductility, as well as low
weight will require moderation of the ideal fraction of TiB2, i.e., a trade-off among physical
properties. Furthermore, a maximum improvement in strength and toughness exists at a
fraction of TiB2 under 100% since pure TiB2 tends to demonstrate lower flexure strength
and lower fracture toughness than the B4C-23 vol. %TiB2 composite [34].
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Figure 5. Average values for simulations with B4C-TiB2 (with and without residual stress) and
pure B4C: (a) maximum effective stress Σ̄; (b) ductility measured by applied strain ε̄ at peak stress;
(c) plasticity measured by averaged slip/twinning order parameter η̄ at peak stress.

6. Conclusions

A phase field model of fracture and inelasticity accounting for thermal-residual stresses
was implemented in numerical simulations of boron-carbide-based ceramics and ceramic
composites. The new computations included the effects of the Weibull distributions of
grain and phase boundary energies for biaxial loading of polycrystalline B4C and B4C-TiB2
aggregates. The results confirm the experimental observations and trends observed in prior
numerical work that focused on tensile loading and uniform boundary strengths. Improved
mechanical properties manifest from the toughening effects of residual stresses, plasticity,
and cleavage crack blockage by stronger TiB2 grains and more tortuous intergranular crack
paths exhibited by the composite relative to the dominant transgranular failure exhibited
by the pure B4C.
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