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Abstract: The island of Cyprus is famous for its rich deposits of volcanic mineralisation that yielded
large quantities of copper, gold, and silver. The abandonment of the waste material in several dump
sites during exploitation severely impacted the environment. A significant environmental issue is
the acid mine drainage from the hydration of large barren piles that cover these old open pit mines.
However, abandoned piles are still enriched in precious metals and perhaps even rare earth metals.
These dump sites may form a new possible “deposit”, which may attract companies’ economic
interest. Removing the stockpiles can be cost-effective, since the secondary extraction process is
profitable, in addition to the benefits from the restoration of the natural environment. The case study
considered here pertains to the North Mine of Mathiatis, where unmanned aerial vehicle (UAV)
images were used to create not only a 3D topographic map but also to locate these dump sites and
finally to create a 3D model of one of these waste stockpiles. The methodology proposed here to
locate dump sites by using point cloud data (x, y, z, RGB) and high-resolution images provided by
UAVs will assist in the secondary mining of old open-pit mines by defining the bottom and top
stockpile surfaces. The reconstructed 3D waste piles can also be used to calculate the volume they
occupy and other parameters, such as the gradient of slopes, that are essential for estimating the cost
of possible restoration. The proposed methodology was applied to the stockpile STK1 with the most
available drillhole data, and its volume was estimated at 56,000 m3, approximately.

Keywords: UAV images; abandoned mines; mine restoration; waste stockpile modelling

1. Introduction

According to the Mines Department of the Republic of Cyprus, in an area of
142 square kilometres, there are currently 61 active exploration licenses (and another
15 under consideration) for the discovery of copper, gold, silver and other precious metals
and generally mixed sulfide ores. Most of these exploration licenses relate to already
exploited areas that were abandoned several years ago due to various problems that had
arisen.

The possibility of exploiting these areas, apart from the economic benefits, also di-
rectly impacts the environment, as the main problem in the areas of the old mines is
related to acid drainage. Much research has been carried out to study and restore these
areas [1–4], where restoration by phytoremediation using low-pH-resistant plants is sug-
gested in [2]. However, rehabilitation, apart from being a long-term process that helps
to restore the landscape to its natural form visually, does not solve the problem of heavy
metal contamination of water [3]. The old Mathiatis mines are one such case of mines
that started to operate in the 1930s (1936–1938) and were abandoned in the 1980s, leaving
behind open-pit mining (Figure 1) and piles of disposed waste material with or without
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mineralisation [2,3]. One of the major problems of these piles is the accurate estimation of
their volume since usually there are no data on the area topography before mining began.
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Figure 1. South view of the abandoned open pit North Mathiatis mine (Personal photo of Papacon-
stantinou). 

In this paper, based on high-resolution photographs from unmanned aerial vehicles 
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technologies due to factors such as dense cloud cover, the position of the satellite and dust 
in the atmosphere [12]. Thus, in many mining cases, UAVs have been used (Figure 2) in 
the exploration, exploitation, or rehabilitation phases [6,7,12–15]. 
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Figure 1. South view of the abandoned open pit North Mathiatis mine (Personal photo of
Papaconstantinou).

In this paper, based on high-resolution photographs from unmanned aerial vehicles
(UAVs) [5–9], also known as drones, an attempt has been made to estimate the area occupied
by the abandoned stockpiles, measure their volumes and to spot areas that need further
exploration. UAVs have grown in recent years, and their use in the mining sector has
provided a quick, effective, and cheap solution compared to other methods, such as using
satellites or aerial photographs [10,11]. It is difficult to obtain direct results from these
technologies due to factors such as dense cloud cover, the position of the satellite and dust
in the atmosphere [12]. Thus, in many mining cases, UAVs have been used (Figure 2) in the
exploration, exploitation, or rehabilitation phases [6,7,12–15].
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The main objective of this work was to create a 3D model of abandoned stockpiles and
estimate the potentially exploitable reserves. For this purpose, the GEOVIA Surpac soft-
ware [16] combined data from the UAV and available drillholes into resource calculations
by applying the Kriging technique [17–19]. This is an interpolation technique commonly
used in mining applications [20–23], with the advantage of using actual data spatial dis-
tribution in estimations and simultaneously minimising square error based on the spatial
data position.

Treating waste from open-pit mines as a source of mineralisation increases the mining
industry’s sustainability and simultaneously reduces the environmental footprint of old
mines in the area. The proposed methodology was applied in the case of the Mathiatis
mine, where there are three small and five large waste stockpiles (with a focus on the one
with the most data available, stockpile STK1) with significant mineralisation and a total
volume of about 56,000 m3. Based on the present investigation, the area is considered
suitable for further investigation to be exploited in the future.

2. Geology of Cyprus (of the Study Area)

Cyprus is an island in the easternmost part of the Mediterranean region, considered
one of the most geodynamically active regions globally. The wider area constitutes the
junction of the Eurasian, Nubian, and Arabian plates [24–30]. In particular, the northward
motion of the Arabian plate results in the westward Anatolian plate tectonic escape, leading
to the Aegean micro-plate southwestern motion [31,32]. Eventually, the subduction process
of the Nubian plate under the corresponding Eurasian one occurs along the subduction
zone, extending from the southern parts of the Ionian Sea and Crete, respectively, to
Cyprus [33–37]. Therefore, this geodynamic regime resulted in complicated geological
processes imprinted in various lithological and tectonic features [38]. This paper focuses on
the properties description of the geological-lithological formations structuring the island
of Cyprus. These formations are documented in four distinct geological zones, which are:
(i) Pentadaktylos—Kyrenia zone, (ii) Mamonia zone (or complex), (iii) autoch-thonous
sedimentary rock zone, (iv) Troodos zone (or ophiolite) and (v) volcanogenic massive
sulfide ore deposits.

The volcanogenic massive sulfide ore deposits are the main formation associated
with this research. In particular, the Mt. Troodos ophiolite mass is related to significant
massive sulfide ore deposits [39] resulting from marine volcanic procedures [40]. These ore
deposits are of great importance for Cyprus Island, as more than 40% of sulfide minerals
are included, such as pyrite (FeS2), chalcopyrite (CuFeS2), bornite (Cu5FeS4), sphalerite
(ZnS), chalcocite (Cu2S), galena (PbS), etc., while they are characterised by significant
concentrations of copper (Cu), zinc (Zn), lead (Pb), gold (Au) and silver (Ag) [40]. The
sulfide mineral formations are directly associated with the hydrothermal fluid circulation
procedure occurring in the oceanic crust rocks (Figure 3). The metal elements (ferrum,
copper, zinc, sulfur, etc.) included in these fluids have been leached by the underlying
rocks. In particular, the leaching process has predominantly been performed in a multiple
dykes system due to the high-temperature water circulation through cracks and joints; the
upward magma bodies’ motion along the extension axes of the sea floor causes this water
overheating.

The hydrothermal activity affects the metal elements mentioned above, resulting in ox-
ide formations, such as cuprite (Cu2O) and tenorite (CuO), while sulfur (e.g., chalcanthite—
CuSO4· 5H2O, brochantite—Cu4SO4[OH]6) and carbonate (e.g., malachite—Cu2CO3[OH]2,
azurite—2CuCO3Cu[OH]2) compounds also occur.
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3. Stockpile Volume Estimation
3.1. Proposed Methodology Plan

Data were collected from UAV flights at an elevation of 70 m with drone model DJI
Phantom RTK Pro (having an accuracy 5 cm). Thirty control points combined with the
5100 photographs that were taken (with 80% overlap) generated a point cloud of a total
of 21 million points. This point cloud (courtesy of Harold Andrew Daniels) was used
first to create the study area’s topographic map and then to define the bottom stockpile’s
surface with no topographic data available. For the reconstruction of the bottom surface,
the following approach was used:

• The stockpile’s boundary was digitised by visual inspection on the point cloud.
• The points of the stockpile’s boundary combined with drillhole data were imported

into the GEOVIA Surpac database to build a pseudo-3D block model (BM) The estima-
tion parameter is the elevation Z since the z coordinate of imported data and blocks
centroid is dummy (zero).

• After statistical and geostatistical analysis, estimates of elevation (here treated as a BM
attribute) were calculated into each BM’s centroid using the Kriging technique.

• These elevation estimates were validated using Kriging residual statistics described
analytically in Section 3.6 as proposed by [17,18]. If the Kriging validation failed,
then corrections of the Block Kriging model variables were made, and the elevation
estimations were repeated.

• After successful validation of Kriging, X, Y of the BM centroids along with the elevation
estimated variable as Z were used as input data (points) for the bottom stockpile’s
DTM.

The bottom and top DTM surfaces were combined to create the 3D solid model of
the stockpile and its volume estimation. This methodology is best described in the flow
diagram of Figure 4.

3.2. Topographic Map Creation

UAVs were used to scan the Mathiatis mine area, and the resulting point cloud dataset
was employed to create the topographic map. A total of nine las files were combined in
open access program CloudCompare (www.danielgm.net/cc/) (accessed on 25 November
2022), and after noise removal and point density reduction—one every 2 m (memory
handling)—the final map of the area’s current state was created. This map and the relative
digital terrain model (DTM) are displayed in Figure 5a,b, respectively.

www.danielgm.net/cc/
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Concerning the digitisation of the stockpile boundary, a different procedure from the
previous one was used. The boundary line of the stockpile was created on the point cloud
itself (Figure 6). The resulting boundary consists of about 280 points which are the contact
points of the stockpile with the ground and is common for both the upper and lower
stockpile’s surface. Since the point cloud, apart from the coordinate values, also contains
RGB (red-green-blue) values, this procedure was more accurate and flexible (erratic points
could be easily identified and discarded manually).
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3.3. Drillhole Data Database

In the Mathiatis mine area, a new drilling program was developed with 39 drillholes (a
total length of 829 m was drilled), most of them on the top of the stockpiles observed during
the geological study. Since, in this study, the bottom surface of the tailings layer is needed,
then only geological data were used. The locations of the 39 drillholes are presented in
Figure 7. Three major formations were identified with minor differences in colouration and
mineralogical composition. These formations are the wastes of the previous exploitation in
the area (tailing formation—TF), the Perapedi formation (umber layer—U) and the upper
pillow-lava formation (UPL). Each point elevation at the end of the tailings formation was
not only used as a new attribute to the BM along with the point elevation of the stockpile
boundary but also as a control point for the error of the BM’s estimates.

3.4. Statistcal—Geostatistical Analysis

Histograms of 278-point elevations were constructed to check the data distributions
and proceed to experimental semivariogram plots. The first attempt at raw data values
presented a Gaussian distribution histogram plot (Figure 8a). However, the relative semi-
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variogram plot (Figure 8b) presented a trend towards the greater values for the range,
and a Gaussian mathematical model was calibrated on it. This trend can be observed in
the experimental semivariogram shape (large sill values versus variance presented with a
green line in Figure 8b). Several attempts in GEOVIA Surpac were made to check for an
anisotropy on the data [42,43]. Due to the small number of data and since the software uses
search ellipsoids that are cones with angle values less than 30◦, their number became so
small that it was impossible to build directional variograms.
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As evident from the semivariogram in Figure 8b, the data showed a trend due to the
slope of the waste disposal, so the best-suited technique was using universal Kriging. As
this option is not available in the training version of Surpac, our approach was to remove
the trend from the data. The possible polynomial tendency depends on the old hillside
shape, and based on point cloud data and borehole information is better defined by using
the following second-degree polynomial (Table 1):

ẑ = a0 + a1·x + a2·y + a3·x2 + a4·x·y + a5·y2, (1)

where x and y are the coordinates with respect to the position of drillhole P1, the new
transformed value z = Z− ẑ is used in the Surpac algorithm. The transformed elevation
data spatial statistics are presented in Figure 9.
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Table 1. Polynomial trend constants.

Constant Value Constant Value

a0 389.8 a3 1.423 × 10−3

a1 0.1194 a4 2.540 × 10−3

a2 0 a5 0
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The mathematical semivariogram parameters calibrated on both data cases’ are pre-
sented in Table 2. These parameters were used to estimate the BM’s variables, which are
explained in the following subparagraph.

Table 2. Block model geometrical parameters.

Model Nugget Sill Range (m)

Elevation (raw) Gaussian 2.6 58.4 80
Elevation (transformed) Exponential 0.06 6.8 41

3.5. Block Model of the Study Area

BMs for each stockpile were constructed, covering a distance of 10–20 m around every
boundary (Figure 10). The procedure was implemented exclusively on the stockpile STK1,
based on the drillhole data availability. The “pseudo”-3D BM for STK1 (all centroids are on
the same elevation, 0.5) consisted of 5400 blocks with extents of 120 m and 180 m in easting
and northing, respectively (Table 3).

Table 3. Block model geometrical parameters.

Description Min Value Max Value

X 531,900 532,020
Y 3,870,400 3,870,580
Z 0 1

Rotation 0 -
Block Size (X, Y, Z) 2 m × 2 m × 1 m -

The location of the measurements plays an essential role in determining a random field,
as spatial continuity requires that similar values are observed in neighbouring locations.
The spatial continuity can be described by the variation of the dispersion in space which is
given by the following theoretical relationship [44,45]:

γz(r, θ) =
1
2
·E
[
(z(xi)− z(xi + r))2

]
, (2)

E[ ] is the mean value of the expression in the bracket.
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For the calculation of the experimental semivariogram, all pairs belonging to distance
r and direction θ are used:

γ̂z(r, θ) =
1

2·N(r, θ)
·

N(r,θ)

∑
i=1

(z(xi)− z(xi+ ‖ r ‖ ·n(θ)))2, (3)

where: xi the position vector of the measurements of parameter z,
r, θ the distance and direction of calculation,
N(r, θ), pairs number
n(θ) = [cosθ sinθ ], unitary vector in direction θ.
The equations of ordinary Kriging are based on the semivariogram assuming unknown

mean value but constant in the field of investigation and described by Equations (4)–(7) [45].

−
n

∑
j=1

λj·γ
(
‖ xi − xj ‖

)
+ m = −γ(‖ xi − x0 ‖), i = 1, 2 . . . n, (4)

The unbiased condition is ensured by the following Equation (5):

n

∑
j=1

λj = 1, (5)

The estimates of the Kriging variable and variance are given by:

Ẑ(x0) =
n

∑
j=1

λj·Z
(
xj
)
, (6)

σ̂2
ZOK =

n

∑
j=1

λj·γ
(
‖ xj − x0 ‖

)
−m, (7)

3.6. Validation of Block Model Estimates

At this point, the BM’s attribute estimates needed to be validated before the final
construction of the bottom tailings formation surface. Since all these estimates depended
significantly on the variogram parameters, selecting the best mathematical model was
essential. In this way, the validation of the Kriging model was evaluated through the
validation of the semivariogram mathematical model. The selected validation method
depended on the estimation errors measured on the control points. In this case, the elevation
values of each drillhole point were normalised with Kriging’s variance as estimated into
each BM’s centroid. This methodology is called the residuals (Q)—Test [17], and the
normalised residual is estimated through the equation:

εi =
Z(si)− Ẑi

σ̂i
, (8)

Ẑi, is elevation of Kriging elevation estimation,
σ̂2

i , is Kriging variance estimation and
Z(si), actual elevation of the stockpile’s bottom from drillhole data in position si.

Q1 value

Statistical value of Q1 is the mean of the normalised errors:

Q1 =
1

n− 1

n

∑
i=2

εi, (9)

where εi is a random regionalised variable that follows the normal distribution (µ = 0,
σ2 = 1/(n− 1)).
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Q2 value

Statistical value of Q2 is the mean of the squared normalised errors:

Q2 =
1

n− 1

n

∑
i=2

ε2
i , (10)

Again, making the assumption that all errors are following the normal distribution,
then the square errors follow the “Chi-Square” distribution with a mean equal to 1. The
“Chi-Square” is a non-symmetric distribution which is used in the case of a small number
of data, n < 40, and holds for the present case (21 data). The region’s determination with a
95% confidence level is made from charts from the international literature [17]. In choosing
the best semivariogram parameters, Q1 needs to be close to zero and Q2 close to 1, and, as
mentioned before, errors εi follow a normal distribution.

3.7. Block Model Elevation and Variance Estimates

The Kriging algorithm was first executed using only the datum from the points of
the boundary line (no drillhole data were used), and elevation estimates were carried
out for all block centroids (Figure 10a). The estimates for each block in the vicinity of
every drillhole were compared to the closest drillhole’s real value to calculate the relative
errors. Next, data from one drillhole were inserted into the calculations, and the Kriging
algorithm was executed again. This procedure continued until all drillholes were inserted
into the calculations and all errors were estimated. The BM of the first scenario (raw
elevation values) was validated, as will be described in Section 3.5. This first scenario was
rejected since the Q2 residual statistic constraint was not met. A second Scenario II, was
implemented to remove a polynomial trend (Equation (1)), as described in Section 3.4. In
Scenario II, after the first estimation of Z transformed data into every block of the BM, data
from drillhole NMMT_BH19 were inserted into the calculations, and the Kriging algorithm
was executed again (Figure 10b). New estimates for elevation were carried out, and new
errors were calculated. This procedure was continued until all drillhole data were inserted
into calculations, and all errors were estimated for every step (Figure 10c–h). The drillhole
data import sequence was NMMT_BH18, NMMT_BH19, NMMT_BH21, NMMT_BH22,
NMMT_BH20, NMMT_BH17, as displayed in Figure 10b–h.
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Figure 10. BM plans presenting the elevation (transformed) distribution as data from drillholes are
imported into the Kriging algorithm when (a) no drillholes are used, (b) NMMT_BH18 is added
to (a,c) NMMT_BH19 is added to (b,d) NMMT_BH21 is added to (c,e) NMMT_BH22 is added to
(d,f) NMMT_BH20 is added to (e,g) NMMT_BH17 is added to (f,h) colormap legend.
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An area of high variance values can be identified in the west part of the STK1 stockpile.
This increased uncertainty could be reduced by adding two extra drillholes near the red
dot locations (see Figure 11).
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Figure 11. Kriging variance of the final model estimates.

Estimations, errors, and Kriging variances from each step were used to define the
block model’s validity again. Since both Q1 and Q2 constraints were met (Figure 12), the
construction of the lower TF surface and the stockpile’s volume estimation was done. The
Kriging variance of the final Z transformed values (Figure 10g) is presented below After
the validation of Z predictions, the X, Y, and Z-predicted values of each BM’s centroid were
now used as a point for the creation of the bottom stockpile’s surface. This means that the
number of points that was used for the bottom stockpile’s surface is the same, with the
number of the block shown in Figures 10 and 11 (inside the red line).
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From the above checks, the Kriging algorithm based on the parameters of Table 2
underestimates the elevation (Q1 < 0) and overestimates the error (Q2 < 1), which can be
enhanced by further reducing the semivariogram sill value. It was noted that the residual
statistics check, although far from the mean values of the respective statistics Q1 and Q2,
were within the confidence level (CL) of 5%, so the selected semivariogram parameters
cannot be rejected.

3.8. Stockpile Volume Estimation

After the validation of the final model, the estimated values were back-transformed
into “real” elevations into each block’s centroid. Northing, easting, along with this elevation,
were used to construct the bottom STK1 surface, as shown in Figure 13a. This surface also
contains elevation values estimated from extrapolation data, which are high uncertainty
values. These values are removed when cutting the surface with the boundary that was
digitised from the point cloud UAV data (Figure 13b).
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Figure 13. Final stockpile STK1 bottom surface (a) before and (b) after digitising from UAV data (blue
line) boundary is applied.

This surface, combined with the top surface of the STK1 (Figure 14) constructed as
described in Section 3.2, was used to estimate the stockpile’s volume, which is equal to
56,000 m3. The two blue lines show the traces of two sections of STK1.
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These two sections describe the present and past topography of the area, which is
essential for accurate volume estimation. It is important to mention again that exploitation
of the Mathiatis area started in the 1930s, along with the waste disposal, and that no
topographical data were present (Figure 15).
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4. Discussion

Since the construction of the top surface’s DTM is a common procedure using UAVs
data (photogrammetry) with many available publications, the contribution of the current
work is the combination of a UAV point cloud and drillhole data to estimate the underneath
surface (not optically reached by UAV flights). Since, in the first stages of investigations,
only a small number of drillholes is applied, the proposed methodology can produce fast
and relatively accurate predictions of the stockpile’s volume. For this purpose, the linear
interpolation Kriging technique was applied as a tool to predict areas that are not “visible”.
The approach that was used is a pseudo-3D BM (actually, the BM has only one block in the
Z direction—2D BM). In each BMs’ centroid, the z value of the stockpile–bedrock interface
is estimated. After the validation of the Z predictions, X, Y, and Z-predicted values of each
BM’s centroid were then used as a point for the creation of the bottom stockpile’s surface.
Another technique used in cases such as these is indicator Kriging [18,46] but due to the
lack of available data (few drillholes) the proposed technique was preferred. In this work, a
commercial software commonly used in mining projects for 3D block estimations was used,
instead of using an existing Kriging algorithm [47,48] or any other open access code. An
adaptation was made in the Surpac software for a 2D Kriging application for the elevation
of bottom stockpile by combining point cloud and drillhole data.
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5. Conclusions

This paper proposed a new methodology for waste stockpile volume calculation with
a small number of available drillholes by combining aerial photographs and drillhole data.
This methodology can be applied in any old waste deposits combining a UAV point cloud
which includes coordinates (X, Y, Z) and a colour data RGB (red, green, blue) and available
drillhole data.

The drillholes were used to upgrade the first model based initially on the stockpile’s
boundary defined from the point cloud dataset from aerial photogrammetry by finding
the optimal parameters of the Kriging algorithm. In elevation data, there exists a second
order drift due the old hillside shape. This drift is subtracted from the data and Kriging
applied to the new elevation data. Since Kriging predictions depend on the semivariogram
parameter selection. a validation technique of residual statistics Q1, Q2 was used for
selection of exponential semivariogram with 41 m scale parameter, 6.8 sill and a small
amount of nugget effect 0.06.

The volume of the deposits of the stockpile with the most available data was approxi-
mately estimated at 56,000 m3. The advantage of the Kriging method is that the uncertainty
is also estimated. Based on the above methodology, new drillhole locations in areas of high
Kriging variance can be proposed to minimise any uncertainty. It was noted that the most
secure method would be to use topographic maps before placing the waste deposits, but
this was not feasible due to time elapsed since the old open pit mine was abandoned.

The recovery of these piles is essential for the remediation of the Mathiatis area of
Cyprus, where the acid rain phenomenon is intense, causing problems of contamination of
the aquifer. At the same time, the remaining mineralisation combined with the existence
of the umber deposits beneath the waste stockpiles has attracted the interest of many
companies. It is only a matter of time before open pit mining in the broader area proceeds.
Hence, the proposed model could be a valuable tool for the first stages of planning the
exploitation.

In reducing the model prediction risk, more targeted drilling would be necessary to
reduce the “dark” spots within the reservoir. For example, in the examined stockpile, the
available drillholes were spaced at regular intervals in the centre of the pile. The exact
number of drillholes would provide more information if they were scattered throughout
the volume of the pile, reducing the unmeasured distances and, thus, the uncertainty.

The environmental restoration, the stockpile’s residual value, plus the fact that the
existence of confirmed umbra deposits beneath the stockpiles will add a secondary profit
for future exploitation. The proposed methodology can be used for more accurate vol-
ume estimation of all stockpiles (by suggesting the possible position of new drillholes),
optimising the mining design and the selection of suitable mechanical equipment.
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