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Abstract: Blasting operations in open-pit mines generally have various management strategies
relating to flyrock. There are empirical models for calculating the flyrock distance, but due to the
complexity and uncertainty of rock properties and their interactions with blasting properties, there are
still no models that can predict the flyrock distance that may be applicable across mining operations
in general. In this regard, the Jajarm bauxite mine complex was used as a case study. The purpose
of this study was to develop and evaluate different methods that can predict flyrock distance. For
this purpose, soft computing models were developed using generalized regression neural network
(GRNN), gene expression programming (GEP) and genetic-algorithm-based GRNN (GA-GRNN)
methods. To obtain statistical models, multivariable regression was applied in the form of linear
and nonlinear equations. A flyrock index was introduced using a classification system developed by
incorporating fuzzy decision-making trial and evaluation methods (fuzzy DEMATEL). In order to
achieve this goal, the data of 118 blasts in eight mines of the Jajarm bauxite complex were collected and
used. Following this, four performance benchmarks were applied: the coefficient of determination
(R2), variance accounted for (VAF), root-mean-square error (RMSE) and mean absolute percentage
error (MAPE). The performance of the models was evaluated, and they were compared with each
other as well as with the most common previous empirical models. The obtained results indicate
that the GA-GRNN model has a higher performance in predicting the flyrock distance in actual cases
compared to the other models. At first, data on factors that were the main cause of flyrock (and had a
direct impact on it) were collected and classified from different blasts. Then, using the collected data,
19 different combinations were established, which can be used to provide the appropriate predictive
equation. The purpose of this work is to more accurately predict flyrock and prevent heavy damage
to buildings and mining machines across the mining complex.

Keywords: flyrock; gene expression programming (GEP); generalized regression neural network
(GRNN); genetic algorithm (GA); decision-making trial and evaluation methods (DEMATEL)

1. Introduction and Background of Study

Blasting is one of the main methods of fragmenting and extracting minerals in mining
operations and is often carried out on a large scale from open-pit mines. In blasting
operations, explosive material releases a large amount of energy, of which only about
20 to 30% is used for rock fragmentation or rock movement. The remaining energy has
environmental side effects, which include flyrock, backbreak, ground vibration and air
blasts [1,2].

According to the Institute of Makers of Explosives (IME) [3], flyrock is a phenomenon
in which broken pieces of rock are thrown beyond the safe zone as a result of an explosive
blast. This cannot only damage structures, equipment and mineral formations but also lead
to casualties [4–12]. Effective factors in the projection of flyrock can be divided into two
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groups: controllable and uncontrollable parameters [12–15]. The condition of the rock mass
and physical geological conditions of the mining area are considered uncontrollable factors
in that the more massive and homogeneous the rock, the less likely it is to project flyrock.
On the other hand, geometrical parameters for designing the blast pattern, the arrangement
of the blast holes, the type of explosive, the delay between holes, the length and type of
stemming, etc., are considered controllable parameters [8,16,17]. This phenomenon occurs
by three mechanisms (Figure 1); the maximum distance covered by the flyrock in each
mechanism is calculable by the equations in Table 1 [18–20]. Based on these, engineers are
able to predict the minimum safe distance from the explosion site.
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Table 1. Calculating the maximum distance covered by flyrock through an explosion [18,20].

Mechanism of Flyrock Prediction Model

Rifling LMax = k2

g

(√
m

St

)2.6
sin 2θ

Cratering LMax = k2

g

(√
m

St

)2.6

Face bursting LMax = k2

g

(√
m

B

)2.6

The three mechanisms are as follows [18,20]:
Face bursting: This phenomenon takes place when the surface of the bench is not

smooth or the blast hole is filled with explosives close to the earth’s weak structures and
the max. burden is lower than normal.

Rifling: This type of phenomenon, which is one of the most dangerous types, occurs
when the stemming of the blast hole is not properly carried out or the materials used do
not have adequate efficiency in trapping explosive gases.

Cratering: Various factors contribute to the occurrence of this phenomenon, such as:

• The presence of pebbles around blast holes as a result of drilling;
• The lack of consideration of the delay sequence in blast holes;
• The presence of weak layers in the superficial layers of the ground.

In the equations in Table 1, θ is the drill hole angle, LMax is the maximum flyrock
distance, m is the mass of the explosive in each hole (kg/m), B is the burden (m), St is
the stemming height (m), g is the gravitational constant (9.81 m/s2) and k is a constant
parameter according to the ground’s condition.

Finally, two general results, concerning the properties of the rock mass and the flyrock
distance, can be obtained by using the evaluation of different mechanisms of flyrock and
its factors [5,6,21,22]:
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1. Choosing improper explosives by disregarding the geological conditions and proper-
ties of the rock mass;

2. Using an improper drilling pattern and having inaccuracies in execution.

2. Related Work and Objective of This Study

Table 2 showcases some of the most significant works of a wide range of research that
has been conducted on the flyrock phenomenon.

Table 2. Summary of research on the flyrock phenomenon.

Authors Years Findings

Ladegaard-Pedersen and Holmberg [23] 1973 The charging geometry affects cratering flyrock more than the other
two types.

Langefors, and Kihlstrom [24] 1978 The flyrock distance increases as each blast hole’s main
charge increases.

Lundborg [25,26] 1981, 1975 The first empirical model for flyrock prediction is presented.

Kopp [27] 1994 Flyrock makes up one-third of mining accidents.

Bajpayee et al. [28] 2002 A safe zone can be provided to prevent casualties and
equipment damage.

Verakis and Lobb [29] 2003 The lack of consideration of geological conditions when choosing
blasting patterns and explosives, improper stemming and charging
and an unfit blasting sequence (blast hole’s delay) are influencing
factors of flyrock.

Workman and Calder [30] 1994

Kecojevic and Radomsky [4] 2005
Flyrock depends on factors such as geological structure, improper
blasting pattern, the erroneous choice of burden, explosive aggregation,
poor stemming and inaccuracy in choosing the correct blasting delay.

Monjezi et al. [31] 2007 The distance of flyrock in a blast was controlled using the
Topsis method.

Aghajani-Bazzazi et al. [9] 2009 Controllable parameters were used to develop an empirical model to
predict flyrock by using the multivariable regression method.

Rezaei et al. [32] 2011 Flyrock distance predictions based on the fuzzy method (FIS and
artificial neural network) and the statistical method were compared.

Monjezi et al. [33] 2011 The ANNS method and its functionality were applied to predict the
flyrock distance.

Monjezi et al. [34] 2012 The genetic neural network model was used to predict flyrock
and backbreak.

Amini et al. [35] 2012
The results of flyrock distance prediction calculated through the SVM
(support vector machine) method were compared to those obtained
using the ANN (artificial neural network) method.

Ghasemi et al. [36] 2014 The functionality of the developed ANN method was compared to that
of fuzzy logic in predicting the flyrock distance.

Armaghani et al. [10] 2014

A new combination method, Bp-Ann, was used to predict the flyrock
distance and decrease the error rate. This method is a combination of
the PSO (particle swarm optimization) algorithm and the ANN
(artificial neural network) function.

Faramarzi et al. [6] 2014
The functionality of the multivariable regression method was
compared with the rock engineering system (RES) in predicting the
flyrock distance.
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Table 2. Cont.

Authors Years Findings

Saghatforoush et al. [37] 2016
Ant colony and optimization algorithms were used to predict the
flyrock distance and backbreak, which eventually led to a new ACO
method for minimizing flyrock distance and backbreak.

Esen [38] 2017 The flyrock distance was predicted with the aim of determining the
safe zone in open-pit mines using the effects of parameters on flyrock.

Hasanipanah et al. [15] 2017
The PSO (particle swarm optimization) method was applied, and its
results were compared to those of Multiple Linear Regression (MLR) in
predicting the flyrock distance.

Armaghani et al. [39] 2020

Three different methods of machine learning techniques, i.e., PCR
(principal component regression), SVM (support vector regression) and
BN (Bayesian network), were applied to predict the flyrock distance,
and the SVR method was chosen as the best prediction model; this
model was also optimized with GWO (Gray Wolf Optimization) to
decrease the flyrock distance.

Han et al. [12] 2020
The Random Forest Technique was used to select the effective
parameters, which were employed in BN (Bayesian network technique)
to predict the flyrock distance.

Hasanipanah, and Bakhshandeh
Amnieh [40] 2020

Risk analysis was conducted and the flyrock distance was predicted
using different kinds of artificial intelligence, and the fuzzy rock
engineering system (FRES) was chosen as the best model for risk
analysis and prediction in the studied mine.

Lu, Xiang, et al. [41] 2020
The best flyrock prediction model was determined by comparing the
results of the extreme learning machine (ELM) and outlier-robust ELM
(ORELM) methods to the ANN and multiple regression methods.

Nikafshan et al. [42] 2020
The Recurrent Fuzzy Neural Network (RFNN) and genetic algorithm
(GA) were combined in order to establish a combination model
(RFNN-GA method) for predicting the flyrock distance.

Zhou, Jian, et al. [43] 2020
A prediction model in the studied mine was determined by employing
ANN and MLR. Additionally, the flyrock distance was simulated with
Monte-Carlo (MC) simulation.

Jamei, Mehdi, et al. [44] 2021

A novel kernel-based extreme learning machine algorithm, called
kernel extreme learning machine (KELM), was used to predict flyrock.
In addition, in order to validate the proposed predictive model, three
data-driven models, including local weighted linear regression (LWLR),
response surface method (RSM) and boosted regression tree (BRT),
were developed to validate the main model. Finally, the corresponding
values of some statistical metrics and validation tools were compared
to evaluate the proposed model, and the proposed KELM model had
the best performance among all models.

Monjezi et al. [45] 2021

A mathematical model was developed (using a statistical method) to
predict the flyrock distance in Novin Topal Limestone mine, Iran.
In the first step, the flyrock distance was predicted using linear
multivariate regression (LMR). Then, gene expression programming
(GEP) was applied to enhance the statistical model’s appropriateness.
Finally, according to the results obtained, the developed GEP model
performed better than LMR.
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Table 2. Cont.

Authors Years Findings

Nguyen et al. [46] 2021

A data-driven model was introduced and used to predict flyrock.
A combination of the whale optimization algorithm (WOA), support
vector machine (SVM) and kernel functions was used. Four linear
functions (L), radius basis function (RBF), polynomial (P) and hyperbolic
tangent (HT) were used for embedding in the SVM model. Then, the
WOA model was applied to optimize kernel-based SVM models.
Additionally, a variety of models based on conventional data were used
to predict the flyrock distance. The results showed that the
WOA-SVM-RBF model had the highest accuracy in predicting the flyrock
distance. Finally, the WOA-SVM model was proposed as a data-driven
model for estimating fly rock with high reliability in mining.

Shakeri et al. [47] 2022

In the Sungun copper mine, Iran, the method of linear multivariate
regression (LMR), imperialist competitive algorithm (ICA), adaptive
neuro-fuzzy inference system (ANFIS) and artificial neural network
(ANN) methods were used to predict flyrock. According to the results
obtained from these methods, the authors chose Levenberg–Marquardt
as the learning algorithm, log-sigmoid (logsig) as the transfer function
and ANN as the optimal network. It can also be concluded that the ICA
technique is more accurate in predicting the flyrock distance than LMR
and ANFIS models. Finally, the sensitivity analysis revealed that the
powder factor and blast hole diameters are very important in
flyrock distance.

Hudaverdi [48] 2022

The variable reduction method was applied to predict flyrock. For this
purpose, the dominant parameters in flyrock were selected by a
multivariate statistical method. Two parallel ANFIS models were then
developed. Using the results of stepwise regression, the first model was
created. The second ANFIS model was then obtained based on the
results obtained from the factor analysis of the model. Alternative
accuracy criteria were also investigated to evaluate the prediction
performance of the presented model. The results showed that
standardized errors, normalized errors and Nash–Sutcliffe Efficiency
were very useful for model validation. Finally, by analyzing the
pre-statistical method of reducing variables, the performance of the
predictive model can be increased.

Hosseini et al. [49] 2022

An artificial neural network and the fuzzy cognitive map (FCM) were
integrated with z-number reliability information to predict the flyrock
distance. The developed model was called causality-weighted artificial
neural networks based on reliability (ACWNNsR). The reliability
information of the z-number was used for uncertainty elimination in
the initial matrix of FCM. Additionally, the integration of nonlinear
Hebbian and differential evolution algorithms was used to calculate the
weights of the input neurons. The performance of the proposed
ACWNNsR model was compared with a Bayesian regularized neural
network and a multilayer perceptron neural network. The results
showed that this comparison leads to the accurate prediction of flyrock
distance estimation. Finally, using sensitivity analysis, the burden was
determined as the most important factor in flyrock.

Barkhordari et al. [50] 2022

Ensemble learning approaches such as simple averaging ensemble,
weighted averaging ensemble, integrated stacking model, separate
stacking model and Bayesian-extreme gradient boosting were used to
predict the flyrock distance, which finally led to the presentation of a
separate stacking model with a bagging meta-learner that performed
better than other models. In addition, the Shapley Additive
Explanations (SHAP) method was used in order to reveal the relative
relevance of parameters affecting flyrock distance prediction.
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Numerous researchers have presented empirical equations regarding the flyrock
distance in recent years. However, some of these equations are not applicable to all mines.
Others have therefore modified them to match the specific mine they were studying. Some
of these are shown in Table 3.

Table 3. Present empirical and modified methods in previous research.

Authors Years Finding and Equation Type of Equation

Lundborg et al. [25] 1975 LM = 260D
2
3 Empirical

Gupta [51] 1980 Ls
B = 155.2× D−1.37 Empirical

Pal Roy [52] 2005 Flyrock can cover a distance ranging from a few meters to 1000 m Empirical
Ghasemi et al. [53] 2012 Flyrock = 6946.547

[
B−0.796S0.783S1.994

t H1.649D1.766 P
Q

1.465
]

Modified

Trivedi et al. [54] 2014 Flyrock =
105.1q0.51

I q0.14

B0.93 L0.64
s σ0.75

c RQD0.93
Modified

On the basis of what has already been stated, flyrock can be considered a dynamic
phenomenon that occurs as a result of the interaction between the rock mass and the
explosive material. Based on previous research, despite various empirical models presented
by several scientists to predict flyrock distance, there is no general model (or equation) that
is applicable to all mines. This is due to the numerous parameters affecting the flyrock
distance with regard to geological conditions, all of which cannot be evaluated at the same
time and occur parallel to one another. Therefore, these equations cannot provide a proper
and comprehensive solution to calculate the flyrock distance in different mines. As such, in
order to achieve this aim, a new framework for calculating the flyrock distance is presented
in this study.

This study can be divided into three stages. Firstly, data on numerous blasts in
the Jajarm bauxite mines were gathered to calculate the flyrock distance. In this regard,
13 parameters—12 of which were effective and independent parameters and 1 of which
was a dependent parameter (flyrock distance)—were measured and collected from the
mine site. The reason for choosing these data is that except for RQD/Jn, the rest of the
data are effective and controllable parameters of the mine and can be used to control the
flyrock distance in blasting operations, which prevents damage to structures, equipment
and mineral formations in the mine. Then, 19 different combinations of these parameters
were established and were used to provide the appropriate prediction equation. Secondly,
the flyrock distance in the mine was predicted using statistical models (multivariable
regression in the form of linear and nonlinear), equations based on fuzzy decision-making
trial and evaluation laboratory methods (fuzzy DEMATEL) and soft computing methods
using a generalized regression neural network (GRNN), gene expression programming
(GEP) and genetic algorithm-based GRNN (GA-GRNN). Eventually, a complete model to
predict the flyrock distance from the blast with regard to the mine’s conditions, such as its
geological structure and the blast’s controllable parameters, was obtained by evaluating
the results of the mentioned methods.

3. The Case Study of Jajarm Bauxite Mine
3.1. Site Description

The Jajarm bauxite mine complex is located 19 km away from the Jajarm city in the
Northern Khorasan province in Iran (Figure 2) and spans across a significant footprint of
the mountainous, arid landscape. The geological structure of the Jajarm bauxite mine is
layered (Figure 3), and it is located on the east–west mountain range in the north of the
Jajarm desert at a 1000 m altitude. According to Figure 3, the layer of bauxite minerals has
a slope between 40 and 60 degrees. The extraction of this mineral takes place in four or five
stages in order to reach the layer of bauxite minerals, with two stages of extraction to be
completed (waste—shale and sandstone with coal beds—and upper kaolinite).
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3.2. Data Sets

In this study, the required data were gathered from 118 blasts in 8 mines or anomalies
in order to present a new model to predict the flyrock distance in the Jajarm bauxite mine
complex. From this data, flyrock was selected as dependent (output) data, and the rest
of the data were used as inputs (independent) for the flyrock distance prediction. The
basic descriptive statistics of this database are summarized in Table 4. The rock mechanics
information of the mine was measured based on the International Society for Rock Mechanics
(ISRM) standards. Additionally, based on field observations, flyrock in most blasts was the
face-bursting or rifling kind. To measure the flyrock distance, the blast face bench and the
space in front of it were cleared of any rocks so that they did not interrupt the measurements,
and measuring was conducted using a meter between the blast face bench and the horizontal
landing place of the flyrock. A sample of the drilling pattern in these blasts and the start
delay (imitation sequence) in each blast are presented in Figure 4.
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Table 4. Modified basic descriptive statistics of obtained data from Jajarm bauxite mine [55].

Parameters Symbol Unit Min Max Mean Standard Deviation

Burden B m 1.8 3.5 2.376 0.5186
Spacing S m 2 4.2 2.73 0.693

Hole diameter D mm 63 76 71.71 5.13
Hole length L m 2.8 4.74 3.98 0.65

Bench height H m 6 7 6.71 0.45
Maximum instantaneous charge MC Kg 7 15 1.547 2.517

Powder factor Pf g/ton 0.226 0.6589 0.4412 0.1349
Steaming St m 0.1 1.5 0.638 0.3582

Time delay TD ms 25 250 82.778 70.872
Hole deviation HDEV θ 0 10 5.11 4.201

Blastability index BI - 71.3 82.125 78.372 2.8506
Mean charge per blasthole Q Kg 4 10 6.4689 1.8

Flyrock FR m 100 260 164.83 51.835

Due to the existence of different mechanisms of flyrock in the mine and the inability
to separate the value of the flyrock distance that is specific to each type, we chose the
general empirical equations (Lundborg and Gupta) listed in Table 3 for the prediction of
flyrock distance; these formulas consider all states of flyrock and hence are called empirical
Equations (1) and (2), respectively. As shown in the diagram (Figure 5), the flyrock distance
calculated for each blast was either more or less than the value predicted through empirical
equations. This variance shows that empirical equations use site-dependent parameters
that can vary in each location based on its condition and geological structure. Therefore, a
specific prediction model is needed for the Jajarm bauxite mine complex.
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4. Methodology

To conduct this study, three methods were used to present a model for the prediction
of flyrock in the Jajarm bauxite mine complex: statistical models (multilinear and nonlinear
regression), soft computing methods (GRNN, GA-GRNN and GEP) and fuzzy DEMATEL.
The reason for this selection is that the first and second methods are conducted according
to real gathered data from each blast, and the third method is based on the knowledge
and experience of experts regarding the area’s features (mine site). All three methods are
highly effective in predicting flyrock, and the accuracy of each can be measured and used in
equations. Figure 6 shows the flowchart of a predictive model using the mentioned methods.
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4.1. Regression Analysis

The regression analysis method shows the relationship between independent and
dependent variables in four stages in a linear and nonlinear (Equations (1) and (2)) manner.
These stages include choosing the variables, gathering data, performing pattern recognition
and fitting and validating the model [55–58].

Y = β0 + β1X1 + β2X2 + . . . + βnXn + εy (1)

Y = aXβ1
1 Xβ2

2 Xβ3
3 . . . Xβn

n (2)

In these equations, Y is the dependent variable; X1, X2 . . . Xn are the independent
variables; β1, β2, . . . βn are the coefficients of independent variables; β0 is the constant of
the equation; a is the width of the origin; and ε is the total random error.

4.2. Generalized Regression Neural Network (GRNN)

Donald F. Specht presented artificial regression neural networks for the first time in
1991 [59]. These neural networks process input data using radial basis functions (such
as a Gaussian function (Figure 7)) and show better performance than standard neural
networks, such as feed-forward neural networks. The advantage of these networks is their
less time-consuming design, quick data learning and simple operation compared to other
networks in predicting data. These advantages have led to the increasing use of these
networks in engineering, pharmaceutical, computing and so on [60–62].

Mining 2023, 3, FOR PEER REVIEW 10 
 

 

4.1. Regression Analysis 
The regression analysis method shows the relationship between independent and 

dependent variables in four stages in a linear and nonlinear (Equations (1) and (2)) man-
ner. These stages include choosing the variables, gathering data, performing pattern 
recognition and fitting and validating the model [55–58]. 

 𝑌 = 𝛽 + 𝛽 𝑋 + 𝛽 𝑋 + ⋯ + 𝛽 𝑋 + 𝜀  (1)𝑌 = 𝑎𝑋 𝑋 𝑋 … 𝑋  (2)

In these equations, Y is the dependent variable; X1, X2 … Xn are the independent var-
iables; β1, β2, … βn are the coefficients of independent variables; β0 is the constant of the 
equation; a is the width of the origin; and ε is the total random error. 

4.2. Generalized Regression Neural Network (GRNN) 
Donald F. Specht presented artificial regression neural networks for the first time in 

1991 [59]. These neural networks process input data using radial basis functions (such as 
a Gaussian function (Figure 7)) and show better performance than standard neural net-
works, such as feed-forward neural networks. The advantage of these networks is their 
less time-consuming design, quick data learning and simple operation compared to other 
networks in predicting data. These advantages have led to the increasing use of these net-
works in engineering, pharmaceutical, computing and so on [60–62]. 

 
Figure 7. Gaussian function. 

These networks operate in a way (Figure 8) such that data first enter the network’s 
input layer and then move to the radial basis layer for processing. In this layer, data are 
first classified using a data clustering method. Then, using transitional functions to learn 
the network, the weight relationship between the variables of the input layer and output 
layer is determined by decreasing the slope of the function and using linear regression. 
As seen in Figure 7, in this method, the Gaussian function (Equation (3)) is generally used 
to calculate the output of the next neuron. As the distance from the center of the function 
increases, the equations’ response tends toward zero, which is the reason for the wide and 
common usage of the Gaussian function in this method. As a result, this function can di-
vide the obtained equations radially into concentric circles and put vectors, which have 
equal distances from the center, into the same groups and decrease the prediction error 
[60–63]. Following this, the learned data enter the summation neurons and are finally sent 
to the output layer, which operates like a linear function, and are calculated through Equa-
tion (4). In this equation, λ is a constant, bjk is the weight constant of neuron j in the radial 
layer and neuron k of the output layer, and yj is the radial layer neuron’s output [64]. 

Figure 7. Gaussian function.

These networks operate in a way (Figure 8) such that data first enter the network’s
input layer and then move to the radial basis layer for processing. In this layer, data are
first classified using a data clustering method. Then, using transitional functions to learn
the network, the weight relationship between the variables of the input layer and output
layer is determined by decreasing the slope of the function and using linear regression. As
seen in Figure 7, in this method, the Gaussian function (Equation (3)) is generally used to
calculate the output of the next neuron. As the distance from the center of the function
increases, the equations’ response tends toward zero, which is the reason for the wide
and common usage of the Gaussian function in this method. As a result, this function
can divide the obtained equations radially into concentric circles and put vectors, which
have equal distances from the center, into the same groups and decrease the prediction
error [60–63]. Following this, the learned data enter the summation neurons and are finally
sent to the output layer, which operates like a linear function, and are calculated through
Equation (4). In this equation, λ is a constant, bjk is the weight constant of neuron j in the
radial layer and neuron k of the output layer, and yj is the radial layer neuron’s output [64].
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(X) = exp

(
− (X− µ)2

2σ2

)
(3)

Zk =
j

∑
i=1

bjkyj (4)
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4.3. Genetic Algorithm (GA)

The genetic algorithm (GA) was first developed by Goldberg [66]. This algorithm is
a function optimizer that is used for complex and nonlinear problems. Additionally, GA
is one of the problematic algorithms because of its limitations in choosing the different
parameters of the algorithm, namely, the population size, the proper function and the
genetic operator rate. Therefore, the operation of this algorithm requires great attention
when choosing the values of parameters to enter the algorithm because these values can
directly affect the algorithm’s response and its convergence [67,68]. Here, each response is
called a chromosome that has a fixed length and solves problems in the form of binary (0-1)
strings. These chromosomes are chosen randomly based on their different characteristics
and are then evaluated so that they create a population as parents. These so-called parents
create offspring (new chromosomes). These children with their new characteristics are
then selected and evaluated based on their function and environmental requirements
and, in a repeating cycle, create a new generation based on the remaining chromosomes
(children). This cycle or genetic operator consists of three stages, called crossover, mutation
and selection. In the selection step, chromosomes are selected using various transitional
functions, such as the roulette wheel method. Then, in the next step, the chromosomes are
joined together in pairs of fixed length. Finally, mutation plays a key role in this algorithm,
as it selects chromosomes to produce a combination of chromosomes with minimal error.
The cycle is continued until the best generation based on its functionality is selected. The
functionality of the selected generation (the best generation) in this algorithm depends
on the population of the chromosomes (usually between 50 and 100) [11,68–71]. The
aforementioned steps are schematically shown in Figure 9.
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4.4. Gene Expression Programming (GEP)

Gene expression programming (GEP) is an evolutionary algorithm first introduced by
Feriera in 1999 [72]. This method is a genotype–phenotype genetic algorithm with high
accuracy due to its tree-like structure, and it has made a great difference in comparison to
genetic programming. Additionally, it has GA’s simplicity and GEP’s capability; conse-
quently, it compensates for the shortcomings of these two methods [73,74]. Chromosome
and tree structures are two entities of GEP algorithms in which chromosomes contain sev-
eral genes. Each gene has two parts: (1) the head, which includes any function or terminal
symbols, is obtained using the trial-and-error approach and (2) a tail portion that only
has a terminal symbol, and its length is calculated through Equation (5). In this equation,
t is the tail’s length, h is the length of the head and nMAX is the maximum argument of
the functions.

t = h(nMAX − 1) + 1 (5)

The stages of this model are schematically shown in Figure 10. As can be observed,
firstly, chromosomes are randomly selected and make up the primary population. Then,
these chromosomes appear as a tree-like structure and are evaluated using fitness func-
tions (such as roulette wheel sampling) and are then combined to create the new (gene)
population. The chromosomes in the newly created generation are again selected based on
their performance relative to the environment and, after correction (amendment), create a
new generation. These new children are developed through the same cycle as their parents,
consisting of mutation, transposition and recombination [72,75,76].
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Mutation plays a key role in these stages due to its internal correction ability. Ac-
cording to the fixed length of the chromosomes, any function or terminal symbols can be
replaced with each other in the head, but in the tail, only the terminal can be replaced.
Numerous researchers have suggested mutation values ranging from 0.01 to 0.1 in their
studies [77,78]. At the same time, in the transposition stage, transportable particles are
moved from one chromosome to another. This transposition of particles takes place in
three states: (a) moving by replacing the head, which is called insertion sequence transpo-
sition, (b) moving to the root of the chromosome, which is called root insertion sequence
transposition, and (c) moving a gene to the beginning of the chromosome, which is called
gene transposition. The value of this transposition is considered to range between 0.01 and
0.1 according to previous researchers [72,75]. In the final stage, a recombination stage (also
known as crossover) is executed on the chromosome in three different ways: one-point,
two-point and gene-point recombination. According to Ferreira’s studies, recombination’s
value is considered to be 0.7. This process is repeated for a certain number of generations
until a suitable solution is obtained [72,75,76,79].

4.5. Fuzzy DEMATEL Technique

The decision-making trial and evaluation laboratory method is a practical scientific
method for showing the cause-and-effect relationship between variables [80]. In this
method, the quantities recognized by experts in a survey matrix are represented as a fuzzy
set using a fuzzy triangle number (TFN) (Table 5) [81–87].
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Table 5. The most common TFNs between linguistic terms and linguistic values [82].

Linguistic Terms Linguistic Values

Very High Influence (VH)-(4) (0.75, 1.0, 1.0)
High Influence (H)-(3) (0.5, 0.75, 1.0)
Low Influence (L)-(2) (0.25, 0.5, 0.75)

Very Low Influence (VL)-(1) (0, 0.25, 0.5)
No Influence (NO)-(0) (0, 0, 0.25)

Here, an n × n primary non-negative matrix is created as the primary matrix
(xk

ij = (lij, mij, uij)), in which i, m and u, respectively, indicate the lower, medium and
higher TFN markers. Then, the average of the available matrixes is calculated and nor-
malized. Then, a total matrix is obtained (Equation (6)), and each of its members is in
the form of t̃ij =

(
l′′ij , m′′ij, u′′ij

)
. The weight of factors (Wi) is then calculated by taking

the conditions of the problem into consideration [85]. All these steps are illustrated in a
flowchart (Figure 11).
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During these stages, all obtained numbers are fuzzy numbers. Therefore, a procedure 
is required to turn these numbers into non-fuzzy numbers. Here, the best non-fuzzy per-
formance (BNP) method (Equation (7)) can be used to turn the values into non-fuzzy num-
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used for model training, and 25 blasts were used to validate the models for flyrock pre-
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lected as input data. For this aim, first, the data that were randomly selected as training 
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During these stages, all obtained numbers are fuzzy numbers. Therefore, a procedure
is required to turn these numbers into non-fuzzy numbers. Here, the best non-fuzzy
performance (BNP) method (Equation (7)) can be used to turn the values into non-fuzzy
numbers [82,87].

T̃ =

 t̃11 · · · t̃1n
...

. . .
...

t̃n1 · · · t̃nn

 (6)

BNP = l +
(u− l) + (m− l)

3
(7)

5. Development of Predictive Models

In order to propose the above-explained models in this study, the gathered data were
randomly divided into a testing and training set (90 blasts were chosen randomly from
118 blasts as a training set). On this basis, data from 90 blasts were used for the training
set, and the rest were used for the testing and validation of the models. It should be
noted that among the 90 blasts selected for the development of predictive models, 65 blasts
were used for model training, and 25 blasts were used to validate the models for flyrock
prediction. It must be mentioned that, in accordance with Table 4, the flyrock distance was
selected as the output data, and other parameters affecting this phenomenon were selected
as input data. For this aim, first, the data that were randomly selected as training data were
classified. Second, using SPSS software, PCA was performed on the data, and those whose
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variance was less than 0.5 were removed. Then, statistical analysis (normalization, skewness
and kurtosis) was performed on the remaining parameters to examine the data. Finally,
different permutations were formed between the selected parameters (12 parameters), and
19 permutation models (different combinations) that had no correlations with each other
and could show the best possible solution for the mentioned methods were selected and
are presented in Table 6. In order to choose a developed equation or model with a better
performance in predicting the flyrock distance, the root-mean-square error (RMSE) and
Correlation Coefficient (R2) were used (Equations (8) and (9)) [88].

RMSE =

√
1
n ∑n

i=1

(
xmsr − xpre

)2 (8)

R2 = 100

 (∑n
i=1(xmsr − x,sr)(xpre − xpre))

2√
∑n

1=1 (xmsr−xmsr)
2 ∑n

i−1 (xpre − xpre)
2

 (9)

Table 6. Different combinations of independent parameters.

Model 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
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In the equations above, Xmsr is the actual value of data i, Xpre is the model’s output,
xpre and xmsr are the average values of predicted and actual data, respectively, and n is the
total number of data points.

Here, 19 different combinations (Table 6) without any correlations or direct influence
on each other were obtained to develop predictive models. These combinations were then
used as input data. Finally, using the 19 different combinations (Table 6) mentioned, as well
as the methods mentioned in Section 3, the flyrock prediction was performed.

5.1. Regression Model

To develop a regression model, 2 methods of linear and nonlinear regression were
used to predict flyrock. Data that were randomly selected as training data were assessed
for correlations and normal distributions using the SPSS software. Finally, among all
the developed models (Table 7), model number 11 for linear regression and nonlinear
regression showed the best performance compared to other trained linear and nonlinear
models because of its higher and lower R2 and RMSE, respectively (Figures 12 and 13).
Therefore, this model was chosen and suggested in order to predict the flyrock distance in
the Jajarm bauxite mine complex.
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Table 7. The best regression models to predict flyrock distance based on linear and nonlinear models.

Num. Linear Predictive Models R2 RMSE

1 FR = −3192.319 + 1512.217B + 11.489Mc + 2907.694 S
B − 0.136TD− 6144.831 B

D − 102.738St

−1261.691S + 7.552 RQD
Jn
− 4.582Q

84.6 49.35

2 FR = 175.670− 92.9547B + 13.041Mc− 0.012TD− 4533.046 B
D − 112.432St − 106.723S

+5.226 RQD
Jn
− 6.395Q

61.4 189.85

3 FR = −3662.984 + 1721.096B + 8.731Mc− 0.140TD− 6260.581 B
D − 94.475St − 1445.596S

+8.187 RQD
Jn

+ 3317.485 S
B

63.5 184.43

4 FR = 106.226 + 366.928P f − 79.029 H
B + 3.827HDEV + 1.722BI 63.2 170.99

5 FR = 51.101 + 337.194P f − 66.183 H
B + 3.185HDEV + 1.367BI + 4.272 RQD

Jn
68.7 108.36

6 FR = −358.841 + 34.670B + 11.116Mc + 152.9P f − 0.026TD− 85.234St + 4.220BI 62.3 182.62
7 FR = −305.105 + 28.612B + 8.511Mc + 148.453P f − 0.043TD− 82.869St + 3.567BI + 3.611 RQD

Jn
84.6 38.8

8 FR = −230.304− 5.521B + 211.758P f + 216.091 S
B + 0.091TD− 62.268St + 7.289 RQD

Jn
+ 5.960Q 82.4 20.72

9 FR = −155.163 + 3.841B + 179.901P f + 170.090 S
B + 0.048TD− 66.112St + 8.259 RQD

Jn
79.5 41.036

10 FR = 478.627 + 11.523Mc− 62.654 H
B − 4388.101 B

D − 91.806St − 41.010S 78.5 35.8
11 FR = 327.226 + 3.170Mc + 353.788P f − 108.162 S

B − 80.488 H
B + 3.772HDEV 96.01 11.46

12 FR = 71.669 + 12.176Mc− 70.36 H
B − 1716.574 B

D − 97.083St − 37.394S + 5.154BI 75.3 24.62

13 FR = 269.694− 108.227B− 90.971 H
B − 73.845St + 8.254 RQD

Jn
+ 4.545BI + 4.728Q 86.2 36.659

14 FR = 249.965− 108.862B + 11.304Mc− 87.186 H
B − 103.030St + 5.279 RQD

Jn
+ 4.323BI − 2.674Q 84.1 33.28

15 FR = −304.448 + 12.542Mc− 42.517 H
B − 0.232TD− 105.427St + 7.229BI 84.1 29.08

16 FR = −466.017 + 13.373Mc + 101.140 S
B − 34.201 H

B − 0.221TD− 110.691St + 7.453BI 85.01 24.75
17 FR = −250.344 + 14.462Mc− 41.504 H

B − 0.222TD− 111.216St + 6.563BI − 3.523Q 84.8 35.37
18 FR = −392.930 + 14.322Mc + 105.718 S

B − 13.662 H
B − 118St + 5.656BI − 3.626Q 81.02 19.107

19 FR = −193.797 + 13.498Mc + 145.495 S
B − 44.242 H

B − 4204.120 B
D − 105.742St + 5.109BI 86.2 26.921

Num. Nonlinear Predictive Models R2 RMSE

1 FR = (10)1.086(B)−0.170(Mc)0.602
(

S
B

)1.113
(TD)−0.035( B

D
)−0.109

(St)
−0.335

(
RQD

Jn

)0.438
(Q)−0.131 73.1 56.002

2 FR = (10)1.088(B)−1.287(Mc)0.597(TD)−0.034( B
D
)−0.108

(St)
−0.335(S)1.119

(
RQD

Jn

)0.440
(Q)−0.126 73.2 55.54

3 FR = (10)1.233(B)−0.255(Mc)0.476(TD)−0.042( B
D
)−0.041

(St)
−0.317

(
RQD

Jn

)0.461( S
B

)1.271 72.4 57.013

4 FR = (10)1.379(P f )0.721( H
B
)−1.201

(HDEV)0.063(BI)0.865 68.3 38.49

5 FR = (10)1.413(P f )0.733( H
B
)−1.091

(HDEV)0.054
(

RQD
Jn

)0.154
(BI)0.740 70.08 41.5

6 FR = (10)−4.123(B)0.717(Mc)0.678(P f )0.203(TD)−0.097(St)
−0.264(BI)2.951 81.3 91.19

7 FR = (10)−3.602(B)0.6(Mc)0.555(P f )0.202(TD)−0.085(St)
−0.276

(
RQD

Jn

)0.201
(BI)2.642 82.8 27.981

8 FR = (10)1.520(B)0.107(P f )0.514
(

S
B

)1.359
(TD)0.029(St)

−0.216
(

RQD
Jn

)0.481
(Q)0.252 78.2 21.32

9 FR = (10)1.617(B)0.211(P f )0.404
(

S
B

)1.031
(TD)0.006(St)

−0.227
(

RQD
Jn

)0.548 74.4 22.5

10 FR = (10)1.284(Mc)0.636( H
B
)−0.788( B

D
)−0.507

(St)
−0.269(S)−0.385 37.3 121.56

11 FR = (10)2.965(Mc)0.128(P f )0.766
(

S
B

)−0.559( H
B
)−1.265

(HDEV)0.068 89.5 8.5

12 FR = (10)−5.675(Mc)0.779( H
B
)−0.586( B

D
)−0.685

(St)
−0.327(S)0.072(BI)3.302 82.2 38.69

13 FR = (10)−2.337(B)−1.575( H
B
)−1.551

(St)
−0.228

(
RQD

Jn

)0.523
(BI)2.671(Q)0.244 82.6 51.9

14 FR = (10)−2.810(B)−1.395(Mc)0.508( H
B
)−1.376

(St)
−0.289

(
RQD

Jn

)0.367
(BI)2.725(Q)0.056 87.01 64.95

15 FR = (10)−5.009(Mc)0.711( H
B
)−0.788

(TD)−0.179(St)
−0.253(BI)3.769 55.8 54.59

16 FR = (10)−5.486(Mc)0.777
(

S
B

)0.721( H
B
)−0.623

(TD)−0.171(St)
−0.272(BI)3.915 86.8 32.22

17 FR = (10)−5.379(Mc)0.623( H
B
)−0.821

(TD)−0.190(St)
−0.238(BI)3.992(Q)0.096 86.1 24.07

18 FR = (10)−5.40(Mc)0.795
(

S
B

)0.976( H
B
)−0.123

(St)
−0.340(BI)3.551(Q)0.026 80.08 28.59

19 FR = (10)−5.842(Mc)0.826
(

S
B

)0.626( H
B
)−0.481( B

D
)−0.579

(St)
−0.337(BI)3.421 82.9 31.01
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out in the Python programming language. Additionally, the Euclidean distance, which is 
the distance between the central vector of the middle-layer neuron and the input neuron, 
was determined for the different models. This distance is one of the most important con-
trolling parameters used in the Gaussian transfer function in the GRNN method. Here, 
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5.2. GRNN Model

In order to employ the GRNN for the flyrock distance prediction, coding was carried
out in the Python programming language. Additionally, the Euclidean distance, which is the
distance between the central vector of the middle-layer neuron and the input neuron, was
determined for the different models. This distance is one of the most important controlling
parameters used in the Gaussian transfer function in the GRNN method. Here, this distance
was changed in 0.1 intervals from 0.1 to 10 in order to obtain the optimal network among
different combinations. In this method, the optimal network is the one in which the values
of RMSE and R2 are the lowest and highest among all distances, respectively. According
to Table 8 and Figure 14, model no. 16, with a Euclidean distance of 9.9, has the best
functionality based on the GRNN method among the different combinations.

Table 8. RMSE and R2 for various models based on GRNN method.

Models 1 2 3 4 5 6 7 8 9 10

Euclidean distance 0.7 9.2 0.9 9.9 0.5 0.9 0.5 0.2 0.3 9.9
RMSE 0.1785 0.0854 0.10743 0.0569 0.2368 0.1051 0.2621 0.2778 0.2621 0.0604

R2 80.02 82.359 81.657 83.579 80.09 81.068 80.3 81.5 80.6 83.02
Models 11 12 13 14 15 16 17 18 19

Euclidean distance 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9
RMSE 0.0504 0.101 0.1252 0.05298 0.0518 0.01476 0.247 0.1487 0.1917

R2 83.489 82.746 82.964 83.529 83.419 83.961 82.513 83.725 82.197
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As stated earlier, in order to design a prediction model using the GA-GRNN method, 
similar to the coding of GRNN in the PYTHON programming language, the effective var-
iables in this method must be obtained. The trial-and-error method is the best method for 
determining the network’s input variables [42,89]. For this, the size of the primary popu-
lation was set between 100 and 500. Additionally, after determining the primary popula-
tion, the values for mutation, recombination and crossover were obtained to start the net-
work cycle according to the upper and lower limits. The value for mutation equaled 0.2, 
and a crossover in the range of (0–1) was used as the input data with a 0.8 probability. On 
the other hand, the maximum generation (Gmax) was considered 1000 because this number 
led to the minimum RMSE value in calculating the optimal network and, therefore, rep-
resents the best model. 

The best model and its respective results when varying the population size are shown 
in Table 9 and Figure 15. The desired network was trained for 0–450 iterations. As can be 
seen in Table 9 and Figure 15, this network was stabilized with different populations from 
250 iterations onward, with some overfitting. As a result, the trained neural network 
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5.3. GA-GRNN Model

Since the genetic algorithm is an optimization algorithm, it was used to optimize
the best GRNN model (model number 16, whose parameters are Mc, S/B, H/B, TD, St
and BI) in order to reduce the flyrock prediction error. The optimization operator (genetic
algorithm) used to optimize the Euclidean distance of the GRNN network was selected for
model number 16.

As stated earlier, in order to design a prediction model using the GA-GRNN method,
similar to the coding of GRNN in the PYTHON programming language, the effective
variables in this method must be obtained. The trial-and-error method is the best method
for determining the network’s input variables [42,89]. For this, the size of the primary
population was set between 100 and 500. Additionally, after determining the primary
population, the values for mutation, recombination and crossover were obtained to start
the network cycle according to the upper and lower limits. The value for mutation equaled
0.2, and a crossover in the range of (0–1) was used as the input data with a 0.8 probability.
On the other hand, the maximum generation (Gmax) was considered 1000 because this
number led to the minimum RMSE value in calculating the optimal network and, therefore,
represents the best model.

The best model and its respective results when varying the population size are shown
in Table 9 and Figure 15. The desired network was trained for 0–450 iterations. As can be
seen in Table 9 and Figure 15, this network was stabilized with different populations from
250 iterations onward, with some overfitting. As a result, the trained neural network (model
number 16) with a population of 350 and best fitness = 0.0203 had the best performance
in iteration 250. A Euclidean distance of 9.906 was selected for the GRNN network when
using the genetic algorithm because it resulted in the lowest RMSE and the highest R2

(Figure 15).

Table 9. RMSE and R2 for different models based on GA methods.

Populations 100 125 150 175 200 225 250 275 300

RMSE 0.0622 0.0718 0.061 0.0374 0.0529 0.0304 0.0358 0.0664 0.0299
R2 81.6 80.6 78.5 86.6 83.4 85.7 83.91 81.2 86.6

Populations 325 350 375 400 425 450 475 500
RMSE 0.0155 0.0151 0.0167 0.0949 0.0166 0.0453 0.031 0.0396

R2 87.8 88.68 87.01 75.9 86.7 83.1 85.03 83.54
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5.4. GEP Model

In order to design a prediction model using the GEP network, a set of regulations are
needed in the modeling process when coding in the Python programming language to
obtain the best model. These regulations are usually determined through the trial-and-error
method. The number one priority is determining the number of genes that can affect the
network’s accuracy, as a higher number of genes leads to lengthier functions with a lack of
performance. It is important not to choose very low numbers as well so that the accuracy
and performance of the model do not decline. The number of genes and other parameters
used in this network are shown in the summary in Table 10.

Table 10. Parameters used in GEP method.

Genetic Operators

Chromosome 30
Genes in each chromosome 2

Maximum generation 1000
Gene composition rate 0.1

Mutation rate 0.2
Inversion rate 0.1

Transposition rate 0.1
Crossover (recombination) (one- and two-point) 0.8

Fitness function Root-mean-square deviation

Function Addition (+), Subtraction (−),
Multiplication (×), Division (/), Power (x2)

Linking function Addition (+)
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Based on the information in Table 10, the GEP network was applied for all different
combinations to predict the flyrock distance. According to Table 11 and Figure 16, model
no. 17 is the best equation among all tested equations due to its lower RMSE and higher R2

value. In addition, Figure 17 is the tree representation of model no. 17, which demonstrates
the relationship between effective variables in predicting the flyrock distance.

Table 11. The best GEP models to predict flyrock distance with values of RMSE and R2.

Num. GEP Predictive Models R2 RMSE

1 FR = (Mc + (B× ( RQD
Jn
− 5.078))) + (( B

D + S)× ((((41.1000408)− (9.715St))/ RQD
Jn

)
2
))

+(((( RQD
Jn
×Mc)/ B

D )− (TD×Q)×Q))/(( B
D + TD) + (TD/0.6558))) + (89.66006721)

91.08 36.2308

2 FR = ((((7.4023/ RQD
Jn

)/ B
D ) + Mc) + ((Mc− B)− (S× RQD

Jn
))) + ((((−8.9336St)− (TD× B

D ))

−((7.7701 + RQD
Jn

)× (−8.9336)))− 5.3843)−Q
66.96 45.688

3 FR = (((St × RQD
Jn

)/(3.0082/ RQD
Jn

)) + ((S2) + (3.0082/ B
D ))) + (8.2963 + (((Mc/St)/ RQD

Jn
)

/( S
B + B

D ))) + ((((Mc/S) + B)× (Mc2))/((−2.2495St)× (7.2528− TD)))
84.46 39.1689

4 FR = (((85.4175)− (7.9815 H
B )) + ((26.20211344)/(0.5587 + HDEV))) + (((( H

B /BI)× HDEV)

+(0.9079P f ))× (P f × (( H
D )

2
))) + (((HDEV) + (2BI))/(1/P f ))

53.36 47.8396

5 FR = ((BI + (((−7.8966− H
B )/P f )/( RQD

Jn
/− 7.8966))) + P f ) + (((((( RQD

Jn
− 4.6665)− 1.7697)

/(4.7200/ RQD
Jn

))2)/BI)2) + (BI + ((7.1329× (10.0164− RQD
Jn

))− ((HDEV + RQD
Jn

)/P f )))
79.77 42.7855

6 FR = (103.94198120316− ((−4.2919/St)/(Mc− 4.2919))) + ((((B + Mc)× BI)/(TD−Mc))
+((9.9041/BI)× (TD− P f ))) + (8.5662 + ((((Mc/TD) + P f )2)× ((BI/TD)2)))

89.05 37.526

7 FR = (((( RQD
Jn

+ Mc)× P f ) + ((TD/Mc)× (−1.86007))) + BI) + (St + ((((BI/St)× 4.4236)

/( RQD
Jn

)
2
) + BI)) + (−4.7331 + (3BI/((Mc× B)− TD)))

86.12 38.1702

8 FR = ((18.33038596 + (((−1.7954 S
B )− 5.02975) + (2P f )))

2
) + ((((Q− 3.4842)− St) + (TD/Q))+

(P f + (P f ×Q))) + ((((0.49409− RQD
Jn

)/(P f − 2.67901))
2
) + ((2.67901B)− (0.494091TD)))

58.68 47.9883

9 FR = (((11.3086256089× ((B− 9.05148)/ RQD
Jn

))
2
)− B) + ((((St − P f ) + (St +

RQD
Jn

))

×(( RQD
Jn
× P f ) + 4.3382))− 11.46189) + ((St − ((−7.33024/St)/St))/((−4.94011− TD)

×( RQD
Jn
− 7.33024))) + S

B

90.72 36.2299

10 FR = (((((2.9081 + H
B )× S)− (4.9363 B

D ))/S)/ B
D ) + ((((Mc2)/Mc)− ( H

B − S)) + (( H
B + 8.72371)

/(Mc− 9.3865))) + (S + (((( H
B )

2
)×−2.7869)/((Mc× S)× B

D ))) + 1.0974St

62.94 48.2734

11 FR = 94.4351295281 + ((31.98463002 + (2 H
B )) + ((2 S

B )× (9.90966 S
B )))

+(7.70928((((P f ×Mc)× HDEV)× (P f 2))− HDEV))
64.46 48.5888

12 FR = (S/(S + (((S + BI)/Mc)/(St − S)))) + ((((−0.032654S) + BI) + ( B
D /− 0.03265))

+((5.036618 H
B )/(S× St))) + ((((−2.513903− H

B )× St) + (9.39756Mc))− S3)
66.69 44.505

13 FR = (((( RQD
Jn
− B)− 5.12497)× ( RQD

Jn
/B))− ((BI − 9.72411)/(5.12497/B)))

+((((0.77181/St)/6.27796)/(B/BI)) + (( H
B + St)− (B2))) + (((( H

B + BI)× BI)
/(35.7614764081)) + ((−5.98002 H

B )/(Q− H
B )))

71.32 44.86

14 FR = (((−8.482009− H
B )× (B + St)) + ((2.26722 RQD

Jn
)/(Q− 8.482009))) + (((BI + (6.83462/St))

+((4.472909−Mc) + BI)) + 4.472909) + ((( RQD
Jn

+ Q) + 9.65666)/(( H
B + Q)/( RQD

Jn
− H

B )))
66.15 44.084

15 FR = (((2BI)/TD)× (9.7973× (Mc/5.54185))) + (4.7894447104 + (((BI −Mc)− (BI + 0.50738))
+( H

B /St))) + ((TD/2.97526) + BI)
83.96 38.44

16 FR = ((((St/− 0.608844)× (( H
B )

2
)) + (Mc/7.97604)) + Mc) + ((((( H

B − 7.802056)/(TD/7.802056))
+( S

B − 4.087954))2)× 9.86449) + ((((BI + TD) + BI)/(BI/TD))/((6.48792/St) + (8.72718St)))
87.52 37.3659

17 FR = ((Mc× (((Mc + 1.17465)× (−7.02009))/(Mc− TD))) + BI) + (BI − (((( H
B ×Mc)/3.42387)

+(( H
B )

2
)) + Mc)) + ((((BI/Q)×−4.91256)/(St ×Mc))/(Q− (Mc− St)))

91.68 34.322

18 FR = ((((BI − 8.80672)− 3.462804) + (BI − 5.96362)) + (Mc + ( H
B /St))) + (Mc + (((9.67956−Mc)

×(Q− 1.68492))× ((−3.02407 H
B ) + 9.003875))) + ((Mc− (((5.92595 + H

B )− 8.23358)× 7.55061))× S
B )

73.58 42.70

19 FR = (((( S
B /Mc) + S

B )− (Mc− 3.78684))/(−5.14521/(2Mc))) + (((0.9537 H
B )× (BI/ S

B ))/(((
S
B )

2
)

+( H
B −

S
B ))) + (((St + ( S

B − St))× ((2 S
B )/

B
D ))− 3.23648)

52.65 48.601
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5.5. Fuzzy DEMATEL Model

In order to predict flyrock distance using the fuzzy DEMATEL method, 15 surveys
concerning variables directly affecting flyrock were composed and distributed among
mining experts. The experts were asked to grade the effect of each variable on the flyrock
distance from 0, the least, to 4, the most. The given grades were converted into fuzzy
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numbers using Table 5, and the primary equations’ direct matrix was formed. Then,
averaging was performed from the primary matrix, and the average matrixes (Ã) were
obtained. In the next step, the average matrixes were normalized, and based on these, the
general fuzzy relation matrixes for the upper, mean and lower limits were constructed.

After analyzing the importance of variables using the upper, mean and lower limit
matrixes in terms of quality, it is vital for them to be analyzed in terms of quantity, which is
necessary for predicting the flyrock distance. Therefore, the weight of each variable was
calculated and is shown in Table 12 as both the fuzzy weight and deterministic weight.
In addition, Figure 18 shows the ranking of each variable compared to others based on
its weight.

Table 12. The results of weighting of parameters.

Parameters Fuzzy Weight Deterministic Weight Rank

Burden (B) (0.0919, 0.0822, 0.0739) 0.0827 1
S/B (0.0711, 0.0689, 0.0678) 0.0693 4

Hole diameter (D) (0.0708, 0.0688, 0.0678) 0.0691 5
Stiffness ratio (H/B) (0.0676, 0.0675, 0.0676) 0.0676 9

Maximum instantaneous charge (MC) (0.0676, 0.0680, 0.0681) 0.0679 6
No. of row (0.0750, 0.0755, 0.0733) 0.0746 3

Powder factor (Pf) (0.0786, 0.0750, 0.0714) 0.0750 2
Time delay (0.0490, 0.0557, 0.0605) 0.0551 14

Rock mass rating (RMR) (0.0593, 0.0598, 0.0623) 0.060 12
B/D ratio (0.0679, 0.0675, 0.0673) 0.0675 10

Velocity of detonation (0.0522, 0.0573, 0.0610) 0.0568 13
Blast hole deviation (0.0471, 0.0513, 0.0575) 0.0520 15

Discontinuities’ orientation to face (0.0694, 0.0667, 0.0667) 0.0676 8
St/B (0.0655, 0.0664, 0.0663) 0.0661 11
Bmax (0.0666, 0.0686, 0.0677) 0.0676 7
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Proposed Fuzzy DEMATEL Method

In order to introduce a prediction model based on the fuzzy DEMATEL method, all
parameters affecting flyrock were classified and ranked using Equation (10), and the ranges
of parameters were proposed based on other researchers’ obtained results [6,55,90]. This
ranking is shown in Table 13.

C =
XMAX − XMIN

No. o f class
(10)
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Table 13. Modified classification of effective parameters in flyrock.

B
Value <1.8 1.8–2.04 2.04–2.28 2.28–2.52 >2.52
Ration 4 3 2 1 1

S/B
Value <1.056 1.056–1.12 1.12–1.16 1.16–1.22 >1.22
Ration 0 3 2 1 0

D
Value <63 63–70 70–80 >80
Ration 4 3 2 1

MC
Value <7 7–8.4 8.4–10 10–12 >12
Ration 4 3 2 1 0

Pf
Value <0.226 0.226–0.306 0.306–0.386 0.386–0.466 >0.466
Ration 4 3 2 1 0

RMR
Value 0–20 20–40 40–60 60–80 80–

100
Ration 4 3 2 1 0

B/D
Value <30.84 30.84–35.38 35.38–39.91 >39.91
Ration 3 2 1 0

H/B
Value <2.64 2.64–2.96 2.96–3.27 3.27–3.58 >3.58
Ration 0 1 2 3 4

St/B
Value <0.165 0.165–0.28 0.28–0.39 0.39–0.51 >0.51
Ration 0 2 4 3 1

Velocity of
detonation

Value <3000 3000–4000 4000–5000 5000–6000 >6000
Ration 4 3 2 1 0

No. of row
Value <6 6–9 9–11 11–14 >14
Ration 4 3 2 1 0

Time delay Value <2 2–4 4–6 6–7 7–9 >9
Ration 0 1 3 4 2 1

Blast hole
deviation

Value 0–2 2–4 4–6 6–8 8–10
Ration 4 3 2 1 0

Discontinuities
orientation to face

Value parallel vertical Horizontal Cross section
Ration 4 2 1 3

Bmax
Value 0.5–1 1–1.5 1.5–2 2–2.5 2.5–3
Ration 4 3 2 1 0

Based on this, the value of the flyrock distance was determined through Equation (11):

FRI =
7

∑
i=1

wi ×
Pi

Pmax
(11)

in which Wi is the ith parameter’s weight, Pi is the ith parameter’s range from 0 to 4 and
Pmax is the maximum range of each parameter in its respective classification. Now, in order
to accurately assess the flyrock distance using the fuzzy DEMATEL method, the measured
flyrock distance from the Jajarm bauxite mining complex was determined through the FRI
function (Equation (12)). Using the Matlab software, the best curves for the data obtained
from Equation (12) were drawn. Among the obtained equations (Table 14), the one with
a higher R2 and lower RMSE was chosen as the equation to measure the flyrock distance
using the fuzzy DEMATEL method.

FR = f (FRI) (12)
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Table 14. Equations obtained using the fuzzy DEMATEL method.

Model Equation R2 RMSE

Exponential FR = 383.2287 exp(−0.8887FRI) + 18.7399 exp(0.5645FRI) 53.40 43.27

Fourier

FR = −2.6734e+5 − 4.5858e+5 cos(1.1241FRI) + 2.0384e+5 sin(1.1241FRI)− 2.7825e+5 cos(2.2482FRI)
+3.0764e+5 sin(2.2482FRI)− 9.2846e+4 cos(3.3723FRI) + 2.8454e+5 sin(3.3723FRI) + 1.9029e+5 cos(4.4964FRI)
+1.8500e+5 sin(4.4964FRI) + 4.8923e+4 cos(5.6205FRI) + 8.4635e+4 sin(5.6205FRI) + 3.3548e+4 cos(6.7446FRI)
+2.4036e+4 sin(6.7446FRI) + 1.2921e+4 cos(7.8687FRI) + 2.6410e+3 sin(7.8687FRI) + 2.4593e+3 cos(8.9928FRI)
−738.1195 sin(8.9928FRI)

80.81 36.278

Gaussian

FR = 97.9955 exp(−((FRI − 1.0045)/0.0278)2) + 80.0285 exp(−((FRI − 4.0148)/0.2351)2)

+115.4892 exp(−((FRI − 0.8081)/0.0866)2) + 134.0528 exp(−((FRI + 8.8288)/62.6350)2)

−249.6392 exp(−((FRI − 0.9858)/0.0009)2) + 47.4731 exp(−((FRI − 1.2946)/0.0374)2)

+0 exp(−((FRI − 3.555)/0.0101)2) + 135.5591 exp(−((FRI − 1.0899)/0.0745)2)

87.171 34.682

Polynomial
FR = −70.3891FRI9 + 1.5394e+3 FRI8 − 1.4512e+4 FRI77.7453e+4 FRI6

−2.5412e+5 FRI5 + 5.3593e+5 FRI4 − 7.2149e+5 FRI3 + 5.9640e+5 FRI2

−2.7439e+5 FRI + 5.3759e+4
62.61 41.652

Power FR = 41.5539FRI−3.3242 + 141.8614 40.78 46.925

Sum of sin

FR = 256.6187 sin(1.2538FRI − 1.2034) + 226.6689 sin(1.9065FRI + 0.0369)
+43.5227 sin(7.7343FRI − 5.5937)60.9919 sin(6.8466FRI − 0.8251)
+104.4376 sin(3.9462FRI − 0.5525) + 9.0764 sin(35.8116FRI + 1.5772)
+30.7982 sin(19.2549FRI − 1.0948) + 21.2647 sin(23.1283FRI − 3.7260)

80.04 38.263

According to Table 14, the Gaussian equation has the highest value of R2 and the
lowest value of RMSE and was chosen as the prediction model for the flyrock distance.

6. Evaluation of Proposed Models

In the past, knowledge-driven methods such as DEMATEL have been used. Nowadays,
it is common to use data-driven methods in order to reduce the uncertainty and obtain
more accurate results. In this case study, in addition to using the knowledge-driven method,
we used data-driven methods for the first time to obtain more accurate results by reducing
the uncertainty. In addition, there are optimization algorithms that can be used to increase
the performance of data mining methods. In this study, genetic algorithms were used for
optimization.

The data from 28 blasts that had no role in the development of the proposed models
(Section 4) were used to predict and evaluate the functionality of the developed equations
(Table 15) in order to evaluate the performance of the best proposed model; a comparison
table (Table 15) is shown that demonstrates the flyrock distances calculated by the proposed
models and the actual values measured in the field. Due to a lack of reliability and a
comparison of the results in table data, in order to choose a practical equation with a
better performance in predicting the flyrock distance, except for Equations (8) and (9),
the variance accounted for (VAF) and mean absolute percentage error (MAPE) were used
(Equations (13) and (14)) [88].

VAF = 100
[

1−
var(xmsr − xpre)

var(xmsr)

]
(13)

MAPE =
1
n

n

∑
i=1

∣∣∣∣ xmsr − xpre

xmsr

∣∣∣∣× 100 (14)

In the equations above, Xmsr is the actual value of data i, Xpre is the model’s output,
and n is the total number of data points.

According to Table 16 and Figure 19, it can be understood that a complete and ideal
prediction model is one that has RMSE and MAPE values equal to zero and R2 and
VAF values equal to 100 percent. Therefore, higher values of R2 and VAF and lower
values of RMSE and MAPE show the appropriate and optimal performance of a model,
respectively [55,79,88,91].
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Table 15. Calculated values from empirical equations and proposed models from 28 test blasts.

Flyrock
Blast Number

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Empirical
Equation (1) 540.8 540.8 540.8 540.8 478.92 540.8 478.92 478.92 540.8 540.8 478.92 540.8 540.8 540.8

Empirical
Equation (2) 68.907 68.907 68.907 68.907 132.68 103.36 79.613 88.45 68.907 68.907 132.68 86.134 120.588 86.134

Linear regression 214.03 152.35 201.6 153.25 127.71 150.08 104.58 114.88 136.73 184.72 162.81 175.63 249.75 164.28
Nonlinear
regression 196.14 150.61 208.69 151.59 129.4 142.232 120.12 111.35 137.36 183.4 148.83 175.12 142.94 168.31

Gaussian 370.6 519.62 146.66 169.86 132.65 134.65 120.7 119.54 100.45 107.7 189.657 189.27 215.65 -
GRNN 211.36 152.96 221.03 140.26 122.85 124.87 124.35 113.71 142.72 198.77 163.67 160.46 157.17 169.57

GA-GRNN 254.58 162.78 214.38 148.31 138.33 129.19 134.28 121.93 141.56 192.79 143.92 146.58 137.26 165.60
GEP 253.58 161.51 213.53 150.77 140.91 132.19 130.27 119.68 138.01 190.44 138.6 151.73 143.51 158.36

Flyrock
Blast Number

15 16 17 18 19 20 21 22 23 24 25 26 27 28

Empirical
Equation (1) 478.92 540.8 540.8 478.92 540.8 540.8 478.92 540.8 540.8 540.8 478.92 540.8 540.8 478.92

Empirical
Equation (2) 110.57 68.907 103.36 88.45 68.907 68.907 154.80 68.907 86.134 103.36 79.613 68.907 68.907 88.459

Linear regression 201.30 145.78 235.59 195.40 151.512 146.25 283.85 201.6 257.75 236.141 161.65 153.258 153.258 201.6
Nonlinear
regression 210.48 145.80 233.75 185.63 153.25 146.35 246.78 209.71 247.74 224.63 160.07 151.59 151.591 211.67

Gaussian 194.65 176.28 255.63 130.85 149.68 139.46 176.85 293.76 146.37 115.78 194.64 154.17 189.98 248.18
GRNN 196.02 161.13 214.50 174.31 136.002 136.108 237.56 201.5 263.95 199.28 130.74 117.02 115.93 191.32

GA-GRNN 144.77 158.52 137.31 161.30 156.80 163.121 139.79 212.29 221.37 142.11 116.23 148.64 151.75 211.27
GEP 151.36 159.52 143.57 157.71 151.55 160.75 145.05 213.53 211.12 143.06 116 150.77 150.771 213.53

Table 16. Statistical variables presented for the 28 test blasts.

Out Put Function MAPE VAF R2 RMSE

Flyrock

Empirical Equation (1) 232.23 21.225 6.04 356.113
Empirical Equation (2) 44.875 −12.707 27.01 96.755

Linear regression 19.908 45.009 60.88 43.701
Nonlinear regression 17.802 59.015 64.54 38.938

Gaussian - - 48.08 31.415
GRNN 13.806 80.739 82.83 32.1809

GA-GRNN 14.258 87.604 87.74 30.753
GEP 14.451 86.528 86.8 31.166
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Based on Table 16 and Figure 19, it can be understood that the value predicted by the
GA-GRNN model is closer to the actual value in the training and testing stages. Therefore,
it can be concluded that the aforementioned model is acceptable in predicting the flyrock
distance and can be considered the predictive model for the Jajarm bauxite mining complex.

7. Conclusions

Given the fact that flyrock in mines is the leading cause of danger and casualties and
damage to equipment, accurately predicting it is vital in preventing possible harm. To
substantiate this matter, in this study, data from 118 blasts were gathered and divided
into training (90 blasts) and test (28 blasts) data. On the basis of these data, flyrock
was considered the output, and different combinations of effective parameters of flyrock
were selected as the input data. Three approaches, soft computing, statistical and multi-
criteria decision-making methods, were selected and evaluated according to four statistical
evaluation criteria to predict the flyrock distance in Jajarm bauxite mines and obtained the
following results:

1. Multivariable linear and nonlinear regression methods were used in the statistical
approach, and the best performance of linear regression, with effective parameters
including Mc, Pf, S/B, H/B and HDEV, had R2 = 96.01 and RMSE = 11.46 in training
and R2 = 60.88, RMSE = 43.701, VAF = 45.009 and MAPE = 19.908 on the test data.
Additionally, with the same effective parameters, nonlinear regression had R2 = 89.5
and RMSE = 8.5 in data training and R2 = 64.54, RMSE = 38.938, VAF = 59.015 and
MAPE = 17.802 on the test data.

2. The best models were produced by the soft computing method. In the GRNN method,
the effective parameters were Mc, S/B, H/B, TD, BI and St, and in the GEP method,
the effective parameters were Mc, H/B, TD, BI, Q and St. Three methods were used
in this approach as follows:

• The first, the generalized regression neural network, was applied to data with Eu-
clidean distance = 9.9, R2 = 83.961 and RMSE = 0.01476 in training and R2 = 82.83,
RMSE = 32.1809, VAF = 80.739 and MAPE = 13.806 on the test data.

• GA-GRNN was the second method, which had R2 = 88.68 and RMSE = 0.0151 in
training and R2 = 87.74, RMSE = 30.753, VAF = 87.604 and MAPE = 14.258 on the
test data.

• Gene expression programming was another soft computing method applied
to the different combinations of parameters. The best performance of this
method was R2 = 91.68 and RMSE = 34.32 on the training data and R2 = 86.8,
RMSE = 31.166, VAF = 86.528 and MAPE = 14.451 on the test data.

3. Fuzzy DEMATEL was the last approach applied to the parameters affecting flyrock. In
this regard, the amount of flyrock was predicted based on the function of the flyrock,
the best of which was a Gaussian function. The performance of this function on
the training data was R2 = 87.171, RMSE = 34.682. In addition, its performance was
R2 = 48.08 and RMSE = 31.415 on the test data.

4. Finally, the best models obtained from each method were selected and evaluated and
compared to each other. The results of these evaluations showed that the GA-GRNN
model’s performance was far better compared to others and has reasonable conformity
to actual values due to its higher VAF and lower MAPE and RMSE, and it represents
a direct practical equation.
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