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Abstract: This paper presents the machine learning (ML) method, a novel approach that could be a
profitable idea to optimize fleet management and achieve a sufficient output to reduce operational
costs, by diminishing trucks’ queuing time and excavators’ idle time, based on the best selection of the
fleet. The performance of this method was studied at the Zenouz kaolin mine to optimize the type of
loader and the number of trucks used to supply the processing plant’s ore demands. Accordingly, five
years’ data, such as dates, weather conditions, number of trucks, routes, loader types, and daily hauled
ore, were collected, adapted, and processed to train the following five practical algorithms: linear
regression, decision tree, K-nearest neighbour, random forest, and gradient boosting algorithm. By
comparing the results of the algorithms, the gradient boosting decision tree algorithm was determined
to be the best fit and predicted test data values with 85% accuracy. Subsequently, 11,322 data were
imported into the machine as various scenarios and daily hauled minerals as output results were
predicted for each working zone individually. Finally, the data which had the minimum variation
from the selected required scheduled value, and its related data concerning loader type and the
number of demanded trucks, were indicated for each day of the working year.

Keywords: machine learning; mining optimization; fleet management; mine planning

1. Introduction

In recent years, interest in artificial intelligence (AI) has dramatically increased among
researchers and practitioners from all fields, with successful real-world applications in
consumer products, like digital assistants or content recommendation, as well as in manu-
facturing environments, like autonomous machinery and robotics. One aspect of AI that
has attracted the most interest and enthusiasm in recent years is machine learning (ML),
which is the foundation for many successful real-world AI applications. ML techniques
are a group of algorithms that can find intricate patterns in data and use them to forecast
future events in a variety of industries. To illustrate, in 2021, Zhao et al. [1] presented and
proposed a novel method for ground fissure identification and exploration by infrared
remote sensing onboard an unmanned aerial vehicle (UAV). Using this method, a region of
interest (ROI) that includes ground fissures directly above the middle of a long wall face,
No. 12401 in the Shangwan coal mine was identified. In the same year, Zheng et al. [2]
proposed a Multi-class Oil Palm Detection approach (MOPAD) to reap both accurate de-
tection of oil palm trees and accurate monitoring of their growing status. Based on a
faster region-based convolutional neural network (faster R-CNN), MOPAD combines a
refined pyramid feature (RPF) module and a hybrid class-balanced loss module to achieve
a satisfying observation of the growing status for individual oil palms. In addition, Puni-
ach et al. [3] proposed a workflow for automatically determining the field of horizontal
displacements caused by underground mining using ultra-high resolution orthomosaics.
The study included a comparison of the effectiveness of image registration algorithms for
matching of multi-temporal orthomosaics.
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On the other hand, fleet management and scheduling are the most significant compo-
nents of operations in the mining cycle. So, hauling costs, accounting for 60% of operating
costs, play a crucial role in mining economics and can influence production costs and final
product price [4]. So, this paper aimed to make a correct prediction and selection of the
fleet using the ML method and real data from the work environment. In open-pit mining,
the complexity of operations, coupled with an uncertain and dynamic environment, limits
the certainty of predictions. Consequently, to achieve production targets and decrease
operational costs, the best accuracy in predictions with a minimum of opportunity lost in
fleet management should be reflected by considering all the factors, no matter however
small, which are related to each other. Accordingly, for many years, various methods have
been performed and accomplished by many scientists and industrial companies to optimize
fleet management by analyzing multiple situations. Lizotte and Bonates [5] proposed a
method to minimize shovel idle time, maximizing immediate truck use and allotting trucks
to shovels to meet specific production purposes. However, in this study, all situations
were considered stable. Hashemi and Sattarvand [6] presented a dispatching simulation
model in ARENA simulation software with the objective function of minimizing truck
waiting times for trucks having a developed hauling cycle and obtained a 7.8% improve-
ment by applying a flexible assignment of the trucks for the loaders, compared to the
fixed assignment system. Temeng and Otuonye [7] used the goal-programming-based
dispatching model to maximize production rate and maintain ore quality compared to
linear programming. Rodrigo et al. [8] performed a novel system productivity simulation
and optimization modeling framework. In their model, equipment availability was a
variable in the expected productivity function of the system. The framework was used for
allocating trucks by route. according to their operating performances, in a truck–shovel
system of an open-pit mine so as to maximize the overall productivity of the fleet. In these
three studies, only productivity was considered the main goal and idle time was neglected.
In 2010, Topal and Ramazan [9] presented a mixed-integer programming model (MIP).
Their model provides substantial cost savings for equipment scheduling by optimizing
truck usage. However, this study focused on decreasing the maintenance cost of mining.
Gu et al. [10] presented a dynamic management system of ore blending in an open-pit
mine based on GIS/GPS/GPRS using technologies from space, wireless location, wireless
communication, and computers to control ore quality and ensure the stability of ore grade.
They just focused on ore grade control instead of fleet management. Cox et al. [11] used
a genetic algorithm to develop cyclic automata for dispatching trucks in mines, but, they
should have focused on the real-time evolution of schedules and generalized the problem
to include blending constraints. Ahangaran et al. [12] discussed the changing trend of
programming and dispatching control algorithms and automation conditions. Finally, a
real-time dispatching model, compatible with the requirement of trucks with different
capacities, was developed using flow-networks techniques and integer programming (IP).
Additionally, the use of innovative methods in recent years has improved the performance
of the transport systems in mines. This model was presented for blending purposes, too.
Upadhyay and Askari-Nasab [13] presented a framework using a discrete event simulation
model (DES) of mine operations, which interacts with a goal programming (GP)-based mine
operational optimization tool to develop an uncertainty-based short-term schedule. This
framework allows the planner to make proactive decisions to achieve the mine’s operational
and long-term objectives. Baek and Choi [14] proposed a deep neural network (DNN)-
based method for predicting ore production by truck-haulage systems in open-pit mines,
which assisted comprehension of truck-haulage-system characteristics along with discrete
haulage-operation sequences and supported the prediction of ore production through train-
ing of DNN-based deep learning models without the need to develop additional algorithms.
This method needs to determine the optimum period for collecting training data. Moradi-
Afrapoli et al. [15] presented a new mixed-integer linear programming model (MILP) to
solve the truck dispatching problem in surface mines. They showed that the fuzzy linear
programming (FLP) model improved the ore production and truck wait time in the queues
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by more than 15%. However, further study by considering mixed truck sizes was needed.
In 2021, Mohtasham et al. [16] presented a multi-objective optimization model based upon
a mixed-integer linear goal programming (MILGP) model, which determines the optimal
production plan of the shovels and allocation plan of the trucks and shovels in order to
maximize production, to meet desired head grade and tonnage at the ore destinations, and
to minimize fuel consumption of trucks. Yeganejoo et al. [17] developed, implemented,
and validated an integrated simulation and optimization tool capable of predicting truck
fleet productivity and determining optimal fleet size based on historical data collected from
the active mine. Mohtasham et al. [18] proposed new strategies based on mixed-integer
non-linear programming (MINLP) models for the equipment sizing (ES) problem to verify
the overall efficiency of the fleet. The developed models estimate the optimal size of trucks
concerning the match factor value with two different strategies. The first strategy deals
with each loader type, and the second strategy is applied simultaneously with all types
of loaders. These studies did not integrate sources of uncertainty, including uncertainties
related to crushers’ capacity, truck cycle times, shovel’s output, equipment failures, and
ore quality into their proposed models. Upadhyay et al. [19] presented a simulation-based
fleet productivity estimation and fleet size determination algorithm developed to be used
in open-pit mines to estimate fleet productivity and predict the required fleet size to meet
production schedules in the presence of technical uncertainties. Their results showed that
the developed simulation-based algorithm could predict fleet productivity with more than
20% higher accuracy and had lower dependency on haulage distances.

The mentioned studies have individual problems, including disregarding past ex-
pertise in mining operations, limited flexibility for change in the production process, and
ignoring actual working situations in mines.

This paper uses machine ML, a novel approach known as a subfield of AI methods,
which can be a beneficial approach to best fit environmental conditions and work situations
to optimize fleet management and attain an adequate output. While fleet management
is related to several factors and procedures, ML methods consider work situations, like
routes, types of machinery, time, and weather conditions. Furthermore, these methods also
help planners to make reliable and accurate predictions. Considering that this method uses
historical data, one can be assured that the results of the method can be updated. On the
other hand, with the progression of time and the adding of more data, the accuracy of the
algorithms increases. Also, in this method, in contrast to other initiatives, the planning
can be updated by considering various situations, even the difference in plant demand in
a short time that does not require any costs for the mining department. In addition, this
method can be used to predict machinery in the short and long terms.

2. Machine Learning (ML)

ML has become one of the most critical topics within development organizations
looking for innovative ideas to leverage data assets to help the business gain a new level
of understanding. ML is a form of AI that enables a system to learn from data, rather
than through explicit programming. Resurging interest in ML is due to the growing
volumes and varieties of available data, and the fact that ML’s computational processing is
cheaper and more powerful, and provides affordable data storage. Machines that learn can
more quickly highlight or find patterns in data that human beings would have otherwise
missed. Consequently, ML techniques can be used to enhance humans’ abilities to solve
problems and make informed inferences on a wide range of problems. ML techniques
are divided into three sections, each of which has individual performance: supervised
learning, unsupervised learning, and reinforcement learning. ML uses various algorithms
that iteratively learn from data to improve and describe data, and predict outcomes. As the
algorithms ingest training data, it is possible to produce more precise models based on that
data. An ML model is the output generated when a machine learns by a learning algorithm
with data. Then, when the predictive model is provided with data, it predicts based on the
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data that trained the model [20]. In this paper, five regression techniques from supervised
learning are employed.

Figure 1 illustrates the flowchart of the optimum model selection operation using the
ML algorithms. As shown in Figure 1, all collected data was firstly sorted and standardized.
based on needs, so that machine learning algorithms could read and understand it. Then
these datasets were divided into two parts, including training and evaluation data. After
this division, the training data was entered as inputs to different algorithms to train the
machine. After training, the values predicted by the algorithm and the actual outputs of
the evaluation section were compared, and the accuracy of the algorithm was estimated.
Finally, the algorithm with the highest accuracy level was selected as the optimal algorithm
to continue the process.
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3. Studied Site

Zenouz kaolin mine is located near Zenouz city, approximately 15 km North of Marand
city of East Azerbaijan, Iran. Given that the Zenouz kaolin mine is one of the biggest in
the area, it contributes significantly to the local economy. The key factor in the amount of
revenue is transportation costs. In addition, kaolin is one of the important components of
the ceramic, insulation, and tile industries and has a crucial impact on the entire production
process. Therefore, the success and longevity of this mine is important ensure the survival
of client enterprises.

The mainstay of innovation today are research and development operations using
advanced technology that raise the added value of an industry sector. This study’s goal
was to provide industries, that have primary costs of raw material production which are
tied to transportation expenses, with a rapid, effective, persuasive, and useful technique.

Zenouz kaolin mine is the largest kaolin mine in the Middle East, producing approxi-
mately 1,700,000 tonnes of raw kaolin and supplying nearly 70% of the kaolin in the region.
This mine includes five working zones. Each zone has its own individual characteristics
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and processing plant demands. The mining method in this mine is open-pit mining, and
kaolin is extracted by blasting, loaded by various types of excavators, and hauled by trucks
to the processing plant and low-grade stockpiles.

Figure 2 shows the location of different zones and stockpiles.
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Data Collecting:
By collecting five years of records, from May 2017 to May 2021, in seven different

divisions, the 1975 data were regarded as machine learning input data. The data were
converted into numerical data to transform descriptive data into something understandable
and agreeable to machines. These seven categories and their related numerical forms are
presented as follows:

3.1. Month

This information was taken into account because the amount of minerals hauled varied
by month. Therefore, numbers 1 to 12 were allocated to the data for January to November,
as shown in Table 1. On the other hand, due to the fact that months are cyclic variables,
the values were encoded by transforming the data into two dimensions using a sine and
cosine transformation.

Table 1. Months and their related numerical values.

Month Encoded Data Month Encoded Data Month Encoded Data

January 1 May 5 September 9
February 2 August 6 October 10

March 3 June 7 November 11
April 4 July 8 December 12

3.2. Weather Condition

Weather conditions influence the operation of the hauling systems because operators
and equipment perform differently in various weather conditions. Since weather conditions
affect the amount of ore haulage, related data on this factor were collected and divided into
five situations, shown in Table 2.
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Table 2. Weather conditions and related encoded data.

Weather Condition Encoded

Cloudy (1,0,0,0,0)
Foggy (0,1,0,0,0)
Rainy (0,0,1,0,0)
Snowy (0,0,0,1,0)
Sunny (0,0,0,0,1)

3.3. Season

According to experimental observations, the amount of mineral transportation varied
in different seasons. Hence, this parameter was also analyzed for better consideration as
training data and is presented in Table 3.

Table 3. Seasons and related encoded data.

Season Encoded

Spring (1,0,0,0)
Summer (0,1,0,0)

Fall (0,0,1,0)
Winter (0,0,0,1)

3.4. Weekday

Due to several spatial and temporal constraints, truck drivers’ weekend driving
behavior is expected to differ considerably from their weekday driving style. Thus, the
weekdays were also considered and evaluated in Table 4.

Table 4. Weekdays and related encoded data.

Weekday Encoded

Monday 0
Tuesday 1

Wednesday 2
Thursdays 3

Friday 4
Saturday 5
Sunday 6

3.5. Number of Trucks

In Zenouz kaolin mine, two models of trucks, Sahand-WD615 and Mercedes-Benz-
OM335, are used, and the carrying capacity of each is 26 tons on average. The number
of trucks that haul minerals from different zones to stockpiles was also considered as
analyzable data for machine learning.

3.6. Routes

Zenouz mine complex includes six loading spots and two delivery points (see Figure 2).
Regarding the distances of these zones from the stockpiles, and considering the production
plan, this parameter was separated into nine divisions, shown in Table 5.

3.7. Loader Types

Since different types of excavator load trucks are utilized, the efficiency of these
machines was investigated. Four types of excavators were used as loaders at the studied
site, which were taken into account as part of the input data. Table 6 displays these loaders,
as well as the numerical data associated with them.
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Table 5. Routes and related abbreviations and encoded data.

Route Abbreviation of Routes Encoded

LG-stockpile to plant LGP (1,0,0,0,0,0,0,0,0)
Mine 1 to plant M1P (0,1,0,0,0,0,0,0,0)

Mine 1 to LG-stockpile M1LG (0,0,1,0,0,0,0,0,0)
Mine 2 to plant M2P (0,0,0,1,0,0,0,0,0)

Mine 2 to LG-stockpile M2LG (0,0,0,0,1,0,0,0,0)
Mine 3 to plant M3P (0,0,0,0,0,1,0,0,0)
Mine 4 to plant M4P (0,0,0,0,0,0,1,0,0)

Mine 4 to LG-stockpile M4L (0,0,0,0,0,0,0,1,0)

Super Mine1 to plant SP (0,0,0,0,0,0,0,0,1)

Table 6. Types of excavators and their related encoded data.

Loader Type Encoded

Hyundai 250 (1,0,0,0)
Hyundai 320 (0,1,0,0)
Komatsu 200 (0,0,1,0)
Komatsu 220 (0,0,0,1)

Table 7 shows examples of the collected data and Table 8 illustrates final table after
converting the data to numerical data.

Table 7. Sample of collected data.

Row Month Weather
Condition Season Weekday No. of

Tucks Routes Loader Hauled Ore
(tonne)

50 5 Sunny Summer Monday 6 M1 to plant Hyundai 320 382.800
51 5 Sunny Summer Thursday 12 M1 to plant Hyundai 320 1131.310
52 5 Sunny Summer Friday 18 M1 to plant Hyundai 320 2129.650
53 5 Sunny Summer Saturday 18 M1 to plant Hyundai 320 2277.940
54 5 Sunny Summer Wednesday 14 M4 to plant Hyundai 320 2036.88

Table 8. Encoded value of the data presented in Table 7.

Row Month Weather
Condition Season Weekday No. of

Tucks Routes Loader Hauled Ore
(tonne)

50 5 4 2 1 6 1 1 382.800
51 5 4 2 4 12 1 1 1131.310
52 5 4 2 0 18 1 1 2129.650
53 5 4 2 2 18 6 1 2277.940
54 5 4 2 6 14 1 1 2036.88

4. Data Pre-Processing
4.1. Important Data

Weekdays had insignificant impacts on model learning and creation basis and had low
impact rates on the learning process (see Figure 3) and this, along with the unpredictability
of the weather in the long term, meant the inclusion of weekdays in the continuation of
modeling was omitted. Five parameters were used as input data: season, month, number
of trucks, routes, and loader types. The data was processed and validated through efficient
techniques to train the machine properly.



Mining 2022, 2 535

Mining 2022, 2, FOR PEER REVIEW 8 
 

 

Table 8. Encoded value of the data presented in Table 7. 

Row Month Weather 
Condition 

Season Weekday No. of 
Tucks 

Routes Loader Hauled Ore 
(tonne) 

50 5 4 2 1 6 1 1 382.800 
51 5 4 2 4 12 1 1 1131.310 
52 5 4 2 0 18 1 1 2129.650 
53 5 4 2 2 18 6 1 2277.940 
54 5 4 2 6 14 1 1 2036.88 

4. Data Pre-Processing 
4.1. Important Data 

Weekdays had insignificant impacts on model learning and creation basis and had 
low impact rates on the learning process (see Figure 3) and this, along with the unpredict-
ability of the weather in the long term, meant the inclusion of weekdays in the continua-
tion of modeling was omitted. Five parameters were used as input data: season, month, 
number of trucks, routes, and loader types. The data was processed and validated through 
efficient techniques to train the machine properly. 

 
Figure 3. Impact rate of each parameter on the hauled ore. 

4.2. Time Series Validator 
K-fold cross-validation effectively partitions the data into K chunks, K-1 of which 

formed the training set R, and the last chunk served as the validation set V. Cross-valida-
tion was iterated through all combinations of assignments of chunks to R and V. This 
procedure was repeated for all K choices for the validation set and the performance of the 
model from the K runs was averaged in [21]. However, this method chose data randomly 
and neglect the sequence of time. So, in this paper, another effective method, namely the 
time series splitter, was used to split both training and validation data. Figure 4 shows 
how this method ran. 

 
Figure 4. Time series validator performance. 

Figure 3. Impact rate of each parameter on the hauled ore.

4.2. Time Series Validator

K-fold cross-validation effectively partitions the data into K chunks, K-1 of which
formed the training set R, and the last chunk served as the validation set V. Cross-validation
was iterated through all combinations of assignments of chunks to R and V. This procedure
was repeated for all K choices for the validation set and the performance of the model
from the K runs was averaged in [21]. However, this method chose data randomly and
neglect the sequence of time. So, in this paper, another effective method, namely the time
series splitter, was used to split both training and validation data. Figure 4 shows how this
method ran.
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4.3. R2 Score

The R2 coefficient (Equation (1)) represents the proportion of variation in the model’s
predicted result, based on its features and real data [22].

R2
(ytrue, ypred) = 1 − ∑(ytrue − ypred)2

∑(ytrue − y)2 =
RSS
TSS

(1)

In which R2 is the coefficient of determination, RSS is the sum of squares of residuals,
and TSS is the total sum of squares.

5. Modeling

After collecting data, excluding insufficient data, and processing the data, 1580 and
395 data points were imported into the machine as training and test data, respectively.
In ML, dozens of unique algorithms perform specialized purposes, including, regression,
clustering, and classification. The amount of hauled ore was continuous data; therefore,
regression methods that deliver a continuous type of data was selected in this paper. The
following sections describe the validation of the five algorithms.

5.1. Linear Regression (LR)

LR is a linear approach for modelling the relationship between scalar response and one
or more explanatory variables. In LR, the relationships are modeled using linear predictor
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functions, the unknown model parameters of which are estimated from the data [21].
By running the algorithm on the processed input data, a model with 74% accuracy was
achieved. Figure 5 shows the data’s real and predicted values from numbers 50 to 150. The
algorithm parameters for this method were fit intercept = True, normalize = deprecated,
copy_X = True, n_jobs = None.

Mining 2022, 2, FOR PEER REVIEW 9 
 

 

4.3. R2 Score 
The R2 coefficient (Equation (1)) represents the proportion of variation in the model’s 

predicted result, based on its features and real data [22]. 

R2 (ytrue, ypred) = 1 − 
∑(   )∑(  ȳ) =    (1)

In which R2 is the coefficient of determination, RSS is the sum of squares of residuals, 
and TSS is the total sum of squares. 

5. Modeling 
After collecting data, excluding insufficient data, and processing the data, 1580 and 

395 data points were imported into the machine as training and test data, respectively. In 
ML, dozens of unique algorithms perform specialized purposes, including, regression, 
clustering, and classification. The amount of hauled ore was continuous data; therefore, 
regression methods that deliver a continuous type of data was selected in this paper. The 
following sections describe the validation of the five algorithms. 

5.1. Linear Regression (LR) 
LR is a linear approach for modelling the relationship between scalar response and 

one or more explanatory variables. In LR, the relationships are modeled using linear pre-
dictor functions, the unknown model parameters of which are estimated from the data 
[21]. By running the algorithm on the processed input data, a model with 74% accuracy 
was achieved. Figure 5 shows the data’s real and predicted values from numbers 50 to 
150. The algorithm parameters for this method were fit intercept = True, normalize = dep-
recated, copy_X = True, n_jobs = None. 

 
Figure 5. Comparison between real data and prediction of linear regression algorithm. 

5.2. Decision Tree Regression (DTR) 
Decision tree learning algorithms are based on heuristics, such as a greedy approach, 

where the tree is constructed gradually, and locally optimal decisions are made at the 
construction of each node [21]. By attempting this algorithm, predicted data were fitted to 
real data with 72% accuracy. Figure 6 compares real data, and decision tree regression 
algorithm predicted data. Parameters used for this algorithm were splitter = ‘best’, 
max_depth = 3, min_samples_split = 2, min_samples_leaf = 1. 

Figure 5. Comparison between real data and prediction of linear regression algorithm.

5.2. Decision Tree Regression (DTR)

Decision tree learning algorithms are based on heuristics, such as a greedy approach,
where the tree is constructed gradually, and locally optimal decisions are made at the con-
struction of each node [21]. By attempting this algorithm, predicted data were fitted to real
data with 72% accuracy. Figure 6 compares real data, and decision tree regression algorithm
predicted data. Parameters used for this algorithm were splitter = ‘best’, max_depth = 3,
min_samples_split = 2, min_samples_leaf = 1.
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5.3. K-Nearest Neighbors Algorithm (KNN)

K nearest neighbour algorithm is a supervised learning technique used to classify or
predict new data points, based on the relationship to nearby data points [23]. Actual and
predicted values using the KNN algorithm are shown in Figure 7. The accuracy of the KNN
prediction was 78%. Also, the parameters of learning the algorithm to be modified were:
n_neighbors = 5, weights = ‘uniform’, algorithm = ‘auto’, leaf_size = 30, n_neighbour = 7.
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5.4. Random Forests (RF)

RF is a regressor consisting of a collection of decision trees. The prediction of the
RF is obtained by a majority vote over the predictions of the individual trees, and, also,
RF generally outperformed decision trees’ performance [21] with the implementation of
this algorithm. Figure 8 shows the difference between the actual and predicted values by
random forest regression algorithm for the obtained accuracy of 83%.
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5.5. Gradient Boosting Decision Tree

Rather than selecting combinations of binary questions at random (like RF), gradient
boosting selects binary questions that improve prediction accuracy for each new tree. This
works because mistakes incurred with the training data are recorded and then applied to
the next round of training data. At each iteration, weights are added to the training data,
based on the results of the previous iteration. A higher weighting is applied to instances
incorrectly predicted from the training data, and those correctly predicted receive less
weighting. The training and test data are then compared, and errors are again logged in
order to inform weighting at each subsequent round [23]. Figure 9 shows that the gradient
boosting algorithm could predict the data with 85% accuracy and the parameters were
learning_rate = 0.19, max_depth = 3, n_estimators = 35.
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6. Model Selection

The gradient boosting algorithm was chosen as the best among the investigated
algorithms. With 85% accuracy, this algorithm was used for the rest of the study after
measuring the implemented algorithms to achieve an optimal model using the R2 score
formula. Each algorithm’s efficiency is depicted in Figure 10.
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7. Ore Transport Schedule

A Mine Planning team calculates the required monthly ore production from each
mine based on the processing plant’s required monthly feed. Table 9 shows the calculated
monthly amount of ore from different zones.

Table 9. Ore annual haulage scheduling (ktonne).

Month SUP. to P M1 to P M2 to P M3 to P M4 to P M1 to LG M2 to LG M4 to LG LG to P Total Ore to
the Plant

1 0 60 15 0 0 15 0 0 0 75
2 12 65 17 0 0 20 0 0 0 94
3 15 65 17 14 0 20 0 0 0 111
4 15 65 17 14 25 20 10 5 0 136
5 15 65 17 0 33 30 0 5 0 130
6 15 65 17 0 33 30 0 5 0 130
7 10 65 17 0 33 30 10 5 0 125
8 8 65 17 0 33 30 0 5 0 123
9 0 65 17 0 33 25 0 5 0 115
10 0 65 17 0 33 25 8 3 0 115
11 0 65 17 0 20 25 0 3 0 102
12 0 60 15 0 0 16 0 3 10 85

Annual ore to the plant 1341

While there are some limitations, simultaneous loading in more than three working
zones is not possible. As a result, working days for different zones were planned according
to Figure 11. Table 10 shows the required daily ore quantity to cover the processing plant’s
annual demand depending on this plan.

The algorithm used 1258 individual scenarios after measuring the daily required ore
amount. As a result, the minimum difference between the predicted and required data
values was calculated, and the optimal fleet was selected, based on related items to this data.
According to Figure 12, the machine anticipated a Hyundai 320 excavator and 19 trucks as
the ideal fleet in April to transport ore from Mine 1 to the plant’s stockpiles.

The most suitable fleet was selected using 11.322 scenarios as input data for five
loading points and two mineral discharge stockpiles. Table 11 shows the best loader and
number of trucks that different zones should use over the 12 months.
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Figure 11. Working zones daily ore hauling schedule plan.

Table 10. Daily ore production schedule.

Month SUP. to P M1 to P M2 to P M3 to P M4 to P M1 to LG M2 to LG M4 to LG LG to P

1 0 2000 1500 0 0 2143 0 0 0
2 1200 2097 1700 0 0 2000 0 0 0
3 1500 2097 1700 2000 0 2000 0 0 0
4 1500 2097 1700 2000 1667 2000 2000 1667 0
5 1500 2097 1700 0 2200 2000 0 1667 0
6 1500 2097 1700 0 2200 2000 0 1667 0
7 1429 2167 1700 0 2200 2000 2000 1667 0
8 1600 2167 1700 0 2200 2000 0 1667 0
9 0 2167 1700 0 2200 1667 0 1667 0

10 0 2167 1700 0 2200 1667 2000 1000 0
11 0 2167 1700 0 1333 1667 0 1000 0
12 0 2000 1500 0 0 1067 0 1000 2000
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Table 11. Optimum fleet to supply processing plant demands.
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1 H250 17 H320 10 H250 11
2 H320 9 H250 18 H320 11 H250 11
3 H320 11 H320 19 H250 11 K200 12 K220 12
4 K200 12 H320 19 H320 11 K200 12 K200 10 K220 12 K220 11 K200 11
5 K200 12 H320 19 H250 11 H320 13 K220 12 H320 12
6 K200 12 H320 19 H250 11 H320 13 K220 12 H320 12
7 H320 11 H320 19 H250 11 K200 13 H250 11 K200 11 H320 12
8 K220 10 H320 19 H250 11 K200 13 H250 11 H320 12
9 K220 21 K200 12 K200 13 H250 10 H320 12
10 H250 19 H320 11 H320 13 K220 10 K220 11 K220 9
11 K220 18 H320 11 K200 10 H250 10 K200 8
12 H320 16 K200 10 K200 6 H250 9 K200 8 H320 17

8. Conclusions

According to estimations, mineral transportation costs cover a large share of the
operating costs and are becoming a challenge in mining management. So, implementing
optimization in this operation can minimize the loss of capital costs, reduce the final price
of the mineral, and increase profitability. In this paper, the ML method was used as an
innovative approach to simulate operations, and was executed in the Zenouz kaolin mine
to optimize fleet selection. Consequently, the Gradient Boosting Regressor, an excellent
algorithm, was chosen and taught by various operational and conditional data to fit
and predict the most beneficial fleet. Finally, the best daily required fleet to supply ore
transportation to stockpiles was obtained by matching the processing plant ore demands
and predicted values and finding the minimum difference between these values. As a
result, the suggested fleet reduced truck queuing and excavators’ idle times, which account
for a considerable portion of energy consumption and capital wasting.
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