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Abstract: Few studies have been published on the analysis and correlation of data from process
mineralogical studies of gold ore employing artificial neural networks (ANNs). This study aimed to
analyse and investigate the correlations obtained by the technological characterization of auriferous
ore using an ANN called self-organizing map (SOM) to support geometallurgical studies. The SOM
is a data analysis technique in which patterns and relationships within a database are internally
derived and the outputs are visual, assisting in the understanding of data in the representation of 2D
maps. In the representation generated, it was possible to establish that the variables of accessibility,
exposed perimeter, median gold grain diameter (D50), and SiO2 and arsenic contents have strong
positive correlations. Regarding geometallurgy, this study shows that SOM can identify large-scale
spatial chemical–mineralogical gold ore patterns, which can help define the most relevant indicator
variables for mineral processing.
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1. Introduction

In the mining industry, the processing of gold ores is directly related to their physical,
chemical, and mineralogical characteristics which correspond to the performance of the ore
in the beneficiation and extraction processes [1,2].

Process mineralogical studies are essential for recognising the intrinsic characteristics
of the ore. They comprise the study of the properties of mineral raw materials, which are
fundamental for the sustainable use of resources, providing information on the potential for
material recovery, in addition to allowing the predictability of beneficiation processes and
their waste management. Thus, the characterization of such materials focuses on obtaining
parameters referring to the mineralogical assembly and its behaviour in the beneficiation
process [3–7].

Based on the gold recovery and mineral processing techniques required, gold ores are
commonly classified into two major groups: free-milling and refractory ores. Typically, free-
milling ores are defined as those where over 90% of gold can be recovered by conventional
cyanide leaching or some combination of flotation and cyanidation, while refractory ores
are characterized by low gold recoveries using a significant number of reagents or a more
complex pre-treatment process [8–11].

In this context, studies have focused on the characterization of gold grains through
specific procedures that establish the main mineralogical parameters for processing, such
as grain size distribution, characteristics of gangue minerals, mineral association, and
accessibility [8,12–16].

Mining 2023, 3, 230–240. https://doi.org/10.3390/mining3020014 https://www.mdpi.com/journal/mining

https://doi.org/10.3390/mining3020014
https://doi.org/10.3390/mining3020014
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mining
https://www.mdpi.com
https://orcid.org/0000-0002-4032-200X
https://orcid.org/0000-0002-4200-6326
https://doi.org/10.3390/mining3020014
https://www.mdpi.com/journal/mining
https://www.mdpi.com/article/10.3390/mining3020014?type=check_update&version=1


Mining 2023, 3 231

Several advances in gold characterization have been made in the area of automated
image analysis systems using scanning electron microscopes (SEM-AI), allowing the anal-
ysis of large groups of samples with speed, reliability, and robust results [17–19]. One of
these systems, the Mineral Liberation Analyser (MLA), is commonly coupled to a scanning
electron microscope (SEM) with energy-dispersive X-ray spectroscopy (EDS) to capture,
store, and process raw data. It is a widely used technique for technological characterization
in which it is possible to evaluate not only the punctual chemical composition of the mineral
phases, but also the forms of mineralogical associations [20,21]. However, the concept of
“liberation”, one of the parameters analysed by the SEM-AI, loses its meaning [22] as the
analysis process takes place through the exposed surface of the grain whose gold can be
accessible through microfractures. The accessible portion is directly proportional to the
ability to extract gold from a cyanide solution via fractures or microfractures. Figure 1 illus-
trates various occurrences of gold grains in relation to the exposure perimeter for cyanide
solution percolation. While Figure 1A shows a free gold grain, Figure 1B concomitantly
displays in the same single mineral a locked gold grain and gold that may be extracted by
fracture for the solution percolation, making it accessible. Since it is a two-dimensional
representation, it is evident that the gold may be extracted by paths located in another part
of the grain not visualised in the 2D image. Thus, information on gold accessibility by
image analysis may be undersized or underestimated due to pixel size resolution.
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Figure 1. Accessibility of gold grain. (A) Gold grain exposure and (B) gold grain with minimum
exposure and accessibility, liable to be leached, and gold grain locked in an arsenopyrite particle.

Due to the large volume of information generated by the mineralogical character-
ization, the self-organizing map (SOM) technique was applied. First proposed by Ko-
honen [23–25], this technique allows the visualisation and analysis of data based on the
principles of vector quantisation and similarity measures. It can generate maps in an
unsupervised and competitive way, preserving the topology between the input and output
data of the networks. The main advantage of using an SOM system is its capability of
handling several types of classification problems while providing a useful, interactive, and
intelligible summary of the data. The reduced dimensionality and grid clustering facilitate
the observation of similarities in the data. The SOM technique requires enough data to
develop meaningful clusters, and the lack of data or extraneous data in the weight vectors
tend to add randomness to the groupings, causing clustering to be incoherent.

Some disadvantages of the SOM approach are related both to the input variables and
to the choice of the number of clusters. Redundant or uncorrelated variables can generate
discrepancies that can hinder the observation of similarities in the U-matrix. Therefore,
the use of analysis techniques to evaluate correlations between variables, e.g., PCA and
grouping techniques, such as K-means clustering associated with the Davies–Bouldin index,
can be helpful in SOM analyses.

The aim of this study is to analyse the correlations of the variables obtained by the
technological characterization of auriferous ore, especially the variable of accessibility,
using the SOM technique in the formation of clusters. This approach consists of grouping
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the neurons that make up the self-organized map using the K-means algorithm [26,27],
with the number of clusters defined based on the Davies–Bouldin index [28].

Definition of Self-Organizing Maps

The SOM technique consists of a multivariate analysis in artificial neural networks
(ANNs) with unsupervised learning [29], that is, without human intervention during the
model learning process and with little information about the characteristics of the input
data. Unlike other ANN techniques, the SOM groups and reduces the dimensionality of
the data, being capable of converting complex, high-dimensional, and nonlinear statistical
relationships into simple geometric relationships with low-dimensional visualisation. In
addition, this technique promotes unsupervised clusters with good visualisation of the
relationships between variables in different types of data.

The implementation process of a data analysis routine using SOM presented by Fraser
and Dickson [30] is performed by following two steps of data formatting and insertion
into training bases. In the first step, training is carried out through a competitive learning
process, also called “rough training”, where an initial neighbourhood radius number, that is,
the neurons neighbouring the best-adjusted neuron (i.e., the best-matching unit—BMU), is
used, modifying in a single step a proportionally high number of neurons that make up the
network. Then, a more refined step based on cooperative learning or “fine training” starts.
It uses a smaller radius for the neighbourhood, modifying fewer neurons per interaction.
Network training is a continuous process of comparing the prototype vectors of each
neuron and the sample vectors that make up the database. Two SOM validation metrics are
performed. The first is the quantisation error (qe), which is a measure of map resolution
that also indicates how far apart the nodes are, while the second refers to the topological
error (te), which translates the topological preservation of the data in the 2D map.

An important step is the choice of parameters related to training in an SOM environ-
ment. It initially involves choosing the size of the resulting self-organized map depending
on the number of samples (N), with an area equal to 5 ×

√
N [31].

After all iterations are concluded, the best number of clusters of neurons is obtained
based on the Davies–Bouldin index [28]. By combining the characteristics of the similarity
measures, it indicates the similarities between the domains, inferring the adequacy of differ-
ent data partitions regardless of the clustering technique used and the number of domains
formed. Thus, the lower the Davies–Bouldin index, the more similar the domains are.

Another technique that is applied is the principal component analysis (PCA). It is
most commonly used technique to reduce large datasets, facilitating the investigation of
relationships among chemical, geological, and process variables. PCA is a linear technique
whose visual results are essentially scatterplots that reflect linear correlations. In addition,
it is a system that represents the data in n-dimensions by lines or planes (to whichever
they have a better fit) whose main aim is to reduce data dimensionality with a large
number of inter-variables related, retaining the variation present in the dataset as much as
possible [32].

K-means clustering is also a widely used technique to identify groupings (clusters)
in the SOM output neurons due to the efficiency of its algorithm and the simplicity of its
application [33,34]. The algorithm is performed in two phases: the definition of the initial K
centroids for each domain and the association of each point of the dataset with the closest
centroid measured through the Euclidean distance. When all points are included in a group,
the first phase is completed, and initial domains are formed. The centroids are recalculated,
and new domains are formed with the new centroids until there are no more changes [34].

The application of analysis techniques and the input of variables in the SOM envi-
ronment allowed the investigation of the broadest spectrum of possible correlations and
therefore the identification of subtle characteristics and features in the joint analysis of
the variables that make up the database, which would hardly be perceived in common
data representations.
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2. Materials and Methods
2.1. Input Dataset

The application of the SOM technique for the chemical–mineralogical characterization
of gold ores obtained by MLA was carried out on the SiroSOM® application [35]. The
samples were characterized at the Technological Characterization Laboratory (LCT) of
the University of São Paulo (USP), Brazil. Figure 2 shows the flowchart of activities and
procedures performed according to the methodology used.
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Figure 2. Flowchart of activities performed until clustering.

The processing starts with the input dataset of variables and their attributes. In this
study, 22 variables of chemical–mineralogical characterization and their attributes were
defined in the pre-processing phase.

The SOM training input data and the processing parameters can be seen in Table 1.
The steps defined as “rough” and “fine training” are the trainings carried out through an
interactive process comprising competitive and cooperative learning, respectively. These
steps were applied several times for each sample unit until the best seed-vector represented
the input data. The 2D map of the output data has the key feature of preserving the relative
topological relationships between the node vectors.

Table 1. Parameters used for SOM training.

Size Map Rough Training Fine Training
IR * FR * FL * IR * FR * FL *

15 × 15 22 6 40 6 1 800
IR *: initial radius; FR *: final radius; FL *: final length.

The grid size equals the best approximation to a value five times the square root of the
number of cases [32]. In this exploratory study, a map size of 15 rows × 15 columns was
chosen as appropriate. When all iterations are concluded, the output is an organized, low-
dimensional representation of the dataset, a bidimensional image represented by colour.
The processing also creates a U-matrix as an output that represents the distance between
neighbouring nodes for all attributes, with cold colours reflecting greater dissimilarities [36].

2.2. Variables and Reference Values

For the SOM analysis, the selected variables represent those most relevant to support
geometallurgy. The variables that made up the database are listed in Table 2. They comprise
the chemical analyses (oxides: X-ray fluorescence; Au: fire assay; S: induction furnace
pyrolysis; and ICP-OES for As); the gold, arsenic, and sulphur contents; the mineralogical
composition of the initial sample; the median equivalent diameter (d50) for gold; the
mineralogical association and its distribution; and the percentage of heavy products.
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Table 2. Characterization variables used for SOM training.

Variable Description Variable Description

Na2O % sodium oxide mica % min. distrib. mica
MgO % magnesium oxide chlorite % min. distrib. chlorite
Al2O3 % aluminium oxide albite % min. distrib. albite
SiO2 % silicon dioxide carbonates % min. distrib. carbonates
K2O % potassium oxide pyrite % min. distrib. pyrite
CaO % calcium oxide arsenopyrite % min. distrib. arsenopyrite

Fe2O3 % iron oxide d50 µm equivalent diameter D50 in 2D
grade_As ppm arsenic grade exposed perimeter % exposed perimeter association
grade_S % sulphur grade accessible % accessible gold grain

grade_Au g/t gold grade not encapsulated % not encapsulated gold grain
quartz % * min. distrib. quartz locked % locked gold grain

* min. distrib: mineralogical distribution.

The reference values obtained from the original total dataset are presented in Table 3.
These values were used to classify the contribution of each cluster derived from the compo-
nents. The classification of each variable was performed based on the total values, which
were ordered and divided into three quantiles (i.e., low, medium, and high), resulting in
the generation of the reference values. Seven variables intrinsically related to the greater
potential of gold performance in mineral processing were selected. The variable Al2O3 was
highlighted due to the presence of gold grains being associated with aluminium silicate
minerals such as chlorite and mica.

Table 3. Reference values to determine the classification of seven variables.

Al2O3 (%) Accessible
(%)

* Not Encap.
(%)

Locked
(%)

Exposed
Perimeter (%)

Au Grade
(g/t)

As Grade
(ppm)

Minimum 7.0 0.40 0.06 0.1 1.18 0.04 229
Maximum 22.4 100.0 74.2 100.0 100 2.12 6684

Medium (
−
x) 15.7 58.6 15.8 30.7 24.6 0.615 1989

Median (
∼
x) 15.6 64.0 9.50 23.5 16.3 0.500 1842

SD (σ) 3.35 30.7 18.0 26.4 22.4 0.440 1210
Reference

Low values <14.0 <41.8 <7.0 <15.1 <10.7 <0.334 <1205
Medium
values 14.0–17.1 41.8–79.9 7.0–41.5 15.1–36.9 10.7–24.8 0.334–0.638 1205–2268

High values >17.1 >79.9 >41.5 >36.9 >24.8 >0.638 >2268

* Not encap: not encapsulated.

3. Results and Discussion

After testing a series of training steps for the SOM analysis using a 15 × 15 grid, the
first vector training (rough training) was performed with 40 interactions followed by the
second training (fine training) with 800 interactions. An average quantisation error of 2.58
and a topological error (te) of 0.037 were achieved in the formation of the SOM. The high
variability, especially between the percentages of accessible and included gold, may explain
the moderately high quantisation error.

The results obtained by the component planes that allow visualising and quantifying
the contribution of the 22 input variables are shown in Figure 3. While Figure 4A provides
a representation of a self-organizing map in the form of a U-matrix or unified distance
matrix in terms of Euclidean distance, Figure 4B presents the classification of BMUs in
seven domains based on K-means clustering.

The individual contributions of each variable highlight the relationships between the
various components in a 2D-space visualisation. Thus, the 22 components (variables) are
presented in colour temperatures ranging from the lowest (blue) to the highest value (red).
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The U-matrix, also in colour temperature, represents the similarities between adjacent
nodes in blue-green and the dissimilarities in orange-red.

Mining 2023, 3,  6 
 

 

variability, especially between the percentages of accessible and included gold, may ex-

plain the moderately high quantisation error. 

The results obtained by the component planes that allow visualising and quantifying 

the contribution of the 22 input variables are shown in Figure 3. While Figure 4A provides 

a representation of a self-organizing map in the form of a U-matrix or unified distance 

matrix in terms of Euclidean distance, Figure 4B presents the classification of BMUs in 

seven domains based on K-means clustering. 

Na2O MgO Al2O3 SiO2 

    
K2O CaO Fe2O3 d50 

    
grade_As grade_S grade_Au albite 

    
quartz mica chlorite pyrite 

    
arsenopyrite carbonates exposed perimeter accessible 

    
not encapsuled locked 

  

Figure 3. Representation of self-organizing maps and contributions of characterization variables. Figure 3. Representation of self-organizing maps and contributions of characterization variables.



Mining 2023, 3 236Mining 2023, 3,  7 
 

 

  

(A) (B) 

Figure 4. Representation of an SOM. (A) U-matrix and (B) classification of BMUs from K-means 

clustering. Note: (A) In the U-matrix, coloured neurons are used to represent the similarities (cold 

colours), whereas hot-coloured hexagons mean strong dissimilarity. The white hexagons are scaled 

proportionally to the number of samples; (B) Classification of BMUs in the self-organizing map from 

K-means. (# is number of cluster). 

The individual contributions of each variable highlight the relationships between the 

various components in a 2D-space visualisation. Thus, the 22 components (variables) are 

presented in colour temperatures ranging from the lowest (blue) to the highest value (red). 

The U-matrix, also in colour temperature, represents the similarities between adjacent 

nodes in blue-green and the dissimilarities in orange-red. 

The U-matrix enabled the classification of data according to vector similarities con-

structed from these samples. It shows four main areas with high dissimilarity, highlighted 

in Figure 4A by circles, which coincide with elevated contributions of SiO2, grade_S, 

quartz, and chlorite. The high similarity in the U-matrix is associated with strong contri-

butions of grade_Au, d50, arsenopyrite, accessible gold, and exposed perimeter. The topo-

logical distribution of the values in the SOM map reveals a trend of distribution of the 

highest values along a central band. 

In the representation of self-organizing maps, the contributions of multiple variables 

have strong positive correlations between the variables. Based on the observation of these 

maps, the variable of accessibility, which corresponds to the gold grains containing a gold 

parcel that can be extracted, shows a good similarity with d50, a variable that refers to the 

equivalent circle diameter; exposed perimeter; and SiO2 and arsenic contents. The rela-

tionship with exposed perimeter of the grains confirms the relationship between greater 

potential for gold extraction and higher percentage of exposed perimeter as well as larger 

gold diameter. The term exposed perimeter is defined as the perimeter of a gold grain that 

is in contact with no other grain. The accessibility of gold is directly related to the gold’s 

possibility of being extracted by a leaching solution, for example [37]. 

Oxides, mainly Na2O, MgO, K2O, and Fe2O3, did not show any similarity with poten-

tial variables that indicate gold recovery, such as accessibility and exposed perimeter. The 

results also revealed a relationship between gold grains associated with arsenopyrite and 

pyrite. 

PCA was applied to analyse the distribution of scores (PC1 and PC2) in the 2D space. 

According to the results, within the domains formed, there are four sets of well-defined 

variables (Figure 5), two of which (the quadrants indicated as III and IV) correlate with a 

higher gold extraction potential and higher Au, As, and S contents. The occurrence of gold, 

as shown in these sets, is mostly associated with arsenopyrite and pyrite and smaller 

amounts of sphalerite, galena, and chalcopyrite, represented by the variable, other sul-

phides. Quadrants I and II indicate similarities between silicate minerals and their rela-

tionship with encapsulated and included gold grains with low recovery potential and the 

Figure 4. Representation of an SOM. (A) U-matrix and (B) classification of BMUs from K-means
clustering. Note: (A) In the U-matrix, coloured neurons are used to represent the similarities (cold
colours), whereas hot-coloured hexagons mean strong dissimilarity. The white hexagons are scaled
proportionally to the number of samples; (B) Classification of BMUs in the self-organizing map from
K-means. (# is number of cluster).

The U-matrix enabled the classification of data according to vector similarities con-
structed from these samples. It shows four main areas with high dissimilarity, highlighted
in Figure 4A by circles, which coincide with elevated contributions of SiO2, grade_S, quartz,
and chlorite. The high similarity in the U-matrix is associated with strong contributions
of grade_Au, d50, arsenopyrite, accessible gold, and exposed perimeter. The topological
distribution of the values in the SOM map reveals a trend of distribution of the highest
values along a central band.

In the representation of self-organizing maps, the contributions of multiple variables
have strong positive correlations between the variables. Based on the observation of these
maps, the variable of accessibility, which corresponds to the gold grains containing a gold
parcel that can be extracted, shows a good similarity with d50, a variable that refers to
the equivalent circle diameter; exposed perimeter; and SiO2 and arsenic contents. The
relationship with exposed perimeter of the grains confirms the relationship between greater
potential for gold extraction and higher percentage of exposed perimeter as well as larger
gold diameter. The term exposed perimeter is defined as the perimeter of a gold grain that
is in contact with no other grain. The accessibility of gold is directly related to the gold’s
possibility of being extracted by a leaching solution, for example [37].

Oxides, mainly Na2O, MgO, K2O, and Fe2O3, did not show any similarity with
potential variables that indicate gold recovery, such as accessibility and exposed perimeter.
The results also revealed a relationship between gold grains associated with arsenopyrite
and pyrite.

PCA was applied to analyse the distribution of scores (PC1 and PC2) in the 2D space.
According to the results, within the domains formed, there are four sets of well-defined
variables (Figure 5), two of which (the quadrants indicated as III and IV) correlate with
a higher gold extraction potential and higher Au, As, and S contents. The occurrence
of gold, as shown in these sets, is mostly associated with arsenopyrite and pyrite and
smaller amounts of sphalerite, galena, and chalcopyrite, represented by the variable, other
sulphides. Quadrants I and II indicate similarities between silicate minerals and their
relationship with encapsulated and included gold grains with low recovery potential and
the association of gold grains with silicates such as chlorite, mica, and albite and carbonates
represented by ankerite and dolomite.



Mining 2023, 3 237

Mining 2023, 3,  8 
 

 

association of gold grains with silicates such as chlorite, mica, and albite and carbonates 

represented by ankerite and dolomite. 

 

Figure 5. Projection of the main components: representation of the SOM and distribution of scores. 

Note: Representation of the contributions of chemical and geological variables. Distribution of 

scores of the 22 variables in the principal components (PC1 and PC2), which are created in order of 

variation: PC1 captures the greatest variation, while PC2 detects the second greatest variation. I, II, 

III and IV means the quadrants and their groupings. 

Davies–Bouldin analysis was performed to define the ideal number of clusters for 

neurons from the SOM analysis. For the representation of the BMU clusters, seven groups 

were obtained within a classification based on K-means, which shows the spatial distri-

bution of the input samples assigned to each resulting SOM cluster. Table 4 summarises 

the influence of the most relevant variables on the seven clusters thus defined. 

Table 4. Influence of variables on each cluster of SOM analyses. 

    Al2O3 (%) 
Accessible 

(%) 

Not Encap. 

(%) 

Locked 

(%) 

Exposed 

Perim. (%) 

Grade_Au 

(g/t) 

Grade_As 

(ppm) 

Cluster 1 * BMU 17.0 44.5 15.3 43.9 13.1 0.528 2160 

N: 41 Influence Medium Medium Medium High Medium Medium Medium 

Cluster 2 * BMU 16.6 37.0 24.4 43.5 11.0 0.465 1340 

N: 33 Influence Medium Low Medium High Medium Medium Medium 

Cluster 3 * BMU 13.2 74.1 6.1 22.0 25.2 0.950 2200 

N: 18 Influence Low Medium Low Medium High High Medium 

Cluster 4 * BMU 14.4 91.1 3.6 7.3 52.3 0.765 1670 

N: 21 Influence Medium High Low Low High High Medium 

Cluster 5 * BMU 13.1 90.2 4.5 8.1 56.0 0.770 2520 

N: 9 Influence Low High Low Low High High High 

Cluster 6 * BMU 10.6 76.4 8.2 17.2 32.6 0.916 2850 

N: 14 Influence Low Medium Medium Medium High High High 

Figure 5. Projection of the main components: representation of the SOM and distribution of scores.
Note: Representation of the contributions of chemical and geological variables. Distribution of scores
of the 22 variables in the principal components (PC1 and PC2), which are created in order of variation:
PC1 captures the greatest variation, while PC2 detects the second greatest variation. I, II, III and IV
means the quadrants and their groupings.

Davies–Bouldin analysis was performed to define the ideal number of clusters for
neurons from the SOM analysis. For the representation of the BMU clusters, seven groups
were obtained within a classification based on K-means, which shows the spatial distribu-
tion of the input samples assigned to each resulting SOM cluster. Table 4 summarises the
influence of the most relevant variables on the seven clusters thus defined.

Table 4. Influence of variables on each cluster of SOM analyses.

Al2O3 (%) Accessible
(%)

Not Encap.
(%)

Locked
(%)

Exposed
Perim. (%)

Grade_Au
(g/t)

Grade_As
(ppm)

Cluster 1 * BMU 17.0 44.5 15.3 43.9 13.1 0.528 2160
N: 41 Influence Medium Medium Medium High Medium Medium Medium

Cluster 2 * BMU 16.6 37.0 24.4 43.5 11.0 0.465 1340
N: 33 Influence Medium Low Medium High Medium Medium Medium

Cluster 3 * BMU 13.2 74.1 6.1 22.0 25.2 0.950 2200
N: 18 Influence Low Medium Low Medium High High Medium

Cluster 4 * BMU 14.4 91.1 3.6 7.3 52.3 0.765 1670
N: 21 Influence Medium High Low Low High High Medium

Cluster 5 * BMU 13.1 90.2 4.5 8.1 56.0 0.770 2520
N: 9 Influence Low High Low Low High High High

Cluster 6 * BMU 10.6 76.4 8.2 17.2 32.6 0.916 2850
N: 14 Influence Low Medium Medium Medium High High High

Cluster 7 * BMU 18.8 52.4 20 29.3 19.3 0.381 1740
N: 27 Influence High Medium Medium Medium Medium Medium Medium

* BMU: best-matching unit; Not encap.: not encapsulated. Exposed perim.: exposed perimeter.
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As observed, Cluster 1 has a high gold content that is possibly included in arsenopyrite
and pyrite since it shows a high arsenic content. The 18 samples in this cluster represent
high values of non-encapsulated and included gold grains, implying that low recovery
is expected in the mineral processing. Although Cluster 2 has the same characteristics as
Cluster 1, it has a lower arsenic content along with low accessibility.

Clusters 3 and 6 show similar behaviours, with negligible variations in the high levels
of arsenic. What differs is the Al2O3 content, which possibly presents variations in the
content of silicate minerals. Cluster 4 is defined by high accessibility, high gold content,
and medium arsenic content. This type of cluster is characteristic of samples from more
weathered regions where a low content of Al2O3 is found. Cluster 7, where most samples
occurred, is composed of samples with high Al2O3 content, high accessibility, and average
gold and arsenic contents. This cluster may represent the deposit in terms of average
indices and average gold content, which is 0.379 ppm.

4. Conclusions

By using the integrated dataset obtained by the chemical–mineralogical characteriza-
tion of gold ores, it was possible to establish in the representation of self-organizing maps
that the contributions of the multiple variables had strong positive correlations, mainly
accessibility, d50, exposed perimeter, and SiO2 and arsenic contents.

The results obtained from the SOM analysis indicated the formation of seven clusters,
which were related to different grades, and defined the influence of the most relevant variables.

Oxides such as Na2O, MgO, K2O, and Fe2O3 did not show any similarities with
potential variables that indicate gold recovery, such as the variable of accessibility. The
application of PCA revealed the presence of four sets of well-defined variables, two of which
(I and II) correlated with a greater potential for gold extraction and Au, As, and S contents.
Quadrants III and IV showed similarities between silicate minerals and encapsulated and
included gold grains with low recovery potential as well as an association of gold grains
with silicates and aluminium-silicates.

In the Davies–Bouldin analysis based on K-means, seven clusters were defined accord-
ing to their similarities. The results pointed to the existence of a tenuous threshold between
the grades of each cluster that is difficult to observe due to the little lithological variation.

From the point of view of geometallurgy, the definition of the most relevant indi-
cator variables for mineral processing, in addition to the variables of greater similarity,
demonstrates a significant advance in data integration as it opens the possibility of better in-
terpretating and understanding their performance in the construction of a geometallurgical
predictive model.
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