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Abstract: This paper aims to address the significant financial, environmental, and social risks posed
by climate change to the mining industry, which is responsible for approximately 8% of global
greenhouse gas emissions. With 70% of mining projects for the six largest mining companies located
in water-stressed regions, the industry is facing increasing pressure to reduce its impact. Our study
investigates the applicability of multi-objective optimization to integrate environmental impact con-
siderations into short-term planning for mining operations. To achieve this, we have reviewed similar
studies in various industries and developed an integrated planning framework that incorporates
environmental considerations into production planning for surface mines. Our framework has the
potential to be utilized in both short- and long-term planning horizons, promoting sustainable mining
practices. Through this research, we aim to provide mining engineers with a more comprehensive
and effective approach to minimize the environmental impacts of their operations while maintaining
efficient production.

Keywords: short-term mine planning; multi-objective optimization; life cycle assessment; sustainability;
decision making

1. Introduction

The mining industry brings significant economic and social benefits to any country
through resourcing raw materials for domestic and international industries, the develop-
ment of infrastructure, and the creation of jobs and revenue for local communities. The
mining industry played a significant role in the economies of several countries in 2019–2020.
For instance, it accounted for 3.4% of Canada’s Gross Domestic Product (GDP) according
to the Mining Association of Canada (MAC) [1]. Similarly, the mining industry made up
10% of Australia’s GDP, as reported by the Australian department of industry, science, en-
ergy, and resources [2]. In the United States, the mining industry contributed approximately
1% to the country’s GDP, as reported by the United States Geological Survey [3].

Despite its positive impacts on economies and society as two main pillars of sustainable
development, the mining industry also has several potential contradictory impacts on the
environment as the third main pillar of sustainability. Some of the negative environmental
impacts of mining industry can be listed as the destruction of natural habitats, pollution
of water and air, and the displacement of local communities. To practice sustainable
development in the mining industry, it is crucial to strive for a balance between economic
development and environmental and social protection.

Mine planning is a major department in any mid–large-scale mine where the mining
companies must consider the possible mitigation of environmental impacts through this
department. For the purpose of considering the environmental footprint in mine planning,
two general approaches exist: considering the environmental impacts during the operation
or outside the life of the mine period (see Figure 1). Environmental impact assessments
(EIA) can be used before the development of the mine. EIA help in identifying the potential
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environmental impacts of mining, including resource depletion, land disturbance, water
use, air pollution, waste generation, acid mine drainage, carbon footprint, and energy con-
sumption. identification using EIA will then lead to implementing the mitigation strategies
for decreasing or eliminating the environmental impacts such as deploying renewable
resources, reforestation, water recycling, and the like. During the operation, environmen-
tal impacts can be mitigated by enforcing environmental constraints through computer
algorithms and executing them with the help of digital technologies (data gathering and
automation) to keep the operation within appropriate limits of environmental footprints.
The purpose of this study is to identify the environmental impacts of surface mining opera-
tions and investigate the possibility of their mitigation through developing a sustainable
short-term mine planning (STMP) framework.

Figure 1. Environmental impacts and mine planning: a hierarchical approach.

There are global agreements for almost all general environmental impacts of human
activities. For mitigation of climate change (GHG emissions), there are global agreements
known as the United Nations Framework Convention on Climate Change (UNFCCC), 1992,
and later, the Paris Agreement, 2015, which specifically target limiting the temperature
increase in the current century below 2 ◦C (or, more optimistically, below 1.5 ◦C) compared
to pre-industrial levels [4–6]. In this context, the GHG emissions are defined under three
scopes: 1, 2, and 3. Scope 1 refers to direct emissions that exist in each production unit.
Scope 2 indicates indirect emissions caused by generated or purchased energy (electricity,
heating, cooling, steam) consumed during operation, and Scope 3 is all indirect emissions
caused in the value chain (such as constructing the required infrastructures, tire production,
ore shipment, employee transfer, and so on). It is important to note that the focus of
this study is on Scope 1 and 2 emissions. The reason for this choice is that Scope 1 and
2 emissions are directly under the control of the operation, while Scope 3 emissions are
typically more indirect and complex, and need a deeper understanding of the supply chain
and other factors that are beyond the direct control of the operation. However, increasing
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efficiency and optimizing operations during STMP through Scope 1 and 2 can indirectly
reduce Scope 3 emissions. For example, optimizing hauling in mine operations can lead
to less fuel consumption and also less tire wear, reducing Scope 3 emissions based on
the amount of CO2 equivalent (the CO2 emission equivalent to the total environmental
footprint, CO2eq) released during the production of each tire. Generally the reduce, reuse,
and recycle strategy (3 R’s) improves Scope 3 emissions, while energy efficiency covers
Scope 1 and 2. The 3R systems aim to minimize the consumption of natural resources by
promoting the principles of reduce, reuse, and recycle. The application of the 3R strategy
for processed raw materials can greatly reduce their environmental impact, which is of
interest to industries that utilize these materials. In the context of mining operations, this
strategy can help to minimize the amount of waste generated during mining activities. This
can be achieved through the recovery and reuse of consumable materials or through the
implementation of more efficient techniques for the extraction of minerals from waste rock
dumps and tailings dams. The importance of 3R in the mining industry is addressed in
the context of the circular economy, highlighting the need for a sustainable approach to
resource management [7–9].

In STMP, energy efficiency through reduced fuel consumption is the main idea for
mitigating GHG emissions. As compared to existing general environmental impacts, GHG
emissions, which are interchangeably used with CO2eq [10], are utilized more because they
are already quantified. The mining industry contributes significantly to carbon emissions,
particularly due to the amount of fossil fuel consumption associated with giant excavators
and crushing machines, heavy-duty trucks, and milling units. The total GHG emissions
of the mining sector can vary depending on a number of factors, including site location,
depth of the mine, type of minerals, ore grades, energy source, and type; hence, the global
GHG emission share of the mining industry has been estimated to be between 5% and
15% [11,12].

This paper makes the following contributions: (a) an introduction to the necessity of
mitigating the environmental footprint in today’s industries; (b) discussion on how environ-
mental impacts can be implemented in STMP in surface mines, (c) literature review on the
consideration of environmental impacts of production systems in other industries during
the operation, (d) identifying and addressing existing challenges and required actions, and
(e) proposing an integrated framework for incorporating environmental impacts in the
process of short-term planning for surface mines.

The rest of the paper is organized as follows: Section 2 outlines the research tools
that are necessary for conducting this study. Section 3 proposes an integrated framework
for considering environmental impacts of mining operations in the process of short-term
planning in surface mines. Section 4 discusses the the proposed integrated framework, and
Section 5 concludes the paper by providing suggestions for future research direction in the
field of responsible mine planning.

2. The Research Tools

The goal of this research is to develop an integrated approach that minimizes the envi-
ronmental impacts of mining operations during short-term mine planning. By combining
different tools and methodologies, our study aims to provide a comprehensive framework
that enables mining companies to make informed decisions that balance production goals
with environmental sustainability. This study will employ three key tools: short-term
planning, life cycle assessment, and advanced analytic methods, including multi-objective
optimization. Throughout the paper, we discuss these tools in greater detail and explain
their specific application and methodology. To enhance our understanding of these tools,
we reviewed similar studies in various industries to gain a broader perspective on their
nature and use. This helped us to better understand how the tools can be applied to
address environmental impacts and optimize short-term planning in the context of mining
operations. By building on this existing knowledge, we were able to develop a more com-
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prehensive and effective approach that can be tailored to the unique needs and challenges
of the mining industry.

2.1. Life Cycle Assessment (LCA)

Industries are constantly working to improve their environmental performance through
the use of LCA, a systematic approach for evaluating the environmental impacts of products
and processes [13–16]. LCA allows for the quantification of impacts and identification of
opportunities for reducing them, whether through alternative solutions or the improvement
of current products and processes. Since the type and amount of environmental impact of
each mining operation can differ broadly depending on the site location, mining method,
and energy sources, it is necessary to perform LCA for each individual mine to have a
complete assessment of its environmental impacts. In the context of environmental impacts,
LCA has been extensively used by researchers to better understand how activities affect
the environment. The flexibility of the LCA approach makes it an industry-wide-accepted
tool to integrate ecological impact assessment with other tools such as life cycle costing
analysis, material flow analysis, environmental impact assessment, environmental account-
ing, and multi-criteria decision analysis. According to ISO 14040 and 14044, LCA includes
four general stages: goal and scope definition, life cycle inventory (LCI), life cycle impact
assessment (LCIA), and interpretation [13]. Aside from the numerous advantages of LCA,
there are shortcomings related to the LCA as follows:

(1) Deficiency and uncertainty of data: LCA is a data-intensive framework and is
dependent on the geography, data quality, and data availability [17]. Data collec-
tion can be assumed to be the main challenge in implementing LCA [18]. In LCA,
data and methods are subject to uncertainty, and estimations are always susceptible
to underestimating the actual case. The availability of databases with sophisticated
LCI is crucial for extending and expanding studies on the environmental impact of
mining activities. LCA studies in the mining sector are limited by the availability and
reliability of data [19]. For instance, LCA studies in the mining and minerals sector
overlook processing stages due to scarcity of data [20].

(2) Lack of a unique systematic information exchange process [21].
(3) The ambiguity in producing multiple metals at a single mine site causes challenges in

precisely determining the environmental impacts based on unit functions.
(4) Arbitrariness in selection of functional unit and boundaries: Variations in choosing

the functional unit, weighting factors, and boundaries in different studies can lead to
methodological inconsistencies in LCA [22].

(5) Ambiguity of results and interpretations: It is possible for the results of LCA to differ
depending on the methodology used to evaluate the environmental impact.

(6) Limited awareness of LCA methodology [23].
(7) Lack of expertise and resources.
(8) Lack of usefulness in dynamic and complex activities [24].

2.2. Short-Term Mine Planning

Generally, strategic mine planning is organized into three levels: long-term, medium-
term, and short-term. The main difference of these steps is the time horizon, level of
detail, and type of decision making [25]. While medium- and long-term planning deal
with fixed targets, STMP has the highest level of detail imposed on the regular change
(dynamic nature).

Increasing operational efficiency, adopting cutting-edge technologies, and digitization
are general solutions to sustainable management in mine operations. In more detail, sustain-
ability in STMP can be sought through ensuring proper mine design, efficient sequencing,
and accurate time prediction in mine operation activities. The STMP involves a broad
range of activities, from development and implementation to monitoring, tracking, and con-
trolling, which provide opportunities to tackle environmental concerns. Optimization on
machine idle times, traffic blockage, excavation priorities, fleet allocation, unnecessary
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re-handling, and machine relocation are such opportunities that can improve the life-cycle
energy use and reduce GHG emissions. In order to track and optimize GHG emissions
in mining operations, activities and processes need to be studied comprehensively and
meticulously, since neglecting mutual impacts or ignoring details could lead to biased
evaluations. Implementing energy-efficient technologies such as high-pressure grinding
rolls in mining operations can reduce energy consumption and GHG emissions; however,
it could also lead to an increase in dust emissions [26]. To optimize travel distance and
time, factors such as road condition, truck velocity, waiting time, and road grade must be
taken into account as the shortest route may not always be the most fuel-efficient option.
Additionally, traffic management should be approached holistically as different sections
of a road network may have varying impacts on fuel efficiency. Wet and frozen roads can
decrease surface friction and increase fuel consumption, while traffic congestion can lead
to increased idling time and slow down the average speed of the mobile fleet. Unsafe
driving behaviors such as sudden braking and acceleration can also contribute to higher
fuel consumption in heavy-duty trucks [27].

Fossil fuel combustion generates several pollutants, including carbon dioxide, ni-
trogen oxides, and sulfur dioxides, and results in the production of fly ash [19]. In the
mining industry, CO2, emitting from direct fossil fuel consumption during excavation and
transportation, is the primary contributor to GHG emissions [10,28], while the majority
of energy consumption in processing units is attributed to electricity and heat generation
(indirect emission). Other activities within mining operations, such as blasting, have a
relatively low contribution to overall GHG emissions, with estimates ranging from 1 wt%
to 8 wt% of total emissions from mining operations [28].

Recent studies have shown that advanced analytics can help improve the fuel efficiency
in mining operations. Sahoo et al. (2014) developed a generic model for comparing
the fuel consumption of dump trucks in mines. They took into consideration the mine
topography, engine characteristics, and vehicle dynamics. Then, they examined the effect of
the payload, velocity, and slope of the roads on fuel consumption [29]. Golbasi et al. (2022)
evaluated the kinematic fuel consumption factors of haul trucks under stochastic payload
and precipitation conditions. They implemented a discrete event simulation algorithm
and validated their model with a large-scale cement production network. They realized
that the precipitation condition might lead to a 15–25% increase in the fuel consumption
by haul trucks. They also evaluated the difference in fuel consumption between clay and
limestone mining trucks [27]. Gopalan et al. (2022) reported up to a 15,000 tonne carbon
emission reduction and 5–10% reduction in fuel consumption, which led to a USD 4M-7M
annual savings in an open-pit mining case study with the help of machine learning [30].
Ali Soofastaei et al. (2022) developed an artificial neural network (ANN) model based on
2030 independent samples to predict the fuel consumption of mining haul trucks. They
considered the truck payload, truck velocity, and rolling resistance of the road as the main
factors contributing to the haul truck fuel consumption [31].

2.3. Multi-Objective Optimization

The mining industry is moving toward digitally integrated operations to meet net-zero
emission targets with minimum productivity loss. As a side effect, this transition results in
massive quantities of data generated by mining activities everyday that can be utilized to
ensure the operational efficiency of the mining value chain. The literature reviewed in the
subsequent section shows that operation management is a multi-dimensional challenge
requiring the implementation of multi-criteria decision analysis techniques such as multi-
objective optimization (MOO) to make proper decisions considering the simultaneous
criticality of minimizing environmental footprints and maximizing economical gains.

Implementing the MOO approach to make decisions in mining operations requires
a systematic approach. In the first step, the objectives and limitations must be identified
through broad communication with different departments involved in each stage of the
operation. Then, required input parameters must be determined and evaluated. Finally,
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an appropriate method must be chosen to be used for solving the model and finding the
closest to optimal solution.

There are two main approaches for solving MOO problems. The first one is to use
the scalarization technique to convert the multiple objective model to a single objective
model and then using methods such as linear programming (LP), non-linear program-
ming (NLP), and mixed-integer programming (MIP) to solve the single objective problem.
The other approach is to implement evolutionary algorithms such as genetic algorithms
(GA), particle swarm optimization (PSO), and ant colony optimization (ACP) to achieve an
acceptable decision.

It is important to note that the choice of method will depend on the specific charac-
teristics of the problem, as well as the computational resources available. Therefore, it
is crucial to conduct a thorough analysis of the problem and evaluate the suitability of
different methods before implementing a MOO model.

Application of MOO with Environmental Concern in Other Industries

Azapagic and Clift (1999), for the first time, combined LCA with MOO in the envi-
ronmental management of bio-based production systems. As a result of the 20% increase
in environmental performance, they found that the MOO can be successfully applied in
an LCA context and can be used as a handy tool in environmental management. In their
view, the real value of these methods lies in presenting a variety of alternative solutions
rather than finding a single superior solution. In other words, the results of these studies
will lead to the “best practicable environmental option”, or “BPEO” [32]. Barak et al. (2021),
developed an optimal manufacturing schedule by using a flexible manufacturing system
(FMS) and an automated guided vehicle (AGVs) platform. According to Barak et al. (2021),
environmental sustainability can be implemented at three levels: strategic, tactical, and op-
erational. They addressed the environmental issue by optimizing fuel consumption in their
study [33].

Agriculture section: Ding et al. (2022) employed MOO with the fuzzy optimization
approach [34]. Capitanescu et al. (2017), proposed a MOO with a multi-stage MILP-based
algorithm [35]. They showed the application of MOO and LCA in the prediction of dif-
ferent scenarios, including environmental concerns. The trade-off nature of considering
environmental concerns with economic aspects of industries was also emphasized in their
study. Roghanian et al. (2019) used a multi-objective mathematical model to optimize a
closed-loop citrus supply chain. They considered three objectives in their model: minimiz-
ing total costs, minimizing carbon emissions, and maximizing demand responsiveness.
They compared the result of five different algorithms (NSGA-II, NRGA, MOTGA, MOSA,
MOKA), which reported MOTGA as a proper algorithm [36]. Galan et al. (2016) employed
a multi-objective linear programming model to find the optimal allocation of rainfed and
irrigated cropping areas in Spain. Several objectives were set in order to attain this goal: To
maximize production, minimize ecosystem damage, and minimize resource damage. They
reached alternative optimal scenarios, which satisfies all objectives (production targets and
environmental impacts) [37].

Construction section: Kim et al., 2021 used a multi-objective genetic algorithm to
optimize CO2 emissions and cost by using reusable steel to build noise barrier tunnels
(NBT). They showed that there is a trade-off between cost and CO2 emission reduction,
and, in some cases, no solution can be derived to minimize both at the same time [38].
Hong et al., 2019 applied a MOO approach to study different possibilities of building design
and occupant behavior, including environmental performance. They demonstrated that im-
plementing environmental optimization in industries requires simulations of the operation
as well as data mining for optimization. Trade-off analyses were also implemented among
five optimization objectives to reach the best solution [39]. In the construction section,
the carbon reduction is being achieved by investigating energy-saving opportunities such
as using recycled and environmentally friendly materials and controlling the effectiveness
of materials. Lee et al. (2020) developed a multi-objective sustainable model to account for
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concrete slab CO2 emissions and costs. An analysis of the relationship between composite
beam design variables, costs, and CO2 emissions was conducted in their study. In this
study, the effect of the composite beam’s length, effective width, and tributary area on costs
and CO2 emissions has been investigated [40]. Hamdy et al. (2011) introduced a novel
approach to optimize the energy efficiency and environmental impact of a two-story house
and its heating, ventilation, and air conditioning (HVAC) system. The approach combined
a modified MOO technique using GA with the building performance simulation program,
to minimize both CO2 emissions and investment cost. The design variables considered in
the optimization included heating/cooling energy source, heat recovery type, and building
envelope parameters [41]. Azari et al. (2016) used a MOO algorithm to optimize the design
of the building envelope of a low-rise office building in Seattle with regards to energy use
and environmental impact. The design parameters considered include insulation material,
window type, window frame material, wall thermal resistance, and window-to-wall ra-
tios. The environmental impact categories analyzed in the LCA included global warming,
acidification, eutrophication, smog formation, and ozone depletion. The results showed
that the optimal design incorporated fiberglass-framed triple-glazed windows, a 60% south
window-to-wall ratio, a 10% north window-to-wall ratio, and R-17 insulation [42].

Automotive industry: As companies are subjected to increasing amounts of regulation,
Nassir Ibrahim et al. (2021) quantified CO2 management costs with the help of MOO
in order to optimize decision making in automotive production. They investigated CO2
tariff costs applied to the automotive industry by global emission legislation and reported
that they can affect the profit margin of original equipment manufacturers (OEMs). They
implemented a multi-criteria decision-making (MCDM) method to reach Pareto optimally.
Re-configuring vehicle features, investing in technologies, restricting sales, and paying CO2
tariffs are four decision options they considered in their model [43].

Oil and gas section: Al-Mayyahi et al. (2013) utilized MOO to reduce CO2 emissions in
refinery processes. They introduced a comprehensive framework that incorporated mass
and energy balance simulation, process integration, and a genetic algorithm optimizer.
The optimization approach was evaluated in various scenarios and the effect of crude
type on the balance between environmental and economic performance was analyzed.
The authors also investigated the impact of different energy integration schemes on CO2
emissions and product revenue. A graphical approach was presented based on marginal
energy cost and marginal CO2 emissions, allowing for efficient CO2 emission targeting and
allocation of energy resources to meet both economic and environmental goals. The validity
of the approach was demonstrated in two cases, with results indicating the ability of
the method to accurately predict the Pareto-optimal front [44]. In a study presented by
Azadeh et al. (2017), a multi-objective mathematical model was implemented to consider
environmental indicators in the integrated upstream and midstream segments of the
crude oil supply chain, using a case study in the Persian Gulf. The model considers
oilfield development and transformation planning, as well as green aspects, and balances
economic factors (net present value, NPV) with environmental issues through bi-objective
optimization. The model was solved using a unique multi-objective evolutionary algorithm
based on a decomposition (MOEA-D) approach, and the results were compared with two
other algorithms (NSGA-II and MOPSO). The results showed that MOEA-D was superior
for large size problems [45]. Rodrigues et al. (2021) implemented MOO, seeking two targets
of minimizing carbon emission and maximizing NPV. They compared different scenarios
with the help of the PSO algorithm [46].

Mining industry: Hung et al. (2022), with the help of the dimension reduction technique,
reduced a high-dimensional, multi-objective problem to four objectives (cost, energy, CO2,
and particulate matter (PM) intensity control) in their study on China’s iron and steel
industry. They claimed that their procedure did not compromise the Pareto dominance
structure of the original problem.
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3. Framework for Incorporating Environmental Impacts into Mine Planning

In the mining industry, there are successful studies on fuel efficiency that include
environmental concerns indirectly. However, in this industry, integrated sustainability
management is less known. To date, the integration of LCA in EIA for the mining sector
has not been widely practiced [18]. In a study by Farjana et al. (2021), it was reported that
over the last 15 years, only 40 significant research articles have been published in the field
of mineral processing (mainly in the Journal of Cleaner Production, International Journal
of Life Cycle Assessment, Science of the Total Environment, Resources Conservation and
Recycling, Journal of Environmental Management, and Journal of Sustainable Mining) [17],
while the environmental considerations in the mining operation section are even more dire.
A literature review by Blom et al. (2019) revealed that none of the 27 short-term planning
models studied between 2001 and 2018 directly considered environmental impacts [47].
According to Hong et al. (2019), achieving environmental optimization in industries neces-
sitates the use of simulations and data mining techniques for optimization purposes [39].
Kim et al. (2021) emphasized that sustainability management as a thematic area in the
mining industry is a complex, MOO problem [38]. Building on analogies and previous
studies, we propose a responsible STMP framework integrating the general STMP and
LCA methodologies through a simulation-MOO-based approach that is the first of its kind
to simultaneously optimize economical gains and environmental footprints of a surface
mining operation. This approach aims to consider environmental impacts during the STMP
process, as shown in Figure 2.

Figure 2. Schematic flow chart of integrated short-term planning with LCA.

The framework consists of two mutually exclusive interacting sub-frames: the STMP
optimization sub-frame and the LCA sub-frame. In the proposed integrated framework,
the LCA sub-frame is retrieved from the industrially accepted LCA framework that has
been widely implemented in a wide range of industrial projects across the globe. This
sub-frame enables us to quantify the emission rate based on the production volume (kg
CO2eq/tonne), helping the integrated framework to make the CO2 emission integration
with the economic objectives possible. The LCA sub-frame provides environmental inputs
to the simulation-MOO sub-frame, enabling it to generate the best-case scenario consid-
ering cost and production goals. For implementing LCA within the framework, first we
need to define the goal and scope of the functional unit and the LCI to be able to assess
the environmental footprint. To do so, researchers have indicated that it is more effec-
tive to analyze on-site and off-site mining activities separately [48]. Additionally, it is
worth noting that LCA covers a broad range of environmental impacts, including human
toxicity (carcinogen and non-carcinogen effects), respiratory effects caused by inorganic
ionizing radiation, ozone layer depletion, photochemical oxidation, aquatic ecotoxicity,
terrestrial ecotoxicity, aquatic acidification, aquatic eutrophication, terrestrial acidification
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and nitrification, land occupation, global warming and non-renewable energy and min-
eral extraction [49]. GHG emissions, due to their relative ease of quantification, are more
conducive to optimization algorithms and require less effort to assess their inventory and
impacts. In each operation, GHG emissions can be broken down into three categories,
including materials, equipment, and transportation [50]. Although it is possible to estimate
CO2eq. emissions of the equipment using the national emission factor databases [51–53]
(see Figure 3), as a matter of accuracy, it is recommended to build an in-house inventory for
every individual mining operation.

Figure 3. The use of emission factors in mining operations to assess GHG emissions.

Since the STMP usually covers site operations, it is recommended to define the bound-
ary of the LCA system in site location; therefore, the system boundary can be considered the
cradle-to-site gate for the production of single or multiple ore grades. It is possible to take
functional units (FU) as kilograms or tons of produced ore per cycle. Renowned databases
(such as Ecoinvent, USGS, AusLCI, ELCD), as well as published articles, regional and
company reports, are sources for collecting LCI. The assessment of multiple environmental
midpoints can be simplified by converting them into a single metric (Pts), making decision
making and comparison easier. The hierarchist approach and the Worldwide Average
Weighting method are effective tools for this purpose [54]. In the mining industry, LCA
studies are typically performed using SimaPro or Gabi software, which apply LCI and
LCIA methods such as ReCiPe, EcoIndicator 99, and ILCD to evaluate the environmental
impact of processes and operations [55–58].

In order to develop a dynamic MOO sub-frame that accommodates competing and
conflicting objectives, a decision support tool is essential. Since existing penalties and taxes
cannot offset economic benefits, setting criteria based on specified thresholds of CO2 emis-
sions for each period (setting a maximum allowed carbon emission limit [59]) is a simple
and straightforward solution, while real-time emissions-to-economic-benefit ratios could
also be a helpful index for the decision-making process. In this regard, more elaborated
algorithms can also be deployed to automate the procedure, for instance, Huang et al.
(2022), implemented the VIKOR algorithm as a MCDM method [60]. It should be noted
that if the CO2 emission criteria are not met, the algorithm will select alternative scenarios
through an iterative process that utilizes block model optimization and fleet management
systems. These scenarios will be selected based on pre-defined priorities, which will typi-
cally involve a trade-off in production. This approach is necessary to minimize deviations
from the long-term goals, while ensuring that the overall impact on the environment is as
low as possible.

4. Discussion

To enhance sustainable mining practices, it is crucial to balance the three pillars of
environment, economy, and society. However, achieving optimal performance in these
areas may require making trade-offs. It is essential to develop responsible ways to perform
individual processes in the mining industry. For instance, responsible mine planning can
play a vital role in promoting sustainable mining practices. Integrating MOO models
with life cycle assessment (LCA) techniques in a simulation-based MOO framework can
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provide near-optimal and optimal production scenarios that consider both economical and
environmental pillars of sustainability.

It is essential to recognize that implementing advanced integrated approaches in the
mining industry requires a fundamental understanding of sustainable balancing. By incen-
tivizing responsible behavior and adopting sustainable mining practices, mining companies
can prioritize sustainability while still maintaining economic viability. In this regard, gov-
ernments and regulatory bodies must establish policies that provide incentives or penalties
for environmentally conscious actions to encourage sustainable practices in the mining
industry. Offering tax credits or subsidies for companies that adopt eco-friendly strate-
gies and imposing penalties or fines on companies that do not adhere to environmentally
friendly practices can promote sustainable mining practices. It is important to note that
there are marked differences in the impact of carbon pricing between countries due to
variations in GHG emission intensities [61]. These variations may be influenced by factors
such as differences in energy mix, industrial structure, and climate policies. In a recent
article, Vergara-Zambrano et al. (2022), argue that the cost of implementing a solar–biogas
hybrid renewable energy system in the copper mining industry should be increased to
100–1000 USD/ton CO2 equivalent, which is significantly higher compared to Chile and
other developed countries [62]. For example, in Canada, the carbon price is expected to be
less than 100 CAD/ton CO2 equivalent by 2025.

On this basis, It is generally acknowledged that the Carbon Price Taxes (CAT) imposed
in different regions and territories are not always commensurate with the economic benefits
of increasing production [63]. Therefore, it is crucial to conduct a comprehensive cost-
benefit analysis to determine the most appropriate carbon pricing strategies for a specific
region or territory, taking into account both economic and environmental factors. Imple-
menting a constraint on GHG emissions for each sector, similar to the Energy Efficiency
Opportunity (EEO) program, which limits energy usage to no more than 0.5 petajoules per
year, could be an effective solution example.

In essence, by prioritizing sustainability and establishing a strong foundation of sus-
tainable balancing, mining companies can create value for all stakeholders while minimiz-
ing negative impacts on the environment. Implementing advanced integrated approaches
can further improve sustainable mining practices and help the mining industry move
towards a more sustainable future.

5. Conclusions and Future Studies

As mining operations have the potential to have significant environmental impacts,
it is crucial for mining companies to consider these impacts in their STMP in order to
maintain sustainable practices and still achieve their economic goals. Utilizing frameworks
such as LCA and incorporating integrated sustainable practices can aid in achieving this
goal. However, it is important to note that there may be trade-offs between maximizing pro-
ductivity, reducing costs, and reducing carbon emissions. Trade-off analysis and predefined
criteria are useful tools for evaluating best possible scenarios. Additionally, developing
accurate case-specific LCIs for each operation and region is crucial for achieving realistic
results. To promote sustainable practices in the mining industry, it is essential to establish
robust green policies and regulations. However, it is important to note that government and
territory-imposed CAT alone may not be sufficient in achieving this goal. Another option is
to develop a sustainable practice framework for each specific task in the mining processes.

In this study, we aimed to elaborate on how we can transfer the current practice in
STMP to sustainable practice by integrating the LCA with STMP in a single simulation-
based MOO framework to be used for planning purposes in surface mines. Future studies
in this field could explore GHG emissions and other environmental impacts using a com-
prehensive framework through in-depth case study analysis.
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