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Abstract: The excavation of tunnels in brittle rocks with high in-situ strengths under large deviatoric
stresses has been shown to exhibit brittle failure at the periphery of tunnels parallel to the maximum
in-situ stress. This failure can either occur instantaneously or after several hours due to the strength
degradation that is implicitly and indirectly considered in typical brittle constitutive models. While
these models are powerful tools for engineering analyses, they cannot predict the time at which
brittle rupture occurs, but rather, they show a possible failure pattern occurring instantaneously. In
this paper, a model referred to as the long-term strength (LTS) model is introduced and implemented
into FLAC2D. The model is built as a modified version of the CVISC model, introduced by Itasca,
by adding a strength decay function. This function is developed from lab-scale time-to-failure (TTF)
data. The LTS model is verified against its corresponding analytical solution using a constant stress
creep lab test and implemented into a tunnel-scale model using the geometry, stress, and geologic
conditions from the Atomic Energy of Canada Limited Underground Research Laboratory (AECL
URL). The results of the LTS tunnel model are then compared to an identical model using the Cohesion
Weakening Friction Strengthening (CWFS) approach.

Keywords: long-term strength and time-to-failure; time-dependency and creep; non-Newtonian
viscosity

1. Introduction

The ongoing development and calibration of models for rock strength and deformation
around tunnel peripheries is important in rock mechanics. The need for constitutive models
in the field of rock mechanics allows engineers and scientists to obtain estimates of yield
zones, displacements, and ground settlements so that support requirements and excavation
methodologies can be optimized [1,2]. Classical rock strength models, such as the Mohr–
Coulomb criterion [3] and the Hoek–Brown criterion [4–6] have been developed for use
in moderately-jointed rock masses where failure is the result of block rotation, or where
30 < GSI < 65 [7]. In more massive rock masses under low-to-moderate confinement, failure
becomes the result of extensile processes rather than shear based [8,9] which the classical
failure criteria do not consider.

Early attempts to capture brittle behaviour in rock masses have used an iterative
elastic approach as shown in [10,11]. It has been shown that when the intact strength of
rock masses initially has a near-zero frictional strength, the failure behaviour at the tunnel
periphery matches those observed in the AECL URL [11]. The mechanics of near-zero
frictional strength show that when intact, the strength that is controlled by cohesion and
friction is only mobilized when rupture occurs. Following this work, the CWFS approach
was introduced by [12] and the DISL approach by [8].

The strength of brittle rocks and rock masses is also considered time-dependent,
e.g., [8,13–18] where brittle failure at the excavation scale can manifest immediately or after
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some time due to subdued crack growth and interaction. The lower limit at which these
cracks can develop and grow with time is the crack-initiation stress threshold [8]. The
authors of [19] compiled several long-term strength tests conducted on brittle rocks from
published sources and showed that as the time-to-failure increases, the lower limit of stress
at which the rocks fail approaches the crack-initiation threshold.

The CWFS and DISL methods have been shown to capture the brittle behaviour of
rocks at the excavation scale but fail to capture the time-to-failure and time-dependent
deformations in these models which can be an important aspect to consider in an engi-
neering design. An alternative approach to modelling brittle failure with time-dependent
deformations based on time-to-failure lab tests is proposed and explored, and the subse-
quent results are validated against an equivalent CWFS analysis. The primary aim of this
paper is to develop a time-dependent model, the long-term strength (LTS) model, that
can adequately capture creep and strength degradation leading to progressive failure and
rupture in brittle rocks. This paper provides an overview of the existing CWFS model and
its applicability when modelling underground excavations in brittle rock. The CWFS model
is used as a verification tool for the proposed LTS model to show that both the magnitude
and the geometry of failure around a circular tunnel in brittle rock are equivalent.

2. Background

This section provides an overview of the different types of time-dependent behaviours
observed at the lab or at the excavation scale as well as the failure modes and mechanisms
of brittle rocks around and away from tunnel peripheries.

2.1. Failure in Brittle Rocks

The proper classification of rock masses and their associated in-situ strength at the ex-
cavation scale has been a significant research topic for many researchers, e.g., [4,5,7,8,20–28].
The use of engineering design equations, such as the GSI system, to determine rock strength
parameters were developed and calibrated for use in moderately blocky rock masses
(30 < GSI < 65), wherein the failure process is associated to block rotation. The author of [7]
demonstrated that for more intact rocks (GSI > 65), the GSI equations are not valid because
blocks cannot form without failure through intact rock first. Such failure typically occurs
due to the formation of axial cracks parallel to the direction of the maximum applied stress,
which is related to the tensile strength of the rock [7,29].

In recognition that classical failure criteria do not consider the effect of axial splitting,
but rather shear fracturing, other approaches to modelling brittle failure, namely in con-
tinuum models, have been developed. Such models include the cohesion weakening, the
friction strengthening (CWFS) model [11], and the damage initiation spalling limit (DISL)
model [7]. These models are based on the respective crack-initiation (CI) and crack-damage
(CD) thresholds as defined by [25]. When in-situ stresses are above the CI threshold, new
fractures initiate and propagate with time, ultimately controlling the long-term strength
(LTS) of the rock in low-to-moderate confinement. At higher confinement levels, the ini-
tiation of fractures becomes inhibited, changing the failure modes from tensile to shear
rupturing [30,31], as shown in Figure 1.

At low-to-moderate confinements, the failure behaviour as governed by the DISL and
CWFS approaches correspond well with empirical observations made in massive, brittle
rock with stresses around the periphery of excavations at or exceeding the CI threshold,
as performed in the following studies [7,8,32,33], among which a review of the CI and
CD thresholds in various rocks found that the average CI to UCS ratio is between 0.4
and 0.55 whereas the average CD to UCS ratio is between 0.75 and 0.9. When rocks in
low confinement are loaded to the CI threshold, they will experience continued fracture
growth with time, leading to failure, whereas if they are loaded to the CD threshold, they
will experience rapid crack growth and interaction, leading to sudden rupture (spalling),
e.g., [22,34–36].



Mining 2022, 2 465

Mining 2022, 2, FOR PEER REVIEW 3 
 

 

time, leading to failure, whereas if they are loaded to the CD threshold, they will experi-
ence rapid crack growth and interaction, leading to sudden rupture (spalling), e.g., [22,34–
36].  

The author of [8] provides an outline of which conditions using the DISL and CWFS 
approaches are most appropriate based on the ratio of UCS to tensile strength and geo-
logical strength index (GSI) from [24] shown in Table 1. The author of [37] later provides 
a set of guidelines for determining equivalent CWFS parameters based on the commonly 
used Mohr–Coulomb criterion. Using the strength data for the LdB granite at the AECL 
URL provided in [37] modified from [8], a typical CWFS analysis can be used as a baseline 
for comparison to the LTS model. 

 
Figure 1. Strength envelope of the LdB granite at the AECL URL (CWFS) used to describe in−situ 
strength and development of brittle failure. Modified from [8,25]. 

Table 1. Constitutive model selection based on rock strength and GSI, modified from [8]. Note that 
UCS and T indicate intact unconfined compressive strength and tensile strength, respectively. 

Strength Ratio GSI < 55 GSI = 55–65 GSI = 65–80 GSI > 80 
UCS/T < 9 GSI GSI GSI GSI 
UCS/T = 9–15 GSI GSI GSI GSI or CWFS * 
UCS/T = 15–20 GSI GSI or CWFS * CWFS or GSI * CWFS 
UCS/T > 20 GSI GSI or CWFS * CWFS CWFS 

* indicates most appropriate analysis first. 

2.2. Creep in Rock Mechanics 
Creep in rock mechanics is defined as the accumulation of shear strain under constant 

stress without change in volume. Creep behaviour in solids has long been studied since 
the early 20th century by many researchers, e.g., [13,17,38–49]. Among the early experi-
mental studies on creep [39,50] were performed on steel while [13] was the first researcher 
to apply the study of creep on geomaterials, namely on talc, shale, and crystals of halite 
and calcite at various levels of confinement. In [38], the author introduced the idea of three 
distinct stages of creep while studying creep in metals, as shown in Figure 2. 

Figure 1. Strength envelope of the LdB granite at the AECL URL (CWFS) used to describe in−situ
strength and development of brittle failure. Modified from [8,25].

The author of [8] provides an outline of which conditions using the DISL and CWFS
approaches are most appropriate based on the ratio of UCS to tensile strength and geological
strength index (GSI) from [24] shown in Table 1. The author of [37] later provides a set
of guidelines for determining equivalent CWFS parameters based on the commonly used
Mohr–Coulomb criterion. Using the strength data for the LdB granite at the AECL URL
provided in [37] modified from [8], a typical CWFS analysis can be used as a baseline for
comparison to the LTS model.

Table 1. Constitutive model selection based on rock strength and GSI, modified from [8]. Note that
UCS and T indicate intact unconfined compressive strength and tensile strength, respectively.

Strength Ratio GSI < 55 GSI = 55–65 GSI = 65–80 GSI > 80

UCS/T < 9 GSI GSI GSI GSI
UCS/T = 9–15 GSI GSI GSI GSI or CWFS *
UCS/T = 15–20 GSI GSI or CWFS * CWFS or GSI * CWFS
UCS/T > 20 GSI GSI or CWFS * CWFS CWFS

* indicates most appropriate analysis first.

2.2. Creep in Rock Mechanics

Creep in rock mechanics is defined as the accumulation of shear strain under constant
stress without change in volume. Creep behaviour in solids has long been studied since the
early 20th century by many researchers, e.g., [13,17,38–49]. Among the early experimental
studies on creep [39,50] were performed on steel while [13] was the first researcher to apply
the study of creep on geomaterials, namely on talc, shale, and crystals of halite and calcite
at various levels of confinement. In [38], the author introduced the idea of three distinct
stages of creep while studying creep in metals, as shown in Figure 2.

When a load is applied to a creeping material, its instantaneous deviatoric and volumet-
ric behaviour is described by Hooke’s Law [51]. After time is considered, the accumulated
deviatoric strains increase at a decreasing rate (primary stage creep). If the load is held
constant thereafter, the deviatoric strains increase but at a constant rate (secondary stage
creep), after which the material may or may not enter the tertiary stage (yield). In theory, the
volumetric strains do not change throughout the creep process; however, this assumption is
only valid if the deviatoric strains develop from true creep processes such as solid diffusion,
dislocation creep, or solution transfer, e.g., [13,41,52,53]. In practice, strain accumulation
due to creep processes are only observed at the relatively short timescale in rock salt, potash,
steel, and other ductile materials, e.g., [39,43,50]; however, true creep processes may also
be observed in strong, brittle rocks given appropriate environmental conditions and longer
time spans.
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on the spring and the stiffness of the spring. 

Figure 2. General creep curve in axial strain-time space for a specimen of rock under an applied con-
stant load showing (a) the three stages of creep (primary, secondary, and tertiary) and (b) associated
strain-rate time curve. The strain-rate curve is also referred to as the “bathtub” curve. Note that
superscripts e, p, s, and tet denote elastic, primary, secondary, and tertiary, respectively.

At the tunnel scale, creep is often observed as the decrease in tunnel radius with time,
e.g., [49,54]. This behaviour can also be associated with squeezing and swelling, which are
attributed to weak and soft rocks [55,56]. Squeezing is defined as the advance of rock into a
tunnel without a perceptible volume change due to the presence of micaceous minerals
with low swelling capacity. Swelling is defined as the expansion of rock limited to rocks
which contain clay minerals such as montmorillonite or other minerals with high swelling
capacity [57].

Rheological Models

The term “rheology” refers to the branch of study related to the flow of liquids and
solids under an applied force in which they deform plastically rather than elastically [58].
Rheological creep models are models that have been built up from simple mechanical
analogues such as springs (Hookean elements), dashpots (Newtonian elements), and
plastic sliders (St. Venant elements) as described by some constitutive model, typically the
Mohr–Coulomb criterion. These elements can then be combined in series or parallel in
many ways to describe the strain-time behaviour of rocks at the lab scale or in-situ. The
author of [59] provides various examples of ways in which these elements can be arranged
to describe different observed behaviours. The Hookean element is described by Hooke’s
Law [51] in which the displacement of a spring is linearly proportional to the stress acting
on the spring and the stiffness of the spring.

The time-dependent aspect of rock deformation in rheology is represented by the
Newtonian element which follows Newton’s law of viscosity [60]. Newton’s law of viscosity
states that a material or fluid under applied constant stress will exhibit a constant rate of
deformation with time. The material’s resistance to this deformation is referred to as its
viscosity, which is a material property and does not change with stress, time, or accumulated
deformation. Conversely, non-Newtonian fluids are materials that do not obey Newton’s
law of viscosity because their respective viscosity is not constant at either given stress,
strain-rate, or deformation level. One such material is Bingham plastic which behaves as
a solid at low stress (does not flow) but flows as a viscous fluid at high stresses [61]. The
Newtonian element can adequately capture the time-dependent aspect of rock deformation;
however, it cannot capture the instantaneous response like the Hookean element. In
addition, the mechanics of the viscous element allow strains accumulated with time to
be fully recovered with reversal in boundary conditions regardless of the magnitude of
accumulated strains, meaning the element lacks plasticity as well. A rheological model
is a model that incorporates the Hookean, Newtonian, and St. Venant elements in some
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combination. These models can be visco-elastic, visco-elastic-plastic, or elasto-visco-plastic.
Table 2 highlights some common rheological models used in the study and the modelling
of creeping materials, e.g., [49,59,62–64].

Table 2. Visco-elastic-plastic rheological models with their associated mechanical analogues; analyti-
cal solutions; and stress, strain–time behaviour, modified from [18]. Note that G, K, GK, ηK, and ηM

denote the shear modulus, bulk modulus, Kelvin viscosity, and Maxwell viscosity, respectively, and
p, q, t, and ε denote mean stress, deviator stress, time, and strain, respectively.

Model Mechanical Analogue Stress, Strain-Time Behaviour

Maxwell
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plastic. Table 2 highlights some common rheological models used in the study and the 
modelling of creeping materials, e.g., [49,59,62–64]. 

The Maxwell, Kelvin–Voigt, Zener, and Burgers models are referred to as visco-elas-
tic models. The CVISC model is a visco-elastic-plastic model introduced by [65] and the 
simplified Cividini and Gioda is an elastic-visco-plastic model introduced by [66]. It is 
important to note the distinction between ‘elasto-plastic’ and ‘visco-plastic’, denoting no 
connection between creep and plasticity and a direct connection, respectively. The con-
nection between creep and plasticity is complex and often difficult to determine. The 
Burgers and CVISC models are preferable for practical applications [67]; however, there 
are limitations to the model as described in [68–70] and in this paper. 

Other models to examine creep exist, such as empirical or phenomenological models, 
as well as general theories [64]. Empirical models are models built purely from curve-
fitting of lab data from constant-stress or stress-relaxation tests and are generally given as 
closed form or differential solutions. General theories are the most advanced aspects of 
numerical modelling and are generally very robust in their use case. Perzyna’s overstress 
theory is one such example of a general theory [71]. The further analysis and application 
of empirical models and general theories is out of the scope of this paper.  

Table 2. Visco-elastic-plastic rheological models with their associated mechanical analogues; ana-
lytical solutions; and stress, strain–time behaviour, modified from [18]. Note that G, K, GK, ηK, and 
ηM denote the shear modulus, bulk modulus, Kelvin viscosity, and Maxwell viscosity, respectively, 
and p, q, t, and ε denote mean stress, deviator stress, time, and strain, respectively. 

Model Mechanical Analogue Stress, Strain-Time Behaviour 

Maxwell 

  

Kelvin -Voigt 

  

Zener
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where: 
• 𝝈𝟏 is the applied axial stress. 

Ref [19] reviews the current state of practice for analysing the long-term strength of 
brittle rocks and proposes that the model shown in Figure 3 be used to calculate the TTF 
for igneous rocks when under uniaxial stress conditions. Based on an earlier formulation 
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tf = ቀ- C - ln(100DSR)
A

ቁ- 1B for tf > 10 s and DSR > 𝐞𝐱𝐩(C)𝟏𝟎𝟎   (2)

C = ln ቀ CI 
UCS

× 100%ቁ  (3)

where: 
• tf is the time-to-failure;  
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The Maxwell, Kelvin–Voigt, Zener, and Burgers models are referred to as visco-elastic
models. The CVISC model is a visco-elastic-plastic model introduced by [65] and the
simplified Cividini and Gioda is an elastic-visco-plastic model introduced by [66]. It is
important to note the distinction between ‘elasto-plastic’ and ‘visco-plastic’, denoting
no connection between creep and plasticity and a direct connection, respectively. The
connection between creep and plasticity is complex and often difficult to determine. The
Burgers and CVISC models are preferable for practical applications [67]; however, there are
limitations to the model as described in [68–70] and in this paper.

Other models to examine creep exist, such as empirical or phenomenological models,
as well as general theories [64]. Empirical models are models built purely from curve-fitting
of lab data from constant-stress or stress-relaxation tests and are generally given as closed
form or differential solutions. General theories are the most advanced aspects of numerical
modelling and are generally very robust in their use case. Perzyna’s overstress theory is
one such example of a general theory [71]. The further analysis and application of empirical
models and general theories is out of the scope of this paper.

2.3. Interpreting Time-to-Failure Lab Results in Brittle Rocks

The most common method for determining the long-term strength of brittle rocks is by
conducting a series of uniaxial compressive strength (UCS) tests to determine the average
strength of the rock. This suite of tests should follow the methodology as outlined in [72–74].
The long-term strength tests comprise loading a standard cylinder of core to some stress
that is less than its UCS but more than its crack initiation (CI) threshold. Once the desired
stress is reached, it is held and the time to failure (TTF) is recorded and compared to the
applied driving stress ratio (DSR) which is historically presented in Equation (1) as:

DSRσ3=0 =
σ1

UCS
(1)

where:

• σ1 is the applied axial stress.

Ref. [19] reviews the current state of practice for analysing the long-term strength of
brittle rocks and proposes that the model shown in Figure 3 be used to calculate the TTF
for igneous rocks when under uniaxial stress conditions. Based on an earlier formulation
from [75], The author of [19] developed a set of Equations (2) and (3)

tf =

(
−C − ln(100DSR)

A

)− 1
B

for tf > 10 s and DSR >
exp(C)

100
(2)

C = ln
(

CI
UCS

× 100%
)

(3)

where:

• tf is the time-to-failure;
• C is an asymptote control parameter;
• A and B are curve-fitting constants that are determined empirically.
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Figure 3. Long-term strength data for various rock types and their respective exponential model
fits as presented in [19]. The average CI threshold [76] is added to represent the lower bound of
long-term strength.

Note that time-to-failure is a function of intact material properties and does not change
with time; therefore, it can be considered as a material property that is a function of applied
stress. To be able to use the TTF equations as shown in Equations (2) and (3), the effect of
confinement on strength must be considered; however, very few long-term strength tests
have been conducted under confined conditions apart from the suite of tests conducted
by [77,78] in which it is shown that the effect of confinement clearly affects the absolute
TTF under constant applied stress. The TTF as shown in Equations (2) and (3) is a function
of unconfined conditions only. To account for this, the DSR must be modified as DSR*
shown by [79] in Equation (4):

DSR∗ =
σ1 −σ3

σ
p
1 −σ3

=
q

σ
p
1 −σ3

(4)

where:

• σ3 is the confinement, or minimum principal stress;
• σ

p
1 is the peak strength of the rock at a given confinement level;

• q is the deviator stress.
• DSR* is the modified DSR

The justification for the modified DSR equation is shown in Figure 4. In unconfined
conditions, the DSR equation simplifies to that as shown in Equation (1). It is assumed
that the same DSR under both unconfined and confined conditions will lead to the same
TTF as shown in Equation (2). Equation (3) does not need further modification as the
ratio of CI to UCS is also assumed constant with relatively small increases in confinement;
however, this assumption is only valid within the spalling limit of the material, which is
within the range of 10 ≤ σ1/σ3 ≤ 20 [80,81]. It should also be noted that the DSR and
TTF formulations are for two-dimensional problems, but they can be modified for use in
three-dimensional problems.
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3. Proposed Long-Term Strength (LTS) Model

This section describes the long-term strength (LTS) model that explicitly considers
time in two dimensions. The proposed LTS model is built on the existing CVISC creep
model by modifying the attached Mohr–Coulomb plastic slider, as shown in Table 2. The
modification includes degrading the strength of the criterion as per the TTF equations in
Section 2.3. The process for degrading strength with time is outlined in this Section.

In two dimensions, the Mohr–Coulomb failure criterion is expressed in
Equations (5) and (6) as:

σ
p
1 = UCS + sσ3 (5)

s =
1 + sinϕ
1 − sinϕ

(6)

where:

• ϕ is the friction angle as shown in Figure 4.

Using Equation (5), the strength of the rock at the excavation scale can be determined
throughout the FLAC2D [65] grid. With the data from Figure 3, the theoretical time-to-
failure can be determined throughout the FLAC2D grid using the equations described
below. A key assumption in the development of this model is that the failure resulting
from stress corrosion is the result of a linear loss in cohesion with time that is a function of
the in-situ stress conditions. This assumption is made based on the log-linear relation that
laboratory data shows when brittle rock materials are subjected to constant load as [19]
thoroughly analysed and discussed lab datasets from a range of rock materials. In the
finite difference model, this can be achieved by introducing a damage variable (R), which
is calculated as shown in Equation (7).

dR
dt

= (1 − DSR)
(

1
tf

)
(7)

The damage is then iterated through time using the creep plugin available for FLAC2D.
It should be noted that damage can be calculated directly with time; however, this limits
the applicability of the equation to monotonic loading conditions only, whereas iterating
the variable allows it to apply to more complex loading conditions such as those encoun-
tered in underground mines and other excavations. The damage function is then used to
decrease the ultimate strength (σp

1 ) of each time-step and tensile strength (σT), as shown
in Equations (8) and (10). The damage to ultimate strength is used to calculate the new
cohesion, as per Equation (9).

UCS∗ = Rσp
1 − sσ3 (8)
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c∗ =
UCS∗(1 − sin(ϕ))

2 cos(ϕ)
(9)

σT∗ = RσT
i (10)

where:

• UCS* is the new UCS value after weakening;
• c∗ is the new cohesion after weakening;
• σT

i is the initial intact tensile strength;
• σT∗ is the new tensile strength after weakening.

Equations (5)–(10) provide the basis needed to begin verifying the model at the lab
scale and applying it at the excavation scale. Figure 5 provides a schematic of the weakening
behaviour as described by the LTS model and Figure 6 provides a schematic workflow for
the overall strength degradation model when implemented into a finite-difference modeller
such as FLAC2D.
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3.1. Effect on Applied Stress and Confinement on Secondary Strain-Rates and Viscosities

It has long been shown that brittle rocks do experience time-dependent strains when
under applied stress, e.g., [36,48,82–89]. It is generally theorized that the strains associated
to creep in brittle rocks are not due to true creep mechanics (continuum processes), but
rather, crack initiation and propagation with time which are associated to brittle failure
mechanisms. Continuum models (such as those created in FLAC2D) cannot explicitly
capture brittle behaviour due to the discontinuum nature of brittle failure. Therefore,
to capture these strains, the Burgers model for creep can be implemented in a model to
account for brittle deviatoric strains (recall that Burger’s creep model is deviatoric only). It
is important that the time-dependent aspect of brittle failure is well understood as creep at
the tunnel scale allows for stress relaxation [70].

The author of [39] studied the effect of creep in steel and showed that the secondary
strain rate can be expressed as shown in Equation (11).

.
ε

s
= ασβ (11)

σ =
√

3J2 = (0.5[(σ11 − σ22) + (σ22 − σ33)
2 + (σ33 − σ11)

2 + 6(σ2
12 + σ

2
23 + σ

2
31)])

0.5
(12)

where:

• .
ε

s is the secondary strain rate;
• σ is the equivalent Von–Mises stress;
• J2 is the second invariant of the deviatoric stress tensor;
• σii and σij are components of the Cauchy stress tensor;
• α and β are curve-fitting constants.

Conversely, the secondary strain rate as described by the Maxwell and Burgers equa-
tions is shown in Equation (13).

.
ε

s
=

q
3ηM

(13)

From Equation (11), it is clear that with a change in deviatoric stress, the secondary
strain rate changes linearly, assuming that the secondary viscosity term (ηM) is constant
whereas the secondary strain rate as described by Equation (12) changes exponentially
with changes in stress, as described in [70]. This means that the behaviour as described
by the Power Law is for non-Newtonian fluids, whereas the behaviour as described by
the rheological models is for Newtonian fluids. The key behaviour of Newtonian fluids is
that the viscosity of the material does not change with stress, strain-rate, or deformation,
but a non-Newtonian fluid’s viscosity is not constant [60]. In practice, it is typical that one
average value is used for the secondary viscosity in the Burgers/CVISC model [31,88–90];
however, as shown in Figures 7 and 8, this is only applicable when the expected stresses
are monotonic and unchanging from the lab-calibrated values.

A general equation for the secondary viscosity, or Maxwell viscosity (ηM), as shown in
Figure 7 can be written in Equation (14) as:

ηM = χ exp(κq) (14)

where:

• χ is some function of confinement;
• κ is the rate of change in secondary viscosity with changing deviator stress;
• q is the deviator stress.
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As shown in Figure 7, viscosity is also dependent on confinement; however, the rate
of change (κ) in viscosity at any confinement level is constant. To effectively capture
this behaviour of confinement dependency, the behaviour of the variable ‘χ’ must be
determined. Figure 9 shows the change in ‘χ’ with confinement assuming an average value
of −2.004 × 10−7 Pa−1 for ‘κ’ for LdB granite. From Figure 9, there is a clear pattern in ‘χ’
with confinement, with it increasing exponentially with increased confinement. Plugging
in the Equation shown in Figure 9 into Equation (14), the Maxwell viscosity for LdB granite
is fully expressed in Equations (15) and (16) as:

ηM = [4.28E + 34 exp(1.77E − 6(σ3))] exp(−2.004E − 7(q)) (15)
Mining 2022, 2, FOR PEER REVIEW 13 
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Which simplifies to:

ηM = 4.28E + 34 exp[1.77E − 6(σ3)− 2.004E − 7(q)] (16)

where:

• ηM is the Maxwell (secondary) viscosity;
• q is the deviator stress (σ1 − σ3);
• σ3 is the minor principal stress.

The resulting viscosities for LdB granite in the AECL URL tunnel are shown in
Figure 10. Note that this is an empirical approach to accounting for effects of confinement
in brittle rock creep and that none of the constants in Equation (16) have any significance
to real-world mechanisms. Additionally, it has been shown that a Maxwell material most
likely behaves as a non-Newtonian fluid, rather than as a Newtonian fluid, and the same
can likely be said for a Kelvin type material; however, this distinction is out of the scope of
this analysis. In simple loading conditions, such as those shown in the following numerical
models, strains are more sensitive to secondary viscosities over long periods of time rather
than primary viscosities; therefore, the distinction between Newtonian and non-Newtonian
viscosity for primary creep is insignificant.
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3.2. Lab Scale Verification of Model

The long-term strength and modified CVISC model are implemented into FLAC2D [65],
which is a finite-difference continuum numerical modelling software. This section will pro-
vide a lab-scale verification of the model as well as a tunnel-scale analysis using the AECL
URL geometry in LdB granite. The material properties used are shown in Table 3, which are
average values for LdB granite. The strength values are from [8], and the creep properties
are from [19], which were calculated using lab data from [77]. The goal of the lab-scale
verification model is to show that under varying confinement conditions, the proposed
long-term strength model accurately captures the predicted analytical time-to-failure.

Table 3. Intact strength, long-term strength, and creep parameters for LdB granite. Peak and residual
strength values calibrated from [8] and time-dependent values from [19,77]. Variables K, G, c, ϕ, σT,
and η denote bulk modulus, shear modulus, cohesion, friction angle, tensile strength, and viscosity,
respectively. Additionally, subscripts p, r, M, and K denote peak, residual, Maxwell, and Kelvin,
respectively. Variables A, B, and C are shown in Equation (2). Note that ‘E’ is scientific notation (i.e.,
4.08E + 14 = 4.08 × 1014) and ‘exp’ denotes and exponential of ‘e’ (i.e., exp(x) = ex).

Parameter Value

K (GPa) 58
G (GPa) 25
cP (MPa) 40
cr (MPa) 0.1
ϕP (deg) 50
ϕr (deg) 22
σT

P (MPa) 8
σT

r (MPa) 0
ηM (Pa s) 4.28E + 34 exp[1.77E − 6(σ3)− 2.004E − 7(q)]
ηK (Pa s) 4.08E + 14
GK (GPa) 107

A 1.18
B 0.084
C 3.81
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The geometries used for both the lab-scale verification and excavation scale models are
shown in Figure 11 with the FLAC grid. The grid for the lab verification is relatively coarse
for computing efficiency and should not affect the TTF in any significant way. Additionally,
the lab-scale model uses a DSR of 0.75 for each confinement level, which is achieved by
changing the applied stress on the top and bottom of the sample. This is performed in such
a way that the TTF is the same for each run and making comparisons between them is
easier. The excavation scale model uses stresses modified from the AECL URL tunnel as
provided in [8]. The most notable change is the change in out-of-plane stress which was
changed from the published 43 MPa to the 37.5 MPa (average of in-plane stresses such that
out-of-plane stress is effectively ignored). The grid in the tunnel model is radial with a
very dense mesh around the excavation, becoming gradually coarser towards the model
boundaries, which are 17.5 m from the tunnel centre.
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Figure 11. Model geometries from FLAC2D for (a) the lab-scale verification and (b) the tunnel-scale
model modified from the AECL URL tunnel. Note that model dimensions and boundary conditions
(pins) are shown. Red dots represent measurement points for displacement.

The results of the lab-scale verification can be seen in Figure 12, which plots the axial
strain and cohesion of the sample versus time with the analytical TTF overlain as a dotted
red line. The effective secondary viscosity is also shown and is calculated from Equation
(16); however, each of the values is high enough that it is insignificant in the time span used.
Failure in each of the models is represented by the marked rapid decrease in cohesion to its
residual state (0.1 MPa) followed by the rapid increase in strain rate. The intact cohesion
value for each confinement level at failure is shown to decrease with increasing confinement
as expected. The lag between cohesion loss and strain increase can be attributed to the
increase in unbalanced forces resulting from failure. From each of the plots in Figure 12,
it is presented that the loss in cohesion correlates with the analytical TTF, showing that,
as formulated, the long-term strength model is adequate and can be carried over to a
tunnel-scale model.
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Figure 12. Axial strain and cohesion with time under a constant applied stress for (a) no confinement,
(b) 10 MPa confinement and (c) 20 MPa confinement. All models are run with a DSR of 0.75 and
failure is marked by the rapid decrease in cohesion with time. The cohesion value at failure is shown
for each run.
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3.3. Tunnel Scale Model

The tunnel-scale model for LTS is developed using the geometry shown in Figure 11.
This geometry is similar to that shown in [8] for the AECL URL. In the model, the tunnel
is developed “instantaneously” in a Mohr–Coulomb strain-softening medium using the
values as shown in Table 3. At the tunnel scale, the goal of the LTS model is to accurately
capture the typical tension cracks that form in the walls of the tunnel parallel to the
minimum principal stress as well as the brittle overbreak “notch”, described by [7,8,10,76],
that forms in the periphery of the tunnel in the direction of the maximum applied stress.
To compare and validate the applicability of the LTS model, it will be compared to a CWFS
model run in the exact same conditions using the values shown in Table 4.

Table 4. Values used for the CWFS validation modified from [8]. Note that εp
c and εp

ϕ are plastic strain
values for residual state to be reached for cohesion and friction angle, respectively.

Parameter Value

K (GPa) 58
G (GPa) 25
cP (MPa) 40
cr (MPa) 0.1
ϕP (deg) 20
ϕr (deg) 50
σT

P (MPa) 8
σT

r (MPa) 0
ε

p
c (%) 0.3
ε

p
ϕ(%) 0.3

The in-situ stresses and associated strains from the CWFS model are shown in Figure 13
and the instantaneous response from the LTS model is shown in Figure 14. From comparing
the results in Figures 13 and 14 (left), it can be seen that the typical Mohr–Coulomb-based
analysis is not adequate for capturing the brittle overbreak that is observed in the CWFS
analysis as no failure occurs instantaneously according to the LTS model. Figure 14 (right)
then shows the in-situ stresses and strains from the LTS model after 7 h, the time of yield in
the floor and roof of the tunnel. Here, the stresses have relaxed around the roof and the
floor and redistributed accordingly, indicating rupture. The shear and volumetric strains do
not, however, match the pattern as shown in the CWFS analysis and can likely be attributed
to numerical noise.

To validate the results of the LTS model, the failure geometries must be compared.
From the CWFS model, a typical “notch” forms in the roof and the floor to a depth of 0.75 m
to 0.80 m as well as tension cracks forming in the walls. From the LTS model, the tension
cracks in the wall form instantaneously, but the degree of failure in the walls increases
at 7 h. The degree of wall displacement also matches the displacement as shown in the
CWFS model. The failure in the roof and the floor of the LTS model also shows somewhat
of a notch-type geometry to a depth of 0.70 m, which is marginally less than the depth
as predicted by the CWFS model. When looking at the DSR in Figure 14, it can be seen
that, at the depth of failure, deviatoric stresses are at about 70% of the strength of rock,
indicating that further yield may occur with more time. The final displacements in the roof
after failure in both models also match within marginal error.
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and volumetric strain with depth of yield and typical “notch”-type failure.

From Figures 13 and 14, it is clear that the failure modes between the CWFS and the
LTS models differ, wherein the CWFS model, multiple shear bands develop parallel to
the tunnel periphery and in the LTS model, a shear “cone” extends outwards from the
tunnel periphery. The failure geometry shown by the LTS model is similar to what some
researchers refer to as the “process zone” [22,23,76]. The term “process zone” refers to the
small-scale buckling that occurs at the tip of the notch-type failure that gives rise to more
considerable dilation, as observed in the CWFS model. Therefore, if the LTS model were
to be run for even more time after the initial nucleation of the process zone, the failure
geometry may begin to resemble that as shown in the CWFS model. The process zone
development is described in [22] and the observed development within the AECL URL is
shown in Figure 15.
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Figure 14. Instantaneous using plasticity. Left: (a) in–situ stresses, (b) driving stress ratio, and
(c) shear and volumetric strains and after 7 h (failure time) using the LTS model. Right: (a) in-situ
stresses, (b) driving stress ratio with depth of failure, and (c) shear and volumetric strains for the
LTS model.
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4. Discussion

The effect of changing deviator stress and confinement is often not considered when
determining parameters for the Burgers creep model. From Figures 7 and 8, it is shown
that using a single value for viscosity as shown in the Burgers model is not adequate when
describing both brittle and ductile creep processes when complex loading conditions are
expected. The Bailey–Norton two-component power law addresses both the exponential
change in viscosity with stress as well as the transition from ductile to brittle creep at some
stress. The effect of confinement can be addressed using the curve-fitting technique used
in Figure 9. Using the curve-fitting technique proposed to determine secondary viscosity
as a function of confinement, the viscosities throughout a tunnel model can be calculated
as shown in Figure 10. The implications of using viscosities that are too low in a tunnel
model, as is often the scenario when using average values from lab testing, is that tunnel
convergence becomes very large compared to the observed values as well as allowing for
too much stress relaxation around the tunnel periphery.

The failure process as demonstrated in Figure 13 according the LTS model assumes
that up until material rupture, the rock stays intact throughout the damaging process. This
contrasts with the discontinuum models demonstrated in [36,79] which showed that in
discontinuum models, cracks do initiate and accumulate with time under a constant load.
This highlights the advantage of using discontinuum models over continuum models when
modelling brittle failure processes, which are inherently discontinuous. In contrast, [49]
showed that using the Burgers creep model to model tunnel convergence along a longi-
tudinal profile in a continuum setting in creeping ground is adequate because creep is
inherently a continuum process.

The LTS model has successfully been implemented into a continuum finite-difference
model to both model unconfined and heavily confined cylindrical samples of rock at the
lab scale and, when modelling, the brittle overbreak encountered high deviatoric stresses
at the tunnel scale. At confinement levels of 0, 10, and 20 MPa at the lab scale and DSRs
of 0.75, the sample yields as denoted by a rapid increase in strain rate, similar to that of
tertiary creep from Figure 2. It is important to note that the LTS model does not consider
visco-plasticity unlike the simplified Cividini and Gioda model. At the tunnel scale, the
LTS model must be validated to other established numerical models used to simulate brittle
failure, such as the DISL and CWFS models. Using the geometry and stress conditions
similar to those encountered in the AECL URL in LdB granite, both the CWFS and LTS
models show similar convergence measurements but differing yield shapes after first failure
as shown in Figures 13 and 14. The first failure as described by the LTS model is similar to
what is referred to as the process zone, which is the preceding mechanism to spalling.

The advantage of the LTS model over other continuum-based brittle failure models is
that the time it takes for yield to occur can also be calculated in addition to yield geometries.
This provides further guidelines for engineering design in terms of timelines for installation
support. Allowing engineers and researchers to predict TTF at the excavation scale can lead
to project and support optimizations in brittle rocks, reduction of uncertainties, e.g., [93–98]
in the design while avoiding tunnel failures [99] and reduction or even overcoming of
cost overruns, e.g., [100–103]. This model can be modified to calculate stresses and strains
in three dimensions as well as for analysis along a longitudinal displacement profile for
further tunnelling optimizations.

In addition, the LTS model is relatively simple to implement and obtain parameters
for, whereas more complex visco-plastic models require multiple inputs and complex lab
testing to obtain parameters for and become less feasible for an engineering analysis. The
workflow of the LTS model is shown in Figure 6 and the associated rheological analogue is
shown in Figure 16, highlighting the necessary modifications to the existing CVISC model.
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In addition, the LTS model is relatively simple to implement and obtain parameters 
for, whereas more complex visco-plastic models require multiple inputs and complex lab 
testing to obtain parameters for and become less feasible for an engineering analysis. The 
workflow of the LTS model is shown in Figure 6 and the associated rheological analogue 
is shown in Figure 16, highlighting the necessary modifications to the existing CVISC 
model.  
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5. Conclusions

In this paper, a proposed long-term strength (LTS) model is developed for use in
continuum models based on time-to-failure data for brittle rocks exploration at the lab
scale. The advantage of this model over the conventional CWFS and DISL models is that,
in addition to being able to simulate brittle breakout around tunnel peripheries, it can also
simulate the time for such failure to occur, providing more information for engineering
analysis and design. The model is a modified version of the CVISC creep model, where the
secondary viscosity is modified to act as a non-Newtonian fluid and the Mohr–Coulomb
slider experiences cohesive degradation based on the ratio of in-situ stress to strength, or
driving-stress ratio, based on empirical relationships. Cohesion loss can be associated to
the initiation and propagation of cracks through the material, reducing the overall effective
cohesion. This opening and propagating of fractures also reduces tensile strength, which is
considered as well. The friction angle is assumed constant until a residual state is reached.

The LTS model is built upon TTF lab testing wherein a cylindrical sample of rock
is subject to a constant stress greater than its respective CI and less than instantaneous
strength and is used to predict the ultimate stability time for any brittle rock subject to
some deviator stress. The current state of practice for accounting for strength loss with
time in a numerical model is to manually decrease strength parameters of the rock in
stages, which results in bulk weakening; however, as shown in this analysis, only areas
of rock subject to high deviator stresses weaken due to stress corrosion. The LTS model
provides several advantages over classical numerical modelling techniques, including
CWFS analyses, allowing engineers and scientists to weaken specific areas of rock with
time using lab data as a basis. As such, a more precise analysis on the timing for support
installation and excavation step sizes can be made. The model in its current state calculates
TTF based solely on unconfined TTF lab tests, which likely does not reflect real-world
excavation scale behaviour. Finally, it should be highlighted that to calibrate the model,
further research is needed on the effects of confinement on TTF as well as field scale
convergence measurements in longer time periods to ensure model validity.
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