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Abstract: The difficulty of effectively planning and assigning weekly activities has a significant
influence on the long-term productivity of an underground mine. It is an especially difficult task
to choose the best places for operations inside an underground gold mine. It cannot be resolved by
only selecting the levels with the highest grade of ore because the underground mine’s ore transport
network has a range of capacity limitations that may prohibit the immediate mining of all the levels
with the highest grade. To solve this scheduling difficulty, we formulated a new mixed-integer
network flow model of the problem of weekly allocating mining operations in an underground gold
mine such that the total gold mined (in ounces) was maximized subject to the transportation capacity
constraints. The model was applied to an underground gold mine in Red Lake, Ontario, Canada.
The results were compared to those of two greedy heuristic models that were designed to represent
the decision-making heuristics that are currently used at the mine. It was found that the new model
yielded solutions that improved upon the two greedy heuristics by 14.7% and 6.0%, respectively.
The results of this research illustrate that the development of this optimization model can support
decisions to improve a gold mine’s productivity.

Keywords: network flow model; operational planning model in gold mine; operations research;
underground mine

1. Introduction

In underground mines, the problem of scheduling the weekly locations of mining
operations has a major impact on the productivity of the entire mining operation [1].
The objective of the weekly schedule is to maximize production within the constraints of
the mine’s strategic and tactical plans. Optimization of the weekly schedule is difficult
to optimize for two reasons. First, the solution (i.e., the optimal locations selected to
mine over the next weekly period) is constrained by the feasibility of transporting the
mined material from the selected locations, through the capacity-constrained transportation
network, to the surface. The transportation network in an underground mine has strict
capacity constraints on the mass of material that can move, per unit time, through many
links within its transportation network. The second reason this problem is difficult to
solve optimally is that commercial software is currently not available for such a planning
problem in underground gold mines. There is no general-purpose software package that
has been designed to represent realistically the diversity of constraints peculiar to the many
underground mine types—including underground gold mines. As a result, planners are
forced to resort to using ‘rules of thumb’ to solve this problem.

In underground gold mines in particular, the operational planning problem of schedul-
ing the weekly locations of mining operations, subject to transportation constraints, has, to
our knowledge, not been formulated as an optimization model at the operational scale of
planning. The problem has therefore been solved using ‘rules of thumb’ (i.e., heuristics)
typically executed on a spreadsheet. Finding an optimal rather than a heuristic solution
to this problem is important for two reasons. First, the difference between an optimal
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and a heuristic solution may have major differences in the objective function value of the
problem’s solution; i.e., the mine’s operational productivity, measured in ounces of gold
delivered to the surface per day. This is because, in a gold mine, the grade of the gold-ore
(measured in g/tonne) varies from location to location. In other words, the value of the
locations selected for mining can vary greatly because of the variance of grade across space,
in an underground gold mine. Hence, if this were, for example, a coal mine (e.g., [2]), the
difference between a heuristic and an optimal solution to this problem may not be great, be-
cause the value of the grades at each selected location differ less significantly than in a gold
mine. Since this is a gold mine, the value of the optimal feasible solution is highly sensitive
to slight differences in the locations selected for mining. Therefore, the difference between
an optimal and a heuristic solution to this problem may be quite important economically.
A second reason for the importance of using an optimization model on this problem is that
the above-ground processing facilities are constrained, in their daily productivity, by the
value of the gold ore that is delivered to the surface each day. Since the value of the gold
ore delivered to the surface each day is the objective function of this operational problem’s
optimization model, the solution to this problem has a direct impact on the productivity of
the above-ground processing facilities. In other words, the solution to this problem, when
seen in a broader context, can be seen to act as a constraint on the economic productivity of
the entire mining facility itself.

The objective of this paper is to formulate and evaluate a new operational planning
model for the underground gold mining problem of scheduling the weekly and optimal
location of mining operations, subject to transportation constraints on the flow of material.
The formulation will be of a mixed-integer, network-flow model. This model will be applied
to a case study at the Red Lake Gold Mine in Ontario, Canada. The model will be evaluated
by comparing its solution to that of a greedy heuristic currently used. In this way, we will
evaluate a larger question: whether the benefit of using a specific operational planning
model, for constraints peculiar to underground gold mine, is of any economic consequence.

The outline of this paper is as follows: first, a literature review is presented; second,
the formulation of the new model and the heuristic algorithm are presented in the Methods;
third, the case study, Red Lake Gold Mine, is described; fourth, the results are presented, in
which the optimal solution is compared to the heuristic solution; and finally, a discussion
of the paper’s results and their significance is evaluated.

2. Literature Review

Literature reviews on the use of operations research in mining in general (e.g., [3–5]),
and underground mining in particular [6], indicate that: while there is a wealth of research
in the development of optimization models for strategic and tactical problems in mining,
published work on scheduling models used at the operational scale has been much more
scarce. The literature to be reviewed on this problem is therefore brief and shows a great
diversity of models formulated for operational production planning. For this reason, the
review is presented chronologically, not thematically.

Nehring, Topal, and Knights [7] developed a model for a sub-level stopping mine,
which was used to solve the problem of scheduling and allocating machines for the trans-
portation of extracted ore from the draw-points, via intermediate storage, to a haulage shaft.
The model also included decisions on a second-stage movement of ore; i.e., transporting
ore from an ore-pass to a crusher. The problem was formulated as a mixed-integer pro-
gramming (MIP) model to allocate machines to different draw-points, on a shift basis, over
a period of 2 months. The objective function of the model was to minimize the deviation
from production targets subject to constraints on machines and crew. The model’s solutions
were evaluated on a simulated mine.

Martinez and Newman [8] developed a comprehensive operational scheduling and
allocation model for an iron ore mine in Northern Sweden. The model minimized deviations
from monthly production targets subject to a host of operational constraints, many of which
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were peculiar to sub-level caving. The MIP model was solved on a real-world dataset,
using a heuristic algorithm, to within 5% of production targets.

Howes and Forrest [9] described an approach to improving operational decision
making at a mine in Bulgaria. A key strategy introduced in this work was short interval
control. This involves the use of real-time production information to provide a central
monitoring and control room with the real-time status of all tasks in the mine. This
comprehensive communications infrastructure was designed to support key frontline
decision making on operational resource allocation achieving the maximum efficiency for
each shift. At present, the decisions are made by management in the central control room,
but the development of operations research models to support management decisions in
this environment is the next step in the evolution of this ambitious project, and therefore, it
is a fruitful field of future research on operational scheduling in mining.

Nehring et al. [10] addressed the task of integrating short- and medium-term produc-
tion plans. Their method was to combine the short-term objective of minimizing deviation
from targeted mill feed grade with the medium-term objective of maximizing the net
present value (NPV) into a single mathematical optimization model. Their short-term
problem was not constrained by capacities on the transportation network. Their resulting
solution was a global optimum of the two planning problems.

Little, Knights, and Topal [11]) evaluated the advantage of simultaneously integrating
decisions on both stope layout and production scheduling into one model. They found
that the solutions generated by the integrated model were superior to those using different
models sequentially. The benefits of integrating separate but interdependent models, as
demonstrated by these authors, are promising.

Schulze et al. [12] scheduled a mobile production fleet in an underground, room-and-
pillar, potash mine. The objective of the model was to minimize the make-span, i.e., to
create the shortest logical project schedule, by efficiently using project resources and adding
the lowest number of additional resources to each sub-task. The problem was formulated as
an MIP model and solved using a commercial solver. The authors continued to explore the
room and pillar-scheduling problem by developing a heuristic solution method in Schulze
and Zimmermann [13].

Campeau and Gamache [14] presented an optimization model for the short-term
scheduling of excavation, hauling, and backfilling activities at a cut-and-fill gold mine in
Canada. The objective function was to maximize the total discounted tonnage extracted
over an eighteen-week planning horizon, subject to resource and sequencing constraints.
The authors observe that the real value of their solutions rests heavily on the quality of the
tactical plan’s selected sequence of blocks, on which their model acts.

Manriquez et al. [15] developed a simulation–optimization model to generate short-
term production schedules for improving schedule adherence using an iterative approach.
In each iteration of this framework, a short-term schedule was generated using a mixed-
integer linear programming model that is simulated later using a discrete-event simulation
model. The model was not subject to capacity constraints on the transportation network.

From this review of the literature, one can draw two observations. First, the problems
modeled for operational planning in underground mines are not generic but quite diverse
and specific to mine types. The models formulated were often custom-built for the partic-
ular extraction method of the mine and its design. It is perhaps for this reason that there
exists no commercial optimization software that is universally employable for operational
scheduling in all underground mines, as there is for tactical planning of underground
mines [3]. A second observation that can be drawn from the literature review is that the
particular problem addressed in this paper (i.e., the optimal operational-scale scheduling
of gold ore and waste flow, in an underground gold mine) has not been addressed within
prior research.
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3. Methods

The Methods is divided into 4 parts. First, a description of the problem, with a
conceptual figure, is given; second, the mathematical formulation of the optimization
model is presented; third, the heuristic algorithm used in this paper, to represent the
current decision-making procedure at the mine, is given. Finally, the case study and data
used are described.

3.1. Description of Modeled Problem

A conceptual figure of the problem is presented in Figure 1. Here, we observe a
simplified representation of an underground gold mine. First, observe that there are
9 levels. Each level may have a different: (i) grade of ore (g/tonne); (ii) mass of ore that
may be removed daily (tonnes/day); and (iii) mass of waste that must be removed if ore
is removed (tonnes/day). These are the network’s source nodes. Second, observe that
there are two types of shafts for the downward movement of mined material: ore and
waste shafts.
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Figure 1. Conceptual figure of the modeled problem.

There are no capacity constraints on these shafts. Third, observe that at the bottom each
shaft, the horizontal transportation of both materials occurs. This horizontal transportation
has a daily capacity constraint. The shafts and horizontal transportation arcs are the
network’s trans-shipment arcs. Fourth, observe that at the end of the network, there is a
capacity-constrained elevator to the surface. This is the network’s terminal node where
there is a daily demand for ore and a daily demand for the mass of waste resulting from
the mining of the ore. Hence, the problem may be summarized as: select a set of levels
for daily operation such that the mass of gold removed (in ounces) is maximized, subject
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to: (i) capacity constraints on ore transportation (tonnes per shift); (ii) daily ore targets
at the above-ground processing facility (in tonnes) are met; and (iii) the waste material
accompanying ore removal is removed. The problem is formulated as a network flow
model where each level is a supply node and the elevator is the demand node. Constraints
on the flow of material occur at transition nodes. Unless these transportation capacity
constraints are used in planning, the movement of both ore and waste through the mine
could be stopped during a shift because a transportation corridor may become backed-up
from crews trying to move too much ore through a corridor, with too little capacity for
such a quantity, within the planned period. In addition, the selection of a level must be
represented by a binary decision variable because if real numbers were used, a solution
with tiny, fractional mining of levels could occur. This is not feasible in practice because the
fractions might be very small, and therefore, a solution could be produced where it is not
worth sending machines and a crew to mine a level with a tiny, fractional amount of ore.
Finally, the daily schedule of production is to be found for a planning horizon of 7 days.

This problem is difficult to solve, for it is a combinatorial optimization problem that
may be reduced to the famous knapsack problem. In the knapsack problem, one is given a
set of items, each with a weight and a value, and one must select a set of items to include in
a knapsack such that (i) the total weight is less than or equal to a given limit; and (ii) the
total value of the contents of the knapsack is as large as possible [16]. The operational
mining problem described above can be reduced to the knapsack problem because apart
from the transportation constraints, the problem is the same; that is, selecting a set of levels
so that the total mass of ore selected is less than or equal to the limit set by the elevator’s
capacity and the objective is that the total value of the gold (in ounces) from the levels
selected for mining be as valuable as possible.

3.2. Formulation of the New Model

The mathematical formulation of the model is presented below.
Indices and Sets
n, N index and set of levels in the mine.
t, T index and set of planning periods.

m, M
index and set of materials moved through the network (i.e., ore or
waste material).

i, j, J index and set of nodes in the network.
B set of intermediate (transshipment) nodes.
C set of arcs with capacity constraints.
Dij capacity on arc i–j (tonnes per day).
On set of arcs flowing out from node on level n.
In set of arcs flowing into node on level n.
F the set of arcs flowing into network’s terminal node.
Parameters

smn
mass of material type, m, available for removal at level n of the mine
(tonnes).

gn estimated mass of gold ore available at level n of the mine (grams).
Decision Variables
ynt 1 if material is removed from level n in period t, 0 otherwise.
xijmt flow of material, m, through arc i–j, in period t (tonnes).

Objective Function:
Maximize total mass of gold removed (in grams) over all periods

∑
n∈N

∑
t∈T

yntgnt (1)

Subject to:

- Mine each level not more than once.
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∑
t∈T

ynt ≤ 1 f or each n ∈ N (2)

- If a level is mined, it is a source of ore and waste material flow.

∑
(i,j)∈On

xijmt − ∑
(i,j)∈In

xijmt = yntsmn f or each n ∈ N (3)

- Transition nodes defined.

∑
(i,j)∈On

xijmt − ∑
(i,j)∈In

xijmt = 0 f or each n ∈ N, M ∈ M, t ∈ T (4)

- Terminal node defined.

∑
(i,j)∈F0

xijmt − ∑
(i,j)∈Fi

xijmt = ∑
n∈N

yntsmn f or each m ∈ M, t ∈ T (5)

- Capacity constraints.

∑
m∈M

xijmt ≤ Dij f or each ij ∈ C, t ∈ T (6)

- Binary and non-negativity constraints.

ynt ∈ {0, 1} for each n ∈ N, t ∈ T (7)

xijmt ≥ 0 for each ij ∈ J, m ∈ M, t ∈ T (8)

The objective Function (1) of the model is to maximize the total mass of gold removed
(in ounces) during the daily shift. The mass of gold is based on the tactical plan’s estimated
grade of each block at each level (measured in grams per tonne) and the total mass of
gold ore and waste (measured in tonnes) that is currently available to be mined at a given
level. The first constraint (2) ensures that no level may be mined more than once over the
planning horizon. The second constraint (3) defines the potential sources of flow through
the network. This constraint ensures that if a given level, n, is mined in period t, then
each material type, m, will flow out of the node on this level and into the network. Note
that the flow of each material type (ore and waste) is tracked separately from each source.
Constraint (4) is a standard flow balance equation for transition nodes in a network model.
Equation (5) defines the terminal node and the mass of each material type demanded at the
terminal node. Note that the total mass of each material type refers to the total mass of each
material type that was mined during each period. There is an upper bound on this value
implicit in the capacity constraint on the arc connected to the terminal node. Equation (6)
defines the capacity constraints on the flow of material types imposed on the set of arcs
with capacity constraints. Equation (7) ensures that the decision variable, ynt, is binary. This
variable is binary for two reasons. First, the mass of material removed from each level must
be discrete; otherwise, the model might produce solutions that are operationally infeasible
(e.g., tiny masses of material to be scheduled for removal from a level). Second, the binary
decision variable is needed to trigger the flow in Equation (3). Equation (8) ensures that a
negative flow value is not possible.

3.3. Description of Heuristic Algorithm

Given the absence of an optimization model to solve this operational problem, our
industrial partner had been using a heuristic method (i.e., rules of thumb). This method will
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now be described, for its results will be compared with the results of the new optimization
model in order to evaluate the latter.

Given that the objective function of the model is maximize the gold ounces removed
over the planning horizon, subject to capacity constraints, a greedy search was used. A
greedy search heuristic has been used quite successfully on many versions of the knapsack
model [17]. In this greedy search, the levels were sorted from highest to lowest grade, and
selection proceeds from highest to lowest, subject to whether the addition of a level to the
schedule violates the transportation capacity constraints of in the mine (see Equation (6)
above). An algorithmic flowchart of the greedy search is presented in Figure 2 (below).
Here, the search is repeated at the start each of the 7 days, and all candidate levels are
rendered eligible for inclusion in the schedule at the start of each day.
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In the greedy heuristic described above, there is a demand limit on two types of materials
mined: gold ore and waste. In addition, a second heuristic is used in the paper, which is
called heuristic 2. Heuristic 2 places a demand limit only on the ore and allows the mass of
waste to exceed its target. Heuristic 2, therefore, allows for greater opportunity to maximize
the value of the objective function while running the risk of mining a slight excess of waste.
Heuristic 2 is sometimes used by the planners at Red Lake. Hence, the trade-off involved
in using heuristic 1 versus heuristic 2 is a practical one for decision makers to explore and
use. In this paper, both heuristic 1 and heuristic 2 are used, and their results are presented
and compared with the results of the new optimization model.
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3.4. Description of Case Study

The case study is the Red Lake underground gold mine, which is located in Red
Lake, Ontario, Canada. The mine is approximately 50 years old and is currently under
the management of Newmont-Goldcorp Corporation, our industrial partner. The levels of
production are shown in Figure 3 (below). Each level contains discrete masses of both ore
and waste material. Based on data shared with us by our industrial partner, the mass of
each block, in each level ranges from 3500 to 5000 tonnes. Each block has been scheduled,
in the tactical plan, for mining within the calendar year. The objective of this model is to
transform the annual tactical plan into an optimal weekly operational plan of production.
There are 19 levels currently eligible for production based on the tactical plan.

The levels scheduled for tactical operation at the Red Lake gold mine are presented
in Figure 3 (below). First, observe that there are three sets of levels. Second, observe that
at the bottom of the ore and waste shafts of each level, the horizontal transportation of
material is required, and there is a daily haulage capacity constraint on this. Third, observe
that at the bottom of the mine, there is an elevator to the surface with a daily capacity
of 3000 tonnes/day. The daily demand at the surface is for 2000 tonnes of gold ore and
1000 tonnes of waste to be sent to the surface daily.
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Each block at each level at Red Lake differs by: (i) the grade of the ore (g/tonne);
(ii) the mass of ore that can be removed in one day (tonnes/day); and (iii) the mass of waste
that must be removed in one day (tonnes/day), if ore is removed. The values for these
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parameters are presented in Table 1. It should be noted that the parameters in Table 1 for
the grade of ore are not real. Our industrial partner, understandably, wished to keep these
values on grade private. The parameters for the grade of ore were therefore generated
using a random number generator such that each level was randomly assigned (with equal
probability) a grade between 5 and 15 g of gold per tonne of ore. This range of grades is
realistic for a typical gold mine, and the fact that the values assigned are not real does not
compromise the evaluation of our optimization model.

Table 1. Ore and waste values at each level of the case study.

Level Gold Ore
(Tonnes/Day)

Grade
(g/Tonne)

Gold
(Ounces/Day)

Waste
(Tonnes/Day)

16 174 7.1 43.7 120
17 291 5.6 57.4 126
18 208 10.0 73.4 142
19 318 11.7 130.9 155
20 258 10.6 96.3 134
21 291 14.1 145.3 133
22 277 11.3 110.5 145
24 168 6.5 38.9 112
26 259 8.9 81.6 119
27 215 11.6 87.6 201
28 251 9.9 87.5 152
29 264 13.7 127.3 187
31 226 8.5 67.5 111
32 171 9.0 54.6 86
33 205 9.7 70.2 129
34 245 13.2 114.3 116
35 185 5.6 36.4 179
36 179 6.3 40.1 83
37 260 5.4 49.4 184

The optimization model was built using MPL®software (Maximal Software Inc, Ar-
lington, VA, USA) and solved using the branch and bound algorithm of CPLEX® 12.0 (IBM
Corporate, Armonk, NY, USA) on a Windows 10 operating system using an Intel CORE
i7 CPU (Intel Corporation, Santa Clara, CA, USA). The model had 133 binary decision
variables and 226 continuous flow variables. All instances were solved in less than 30 s.

4. Results

The objective function values resulting from the application of the optimization and
greedy heuristic models to the case study are presented in Table 2 (below).

Table 2. Results of the optimization and greedy heuristic models compared.

Gold
(Ounces/Day)

Ore
(Tonnes/Day)

Waste
(Tonnes/Day)

Total
(Tonnes/Day)

Optimization Model 774.8 1993 993 2986
Greedy Heuristic 1 675.6 1292 921 2213
Greedy Heuristic 2 731.1 1708 1007 2715

Table 2 yields several observations. First, the objective function (i.e., maximize gold
ounces mined per day) of the optimization model is greater than the objective functions
of both greedy heuristics: it is 14.7% higher than greedy heuristic 1 and 6.0% higher
than greedy heuristic 2. These results indicate the benefit of formulating and using an
optimization model for solving this problem versus using the current greedy heuristic.
Second, Table 2 also shows that greedy heuristic 2 achieved a higher objective function than
greedy heuristic 1 by exceeding its waste limit (of 1000 tonnes/day) by 7 tonnes per day;



Mining 2022, 2 721

and that, even after exceeding its waste limit, the objective function of greedy heuristic 2
was 6% lower than that of the optimization model. These results therefore show that the
value of a solution to this problem depends not only on the optimal removal of gold ore
alone but also on the optimal removal of ore and waste simultaneously. Third, Table 2 also
shows that the solution of the optimization model came closest to maximizing the capacity
of the network’s final node (i.e., 3000 tonne/day capacity of the elevator carrying material
to the surface). This can be seen by the values under the total tonnes removed per day
where the optimization model’s solution used 96.5% of the capacity, while greedy heuristic
1 used only 73.8% and greedy heuristic 2 used 90.3%. These differences in capacities used
show the importance, in this problem, of packing the elevator to the surface as closely to its
capacity as is possible by using an optimization model based on the knapsack model.

The solutions of the optimization model and greedy heuristics are presented in Table 3.

Table 3. The solutions of the optimization model and greedy heuristics.

Level Optimization
Model

Greedy
Heuristic 1

Greedy
Heuristic 2

Grade
(g/Tonne)

16 7.1
17 5.6
18 10.0
19 x x x 11.7
20 10.6
21 x x x 14.1
22 x 11.3
24 6.5
26 x 8.9
27 x x 11.6
28 9.9
29 x x 13.7

31 x 8.5
32 x x 9.0
33 x x x 9.7
34 x x x 13.2
35 5.6
36 6.3
37 5.4

Table 3 presents the locations of the levels selected for mining, in each day. Note that
the selected blocks at each level did not change over the days of scheduling because of their
great magnitude (in tonnes) relative to magnitude (in tonnes) of material removed daily.
Table 3 yields three observations worthy of note. First, one can observe the effect of the
first flow constraint (between levels 29 and 31 as shown in Figure 3), of 1800 tonnes of total
material flow per day, on the three different solutions. Given the parameters on ore and
waste material at each level (in Table 1), one can see that the solution of the optimization
model in Table 3 moved 1606 tonnes of material and 491 ounces of gold from level 29 to 31;
and the solution of the greedy heuristic moved 1689 tonnes of material and 468 ounces of
gold. Hence, the capacities between levels 29 and 31 was more closely met by the greedy
heuristic than by the optimization model. This difference indicates that the optimal solution
does not need to maximize the flow of material or gold through this capacity constraint
(between levels 29 and 31) as it does through the final capacity constraint (after level 37).
Hence, in this model of the problem, the final capacity constraint alone functions as a
knapsack constraint, i.e., a constraint by which as much gold as possible must flow subject
to a capacity limit on total flow of material (tonnes/day).

Second, Table 3 shows that the optimal solution contains levels of a lower grade of
ore than the solutions of the greedy heuristics. The average grade of ore for the levels
selected in the optimal is 10.8 g/tonne, while the average grade per level for the solutions
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of greedy 1 and greedy 2 were 12.3 and 11.9 g/tonne, respectively. The lower grade selected
in the optimal solution was facilitated by more closely packing the total material capacity
constraint of 3000 tonnes/day, thus enabling the movement of more material and therefore
more total gold per day than the greedy heuristics. Hence, the results in Table 3 illustrate
how the optimal solution represents a more successful resolution of the trade-off implicit in
this problem; viz., the problem of packing as much gold as possible into the terminal node
of the network subject to capacity constraints in the transportation network.

Third, from Table 3, one can observe that the optimal solution included more levels
to operate on than the heuristic solutions. The optimal solution contained eight levels,
while the solutions of greedy heuristic 1 and 2 contained six and seven levels, respectively.
The extra level of operation contained in the optimal solution entails a higher operational
cost, and the decision-maker must evaluate whether the additional cost of operations is
worth the additional flow of gold accompanying this solution. In this case, the trade-off
between the optimal solution and the solutions of heuristic 1 and 2 implies that: an increase
in gold moved to the surface, by 14.7%, requires an extra 2 levels of operation compared to
heuristic 1; and an increase in gold mined, by 6.0%, requires an extra one level operation
compared to heuristic 2 (which are also has excess waste mined).

5. Discussion

From the results, we find several points deserving discussion: first, the merit of the
greedy heuristic used in this paper; second, the practical benefits of using this model; and
finally, some thoughts on the benefits of developing an operational-scale optimization
model for underground mining.

First, an evaluation of the greedy heuristic versus the optimization model is required.
To do this, it should first be noted that a greedy heuristic has been used, for many decades, to
solve multiple versions of the knapsack model [18] and has produced useful results [17]. In
other words, by using the greedy heuristic method to provide results with which to compare
and evaluate our optimization model, we have not selected a weak and insignificant method.
Greedy heuristics have been used, in practice, to solve large instances of the knapsack
problem [19]. The operational mine-level scheduling problem modeled in this paper is not
likely ever to have a problem instance so large that it will require a greedy heuristic to solve
it. This is because the binary decision variable, used in this model, represents a mine’s
level; and there would need to be in excess of 5000 mine levels for a problem instance to be
computationally infeasible for an optimization model which is NP-hard. Hence, it unlikely
that the benefits of using an optimization model instead of a greedy heuristic, to solve the
model in this paper, will ever become computationally infeasible.

Second, it should be observed that the results illustrate two practical benefits of
using the optimization model instead of the greedy heuristic. The first benefit is the
increased value of the objective function. The objective function of the optimization
model was 14.7% and 6.0% higher than the objective function of greedy heuristics 1 and 2,
respectively. The practical benefit of this is an increase in the mine’s economic productivity.
The second benefit is an improved scheduling of waste removal. The results produced by
the greedy heuristics show the awkward predicament that arises when a greedy heuristic
is used to schedule the removal of both ore and waste; i.e., either underutilization or
overutilization of the mine’s transportation capacity occurs when compared to the solution
for the optimization model. For example, Table 2 shows that heuristic 1 underutilized the
mine’s transportation capacity because it was forced to stop adding levels to be mined
when the waste to be moved reached 921 tonnes (i.e., 92% capacity), and this meant that
total material (i.e., ore + waste) to be moved reached only 2,213 tonnes (i.e., 74% of capacity).
Table 2 also shows that for heuristic 2, the mine’s capacity to remove waste was slightly
exceeded. In practice, the excess waste is placed in temporary underground storage, and
when the capacity of this underground storage is exceeded, then the scheduled flow of
ore through the system must be interrupted so that the excess waste can be removed.
These intermittent interruptions of the movement of ore to the surface have the effect
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of intermittently underutilizing the ore-processing facilities at the surface of the mine.
Hence, an additional practical advantage of using the optimization model is not only that
it maximizes the mine’s capacity to move material but that it does so without intermittent
interruptions caused by the stockpiles of waste.

Finally, the results illustrate the benefits of developing an operational-scale model
for an underground mine. The reason operational-scale optimization models have not
been widely used in the underground mining industry is because operational problems in
underground mines are less generic than tactical models. That is, different types of mines
have constraints or objectives that are peculiar to that mine type, and an optimization model
would therefore need to be tailor-made for that type of mine in order to plan for operations.
As a result, operational-scale models have not been broadly used, and heuristic approaches
have been relied upon to generate solutions [6]. The results in this paper illustrate the scale
of the economic benefits that can be gained by developing and using an operational scale
model versus the heuristics.

6. Conclusions

In this study, a new formulation of an optimization model was developed and evalu-
ated for solving the problem of scheduling weekly levels of operations in an underground
gold mine. The results illustrate that an increase in productivity between 6% and 14.7%
resulted from using the optimization model versus the currently used heuristic method.
These results indicate that the development of new optimization models for underground
mining problems can be a field of study with important economic consequences.
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