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Abstract: Drill bit failure is a prominent concern in the drilling process of any mine, as it can lead
to increased mining costs. Over the years, the detection of drill bit failure has been based on the
operator’s skills and experience, which are subjective and susceptible to errors. To enhance the
efficiency of mining operations, it is necessary to implement applications of artificial intelligence
to produce a superior method for drill bit monitoring. This research proposes a new and reliable
method to detect drill bit failure in rotary percussion drills using deep learning: a one-dimensional
convolutional neural network (1D CNN) with time-acceleration as input data. 18 m3 of granite
rock were drilled horizontally using a rock drill and intact tungsten carbide drill bits. The time
acceleration of drill vibrations was measured using acceleration sensors mounted on the guide cell of
the rock drill. The drill bit failure detection model was evaluated on five drilling conditions: normal,
defective, abrasion, high pressure, and misdirection. The model achieved a classification accuracy
of 88.7%. The proposed model was compared to three state-of-the-art (SOTA) deep learning neural
networks. The model outperformed SOTA methods in terms of classification accuracy. Our method
provides an automatic and reliable way to detect drill bit failure in rotary percussion drills.

Keywords: rotary percussion drilling; drill bit failure; drill vibration; 1D convolutional neural network

1. Introduction

Drilling is of the utmost importance in underground mining and surface mining, since
minerals are extracted from the earth’s surface by drilling blast holes in hard rock using
rotary percussion drilling methods. Often, a button bit is used in rotary percussion drilling.
The bit consists of a flushing hole to remove cuttings, and buttons which interact with the
drilling surface. Rock failure is facilitated via the employment of a piston which delivers
rapid impacts to the drill stems, thereby transferring energy to the drill bit. The downhole
blows to the rock are delivered by the bit while a rotational device ensures that the bit
impacts a new rock surface with each blow. This drilling method can be employed in both
hard and soft rocks [1]. Because of its good drilling depth and diameter, the method is
most suitable for underground mining. Abnormalities often occur during drilling, such
as wear and abrasion of the drill bit buttons due to excessive feed force and deviation
of the drill hole trajectory. These abnormalities decrease drilling efficiency and increase
drilling costs; for instance, cracks in the drill bit can cause thermal complications leading
to loosening of the bit and rod, which often results in other parts such as the rod and
shank failing [2]. These abnormalities are often detected by operators based on their
sensory judgment and experience, which is an unreliable method of detecting drill bit
failure. Hence, the operating costs of this drilling method are likely to vary depending on
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the operator’s skill and experience, making continuous failure monitoring of drill bits an
important requirement in the quest to reduce operating costs.

Drill wear monitoring in the mining industry is well established. A study by
Gradl et al. [3] proved that bit characterization during drilling can be determined by
the noise produced from drill bits. Data were collected using a standard microphone
and frequency analysis was performed to determine the condition of the bit. Karakus
& Perez [4] also established that acoustic emission monitoring techniques are a feasible
option to optimize diamond core drilling performance and changes in drilling conditions.
Acoustic emission sensors were attached to both the drill and the rocks to record acoustic
signals being emitted during drilling. Acoustic emission waveforms were analyzed, and
the results revealed that acoustic emission amplitudes decrease as wear begins to accelerate.
Kawamura et al. [5] used a GoPro camera to capture the sounds generated during drilling.
Signal processing techniques such as time series analysis, Fast Fourier transform, and
Wavelet transform were used to find the failure of button bits. The results proved that
sounds produced during drilling can be used to detect the condition of drill bits. However,
the use of microphones and other acoustic emission sensors have limitations such as direc-
tional consideration and environmental sensitivity. Acoustic signals are very sensitive to
noise ingress. Sound measurements are more vulnerable to noise ingress than vibration
measurements [6]. Due to the nature of vibration signals, they are considered to contain
reliable features for monitoring drill wear, as the vibrating drill length in the transverse
and axial modes does not change during drilling, thus maintaining a constant mode of
frequency [7]. For these reasons, vibration measurement was considered for this research.
The study aimed to build a cost-effective and easy-to-implement system that could be easily
adopted and reproduced by mines and other researchers, hence the use of accelerometers
to measure drill vibrations. In a recent study done by Uğurlu [8], he proposed a statistical
analysis and model for drill bit management in open pit mining operations. The model
was formulated by collecting operational parameters such as rotational speed, drilling
time, and drilling energy. The results showed that the proposed system could be used
for drill bit monitoring. Across these studies, it is evident that drill bit monitoring is of
utmost importance; nevertheless, the methods are lagging, laborious, and non-automatic.
In mining engineering, the adoption of machine learning has been uneven. Jung & Choi [9]
conducted a study to review research papers published over the last decade that discuss
machine learning techniques for mineral exploration, exploitation, and mine reclamation.
The results showed that machine learning studies have been actively conducted in the
mining industry since 2018 and that most were for mineral exploration. Support vector
machines were utilized the most, followed by deep learning models. Only 7% of the studies
employed convolutional neural network (CNNs). This only proves that when it comes to
artificial intelligence, the mining field, especially in exploitation, is lagging compared to
other fields such as the petroleum exploration and production (P&E) field, as well as the
medical field. Most studies that utilize machine learning to monitor the condition of drill
bits during drilling have been conducted in the manufacturing and P&E industry [10–14].
Although the drilling techniques in these industries are different from those of the min-
ing industry, this study believes that some concepts should be adopted and mirrored to
enhance the efficiency of drilling operations in the mining industry.

Recently, many studies have been dedicated to working on automatic solutions to
accurately detect and identify any damage to various machine parts. Among the available
approaches, vibration-based and machine learning techniques have proven to be the most
effective and reliable in revealing and quantifying damage in rotating machinery [15].
Eren [16] proposed an adaptive implementation of one-dimensional (1D) CNN for bearing
health monitoring. The proposed system combines feature extraction and classification
into a single learning body. The convolutional layers of the proposed 1D CNN learn
to extract optimized features from raw data. Since the raw bearing vibration data is
directly fed into the proposed system, the computational burden due to feature extraction
is eliminated. The 1D CNN fault detection model had an accuracy of over 97%. In another
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study, Ince et al. [17] proposed a method based on a compact 1D CNN to detect a potential
motor anomaly due to bearing faults. The 1D CNN was able to detect anomalies in real-
time at approximately 100% accuracy. Due to the success of these studies, this study
proposes a novel and reliable method to detect drill bit failure in rotary percussion drills
using 1D CNN due to its robustness, unique abilities to optimize both feature extraction
and classification in a single learning body, minimal data pre-processing abilities, and low
computational complexity that allows real-time monitoring.

Figure 1 shows the proposed drill bit failure detection system design. The system
comprises accelerometers installed on the guide cell of the rock drifter to capture vibration
signals from drilling. Vibration signals are then used as input to a 1D CNN network. After
training and evaluating different models, the best model is then selected as the drill bit
failure detection system. The application of this proposed system in the mining site can
help drill rig operators and mining engineers identify possible drill bit failures, thereby
minimizing mining costs and increasing the productivity of the mine.
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Figure 1. Overview of the proposed drill bit failure detection system. Accelerometers are used to collect drill vibration data,
after which data augmentation is done to increase the data samples. The 1D CNN network is then trained and evaluated to
obtain the best model for drill bit failure detection.

In summary, the main contributions of this paper are as follows:

1. A reliable, automatic, and cost-effective method to monitor drill bit failures using
machine learning. The use of accelerometers allows for easy installation and removal.
Accelerometers can be used with any drilling machine, thereby making the system
easy to adopt and implement. 1D CNN has the advantage of processing and analyzing
complex tasks in a short time, which allows the automation of decision making,
therefore eliminating the unreliable method used by drill rig operators.

2. Compared to other fault diagnosis studies which are based on heavy data pre-
processing and are limited to two classifications, normal and failure, this paper
presents a system that requires minimal data pre-processing, making it easy to im-
plement in real-time. The system also classifies five conditions: normal, defective,
abrasion, high impact pressure, and misdirection.

3. The application of a longer kernel size that is approximately 1/4 the size of the input
signal effectively improves the accuracy of the drill bit failure detection model.
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The chapters of this paper are arranged as follows. In Section 2, the one-dimensional
convolutional neural network for time series classification is briefly described. Section 3
explains data acquisition and state-of-the-art (SOTA) models used in time series classifi-
cation. Section 4 describes the proposed 1D CNN architecture and the selection of model
hyperparameters. Section 5 shows the generalization abilities of the proposed model and
the comparison with SOTA models. Finally, Section 6 presents the conclusion.

2. 1D CNN for Time Series Classification

CNNs were developed with the idea of local connectivity. Each node is connected
only to a local region in the input. The local connectivity is achieved by replacing the
weighted sums from the neural network with convolutions [18]. A convolution applies
and slides a filter over the time series. Unlike images, the filters exhibit only one dimension
(time) instead of two dimensions (width and height). The result of a convolution (one
filter) on an input time series can be considered as another univariate time series that
underwent a filtering process. Thus, applying several filters on a time series will result in a
multivariate time series whose dimensions are equal to the number of filters used. Applying
several filters on an input time series helps the network learn multiple discriminative
features useful for the classification task. Instead of manually setting the values of the filter,
the values are learned automatically, since they highly depend on the targeted dataset.
To automatically learn a discriminative filter, the convolution should be followed by a
discriminative classifier, which is usually preceded by a pooling operation that can either
be local or global. Local pooling, such as average or max pooling, takes an input time
series and reduces its length by aggregating over a sliding window of the time series.
With a global pooling operation, the time series will be aggregated over the whole-time
dimension resulting in a single real value. Some deep learning architectures include
normalization layers to help the network converge quickly. For time-series data, the batch
normalization operation is performed over each channel, therefore preventing internal
covariate shift across one mini-batch training of time series. The final discriminative layer
takes the representation of the input time series (the result of the convolutions) and gives
a probability distribution over the class variables in the dataset. Usually, this layer is
comprised of a softmax operation. In some approaches, an additional non-linear fully
connected layer is added before the final softmax layer. Finally, to train and learn the
parameters of a deep CNN: a feed-forward pass followed by backpropagation is done [19].

3. Materials and Methods
3.1. Data Description

During drilling, drill buttons are in contact with the rock surface under intense pres-
sures, which can lead to wear of the buttons. Vertical thrust force has a large impact on the
rate of penetration and the wearing of bits [20]. The wearing of drill bit buttons significantly
affects their service lives and machine operating costs. Therefore, continuous failure analy-
sis is required to reduce operating costs [2]. Most research on machine fault diagnosis is
limited to two conditions: the healthy state and the faulty state. The classification problem
is limited to only two classes. Because there are numerous failures associated with drill
bits, we aimed to detect two types of failures and two drilling conditions that lead to drill
bit failure. We divided the categories into 5 conditions: normal, defective, abrasion, high
impact pressure, and misdirection.

Under the normal condition, a healthy drill bit was used: a normal bit that had
undamaged buttons with a high protrusion height. Figure 2a shows a normal bit used in
this study. Under the defective condition, some of the buttons in the bit were completely
broken, off as indicated by Figure 2b. This type of failure is often caused by the free
hammering of the bit in the air and improper soldering of the buttons in a bit base steel [2].
Under the abrasion condition, the drill buttons were completely worn out as shown in
Figure 2c. This type of failure is caused by overused drill bits. If the diameter of the flat
face of the bit button is larger than one-third of the original button diameter, then the
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bit is classified as overused. The continued use of an overused bit can lead to adverse
effects on tool efficiency and trigger drill hole deviations [2]. If excessive impact pressure
is applied to the bit, it is likely to cause failure to the bit. Excessive bit load can affect
the constancy of drill rotation, which can cause drill hole deviation leading to poor rock
fragmentation, which can damage drill bits. It is important for drill rig operators to identify
excessive impact pressure and drill hole deviation (misdirection) to avoid further damage
to the bit. Normal bits were used to measure drill vibrations for high impact pressure
and misdirection.
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Figure 2. Tungsten carbide drill bits used for drilling: (a) normal bit, (b) chipped button bit (defective), (c) worn-out
bit (abrasion).

3.2. Data Acquisition

An acceleration sensor was mounted on the guide cell of the rock drill to detect vibra-
tion signals in the longitudinal direction. It was mounted such that the desired measuring
direction coincided with its main sensitivity axis. The sensor could detect the vibration
behavior of the drill bit, as the vibrations from the bit propagated through the drill string
to the body of the drill machine. The outline and schematic diagram of the experiment
are shown in Figure 3. Drilling was performed on a granite rock and drill vibrations were
measured. The drilling conditions are shown in Table 1: normal, defective, abrasion, high
impact pressure, and misdirection. 10 holes were drilled for each condition, in total 50
holes were drilled. The length of one drill hole was approximately 1 m. The number of hits
per minute was set at 3120 for all holes. Table 2 illustrates the data acquisition parameters
used for the experiment. The impact pressure for each hole was set at 13.5-7 MPa. The
striking frequency, the number of revolutions, and the drilling speed were determined by
the striking pressure, the rotating pressure, and the feed pressure. The rotation pressure
was 4–6 MPa and the feed pressure was 4 MPa. The sampling frequency was set at 50 kHz.
The accelerometer (TEAC’s piezoelectric acceleration transducer 600 series) was a charge
capacity type that measured time acceleration in the longitudinal direction. The maximum
acceleration used by the sensor was ±10,000 m/s2. The acceleration sensor output a voltage
that was then transmitted to the data logger (GRAPHTEC Data Platform DM3300). The
data logger had a built-in amplifier; the acceleration was written out as CSV data on the
PC by inputting the calibration coefficient of the acceleration sensor into the data logger.

Table 1. Experimental conditions.

Conditions Type of Bit Number of Holes Number of Hits per Minute Length (m) Time (s)

Normal Normal 10 3120 1 60
Defective Chipped button 10 3120 1 60
Abrasion Worn out 10 3120 1 60

High impact pressure Normal 10 3120 1 60
Misdirection Normal 10 3120 1 60
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Figure 3. Experimental setup. 18 m3 of granite rock was horizontally drilled using a stationary rock
drifter with accelerometers mounted on the guide cell of the rock drifter. Acceleration data was
transmitted from the accelerometers to the data logger and then stored in the PC as CSV data.

Table 2. Parameters of the experiment.

Drill Length (m) Impact Pressure
(MPa)

Striking
Frequency (Hz)

Rotary Pressure
(MPa)

Feed Pressure
(MPa)

Sampling
Frequency (kHz)

1 13.5-7 52 4–6 4 50

3.3. Data Preprocessing

CNNs require a large amount of data for training and testing; hence, data augmenta-
tion was performed to increase the number of data sets to improve the accuracy of the CNN
model. Sampling frequency, sampling time, and sampling number were taken into consid-
eration for data augmentation. The sampling frequency was set at 50 kHz with a sampling
time of 60 s; using Equation (1), each drill hole had approximately 3,000,000 sampling
numbers (data points). Each test drill hole signal x[N] was divided into approximately
1000 segments each with 3000 data points xn[N], with no overlapping. Figure 4 depicts
the data augmentation process. Each segmentation had a fixed length of 0.06 s, which
guaranteed that at least 3 drill bit hits were represented within one segment. Each drill
condition had 9000 test samples to be used for training, validating, and testing the 1D
CNN model.

Number o f samples = Sampling rate × Sampling time (1)
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3.4. State of the Art Deep Learning Neural Networks

Three fundamental deep learning neural networks (DNNs) for time series classification
as described by Fawaz et al. [19] were selected to compare with the proposed drill bit
failure detection model (DBFD). Figure 4 shows the network structure of the three neural
networks [21].

3.4.1. Multilayer Perceptron (MLP)

MLPs are the most traditional form of DNNs. They were described as a baseline
architecture for time series classification by Wang et al. [21]. The network has four layers;
each is fully connected to the output of its previous layer. The three fully connected layers
have 500 neurons followed by dropout at each layer’s input, to improve the generalization
capability. The rectified linear unit (ReLU) is used as an activation function to prevent
saturation of the gradient when the network is deep. The network ends with a softmax
layer. The dropout rates at the input layer, hidden layers, and the softmax layer are 0.1, 0.2,
and 0.3, respectively, as shown in Figure 5a.
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3.4.2. Fully Connected Layers (FCN)

FCNs are mainly convolutional networks that do not contain any local pooling layers,
which means that the length of the time series is kept unchanged throughout the convolu-
tions. The basic block is a convolutional layer followed by a batch normalization layer and
a ReLU activation layer. The convolution operation is fulfilled by three 1-D kernels with
the sizes 8, 5, and 3, with no striding operator. Three convolution blocks are stacked with
the filter sizes of 128, 256, and 128 in each block. Local pooling operation is not applied
to prevent overfitting. Batch normalization is applied to speed up the convergence speed
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and to help improve generalization. After the convolution blocks, the features are fed
into a global average pooling (GAP) layer instead of a fully connected layer, which largely
reduces the number of weights [21]. The final label is produced by a softmax layer. The
architecture of FCN is shown in Figure 5b.

3.4.3. Residual Network (ResNet 50)

The main characteristic of ResNet is the shortcut residual connection between con-
secutive convolutional layers. The architecture of ResNet is depicted in Figure 5c. The
difference with the usual convolutions, such as in FCNs, is that a linear shortcut is added
to link the output of a residual block to its input, thus enabling the flow of the gradient
directly through these connections, which makes training a DNN much easier by reducing
the vanishing gradient effect [22]. The network is composed of 16 residual blocks followed
by a GAP layer and a final softmax classifier, whose number of neurons is equal to the
number of classes in a dataset. Each residual block is composed of three convolutions
whose output is added to the residual block’s input and then fed to the next layer. The
number of filters for each residual block differs as shown in Figure 5c. In each residual
block, the filter’s length is set to 1, 3, and 1, respectively. The final residual block is followed
by a global average pooling layer and a softmax layer [21].

3.5. Experiment Implementation Details

To run all experiments, five classes were used: normal, defective, abrasion, high
pressure, and misdirection. Under each condition, 9000 data were prepared. The data was
split into 70% training (6300), 15% Validation (1350), and 15% testing (1350). All models
were trained with Adam as an optimizer and a learning rate of 0.001. A batch size of 128
and 25 epochs were selected. The training process was conducted by MATLAB R2020b
with a deep learning toolbox. The machine specifications are summarized in Table 3.

Table 3. Machine specifications.

Hardware and Software Characteristics

Memory 16 Gb
Processor Intel i7-8750H CPU @ 2.2 GHz
Graphics NVIDIA GeForce GTX 1060
Operating system Windows 10, 64 bits

3.6. Evaluation Metrics

The models were evaluated by analyzing how well they perform on test data. Con-
fusion matrices were used to show the summary of the prediction results made by the
models on test data. The confusion matrix indicates the true label and the false label made
by the model for each class. In the confusion matrix, true positives (TP) are positive cases,
and the prediction is correct. False positives (FP) are negative cases that are misclassified as
positive. True negative (TN) are negative cases that are correctly classified as negative. False
negatives (FN) are positive cases that are misclassified as negative. Due to class-balanced
confusion matrices, accuracy was used as the main performance metric to evaluate the
models. Accuracy summarizes the performance of a classification model as the number of
correct predictions divided by the total number of predictions, as indicated by Equation (2).
Other measurement metrics used to explain the confusion matrix were sensitivity or recall,
which correspond to the accuracy of positive examples, as can be calculated with Equation
(3). Precision measures the correctness of the model; it is defined as the number of true
positives divided by the number of true positives plus the number of false positives as
shown by Equation (4).

Accuracy =
TP + TN

TP + TN + FP + FN
(2)
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Sensitivity (recall) =
TP

TP + FN
(3)

Precision =
TP

TP + FP
(4)

where TP refers to the true positives, TN refers to the true negatives, FP refers to the false
positives, and FN refers to the false negatives.

4. Proposed Drill Bit Failure Detection (DBFD) Model 1D CNN Architecture

Recent studies show that time series classification 1D CNNs with relatively shallow
architectures can learn challenging tasks involving 1D signals [15]; therefore, a simple and
compact CNN architecture was constructed. The proposed 1D CNN model was inspired
by Time Le-Net (t-LeNet) model, which was originally made famous by Guennec et al. [23].
The t-LeNet model has two convolutional layers, followed by a fully connected layer and a
softmax classifier. The model utilizes a local max pooling operation as a way of achieving
translation invariance. A similar CNN architecture was adopted, but hyperparameter
alterations were made to suit our dataset. The proposed CNN architecture shown in
Figure 6 comprises two pairs of convolutional and max pooling layers, two fully connected
layers, and a softmax layer. The last fully connected layer combines features to classify
signals; therefore, the output size argument of the last fully connected layer is equal to
the number of classes of the data set. As shown in Table 4, the first convolutional layer
has a kernel size of 751 with 128 filters and a stride of 2. The second convolutional layer
has a kernel size of 281 with 128 filters and a stride of 2. Batch normalization and leaky
ReLU were applied after each convolutional layer, before max pooling to speed up the
convergence and to help improve generalization. The proposed model had a total of
31,515,805 learnable parameters.

The performance of a CNN model is highly dependent on its hyperparameters. Hy-
perparameter optimization is not a simple task, as it is problem specific. According to
Zhao et al. [24], the kernel size, pooling method, pooling size, and the number of convo-
lution filters are important hyperparameters in time series classification. In this study,
hyperparameters were tuned manually by trial and error. A set of experiments were con-
ducted to determine the optimum hyperparameters for the DBFD model before selecting
the proposed model’s parameters, shown in Table 4.
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Table 4. Proposed DBFD model’s parameters.

Layer Type Number of
Filters Size of Filter Stride Value Output Size Number of

Trainable Parameters

Input - - - 1 × 3000 × 1 0
Convolution 128 1 × 751 × 1 2 1 × 1126 × 128 96,256

Batch normalization 128 - - 1 × 1126 × 128 256
Leaky ReLU - - - 1 × 1126 × 128 0
Max pooling 1 1 × 3 × 1 1 1 × 1122 × 128 0
Convolution 128 1 × 281 × 128 2 1 × 421 × 128 4,604,032

Batch normalization 128 - - 1 × 421 × 128 256
Leaky ReLU - - - 1 × 421 × 128 0
Max pooling 1 1 × 3 × 1 1 1 × 417 × 128 0

Fully connected - - - 1 × 1 × 500 26,880,500
Fully connected - - - 1 × 1 × 500 2505

Softmax - - - 1 × 1 × 5 0

4.1. Kernel Size

The convolutional kernels (filters) represent the local features of the input time series.
If the kernel size is too small, it cannot represent the typical features of waveforms well.
It will have difficulty reflecting local features concisely, and an over-length kernel size
will bring extra noise into the representation, therefore reducing the quality of feature
representation [24]. There are unresolved challenges with kernel size selection; different
approaches have been proposed but no agreement on which is best [25]. It is common
practice to use kernel sizes of 1 × 3 or 1 × 5. If a narrow kernel size of 1 × 3 is adopted,
each output feature value can obtain only the feature relationship among the adjacent
three values of the input signal, which will greatly limit the network’s ability to learn low-
frequency signal features. However, the introduction of a wide convolutional kernel allows
one convolution operation to obtain the feature relationship in a longer sequence [26].
We propose a kernel size of 1 × 751 and 1 × 281 for the first and second convolutional
layers. For the first convolution layer, an odd number that was greater than or equal to K
in Equation (5) was used as kernel size. Equation (6) was then used to calculate the output
shape of the first convolutional and pooling layer. The shape from the first pooling layer
was used as an input shape to the second convolutional layer. Equation (5) was then used
to obtain the kernel size for the second convolutional layer. We believe that using a kernel
size that is at least 1

4 the size of the input waveform allows for the receptive field to be long
enough to catch positional information within the signal.

K = N/4 (5)

X =

(
N − K + 2 × P

S

)
+ 1 (6)

where X is the output shape, N is input (data length), K is the kernel size, P is padding,
and S is the stride.

A set of experiments were conducted to prove that the proposed kernel size had a
better abstraction of features compared to commonly used kernel sizes. Table 5 shows
the training and validation accuracy of different kernel sizes. The proposed kernel size
performs better than the commonly used filter sizes in terms of training accuracy and
validation accuracy. Figure 7 shows the learning curve of training accuracy for all kernel
sizes. The training learning curves were evaluated to understand how well the models
were learning. The proposed kernel size curve had a steadier curve compared to the other
kernel sizes. This proves that the use of a longer kernel size offers better feature learning
abilities for our data.
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Table 5. Training and validation loss of commonly used kernel sizes and the proposed kernel size.

Kernel
Name

Size of the 1st
Convolutional Layer

Size of the 2nd
Convolutional Layer

Training
Accuracy (%)

Validation
Accuracy (%)

Kernel 1 3 3 82.81 51.96
Kernel 2 5 3 74.22 54.15
Kernel 3 5 5 75.00 63.67
Kernel 4 7 5 63.28 61.17
Kernel 5 7 7 64.06 58.65
Kernel 6 11 7 72.66 66.52
Kernel 7 11 11 82.03 68.12
Kernel 8 751 281 93.75 87.78
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4.2. Pooling Method and Size

The purpose of the pooling operation is to achieve dimension reduction of feature
maps while preserving important information. Max pooling and Mean pooling are com-
monly used pooling methods in CNN. Mean pooling calculates the mean value of the
parameter within the range following the predetermined pooling window size, while
max pooling selects the largest parameter within the predetermined window range as the
output value [27]. Local max pooling was selected for local translation invariance purposes.
The pooling size is also an important parameter to be decided beforehand. The larger the
pooling size is, the better the performance it obtains in dimension reduction, but the more
information it loses [24]. Experiments were carried out to determine the suitable pooling
size for the DBFD model. From the results of these experiments shown in Table 6, a filter
size of 3 and 5 offered a better validation accuracy compared to the other filter sizes. A filter
size of 3 was selected as it had a slightly better validation accuracy than a filter size of 5.
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Table 6. Training and validation accuracy for different pooling sizes.

Pooling Size in 1st and 2nd
Convolutional Layer Pooling Strategy Training

Accuracy (%)
Validation

Accuracy (%)

2 Max pooling 97.78 88.71
3 Max pooling 97.66 89.50
4 Max pooling 97.66 88.59
5 Max pooling 94.53 89.04
7 Max pooling 93.75 86.68

4.3. Number of Convolution Filters

The filters represent the local features of a time series. A few filters cannot extract
discriminative features from the input data to achieve a higher generalization accuracy,
but having more filters is computationally expensive [24]. In general, the number of filters
increases as a CNN network grows [28]. Experiments were conducted to select the best
possible number of filters to adopt. Table 7 indicates the training accuracy, validation
accuracy, and computation time for three different models with different filter numbers.
Using 128 filters in the first and second convolutional layer produced a higher validation
accuracy of 89.02%. It was observed that with the increase of filters the computational time
also increased. A filter size of 128 in both convolutional layers was adopted, as it offered a
better validation accuracy.

Table 7. Training and validation accuracy of different convolution filter numbers.

1st Convolutional
Layer

2nd Convolutional
Layer

Training
Accuracy (%)

Validation
Accuracy (%)

Time
(min)

32 64 99.22 86.81 415.09
64 128 93.75 87.24 426.54
128 128 96.09 89.02 428.50
128 264 96.88 87.88 452.30

4.4. Evaluation of Network Depth on the Performance of the DBFD Model

The representational capacity of a CNN usually depends on its depth; an enriched
feature set ranging from simple to complex abstractions can help in learning complex prob-
lems. However, the main challenge faced by deep architectures is that of the diminishing
gradient [29]. Numerous studies on 1D CNN time series classification have proposed
and proved that a simple configuration 1D CNN with two or three layers is capable of
achieving higher learning, and that sometimes a deep and complex CNN architecture is
not necessary to achieve high detection rates for time series classification [16]. The effects
of network depth on the performance of the model were studied: DBFD 2 which had two
layers, DBFD 3 which had three layers, and DBFD 4 which had four layers. Table 8 shows
the training and validation accuracy of the three models. The performance of the DBFD
model is relatively the same as the network depth increases. DBFD 2 had a 0.53% and
0.08% higher validation accuracy than DBFD 3 and DBFD 4. DBFD 2 was selected as it
offered a slightly better validation accuracy than other models.

Table 8. Performance of the DBFD model under different network depth.

Model Training Accuracy (%) Validation Accuracy (%)

DBFD 2 96.02 89.02
DBFD 3 94.53 88.49
DBFD 4 96.87 88.94

To gain insight into the classification abilities of the DBFD 2 model, the t-distributed
stochastic neighbor embedding method (t-SNE) was used to visualize the network’s acti-
vations on the validation data set. t-SNE is one of the dimension compression algorithms
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used for the visualization of high-dimensional data. t-SNE works by creating a probability
distribution that dictates the relationship between various neighboring points. It then
recreates a low dimensional space that follows the probability distribution of the data as
much as possible [30]. Visualization allows the finding of points that appear in the wrong
cluster, indicating an observation that the network misclassified. 1350 data from each
condition were compressed into a two-dimensional map and visualized. Tight clusters
in the t-SNE plot indicate classes that the model classifies correctly, and outliers show
misclassified data. From Figure 8, the early layer conv1 and maxpool1 activations do not
exhibit any clustering by class because the layers were operating on low-level features. At
conv2 and maxpool2 activations, the normal condition had already started to form clusters,
which indicates the model was able to extract important features from the waveform early
on. At these layers, the clustering of classes began to form, but not vividly, as there were
overlapping data. At FC1 activations, normal, defective, high pressure, and misdirection
had formed tight clusters, but the abrasion cluster was not well defined, as there were
many overlaps between abrasion–high pressure and abrasion–defective. In the softmax
layer, high-level features were extracted from the data. At this layer, the normal, defective,
and misdirection classes were well defined, but the normal and high-pressure classes were
not as tight, and were circular compared to the previous layer, FC1, because t-SNE tends
to expand dense clusters and contracts sparse ones as a way of evening out cluster sizes.
The results indicate that a shallow and compact 1D CNN model is capable of high-level
feature learning.
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Figure 8. Visualization of the DBFD model’s activations using the t-distributed stochastic neighbor embedding (t-SNE)
method. t-SNE was used to visualize clustering as training occurred in (a) convolution 1, (b) max pooling 1, (c) convolution
2, (d) max pooling 2, (e) fully connected layer 1, and (f) the softmax layer of the DBFD 2 model.

5. Results and Discussions

1D CNN presents an opportunity to predict drill bit failure in rotary percussion drilling
with minimum effort. Accurate and efficient models are sought after. First, the proposed
DBFD model was evaluated on test data, then a comparison analysis was conducted with
SOTA models.

5.1. DBFD Model Evaluation

From the confusion matrix in Figure 9, it can be noted that the normal condition
had the highest recall of 99.0%; out of 1350 examples, the model was correct for 1337.
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Misdirection also had a high recall of 98.4%. Defective and high pressure had a recall of
88.1% and 85.3%, respectively. The model had the lowest recall of 72.5% for abrasion; out
of 13,500 examples, it predicted 979 correctly and misclassified 371. In terms of precision,
normal and misdirection had the highest precisions, of 96.6% and 92.7%. The results
indicate that the model was less precise with the abrasion condition, in which a precision
of 80% was attained. The model had a good precision rate of ≥80% in all classes. Overall
classification accuracy of 88.7% was achieved, which was satisfactory. Figure 10 shows the
false negatives for each target class. It shows the number of misclassified examples between
classes. The highest rate of misclassification occurred between the pairs of abrasion–high
pressure and abrasion–defective; the model could not differentiate between the acceleration
waveforms of these pairs. Another pair that had the most misclassification was defective–
high pressure. These three class pairs accounted for more than 70% of all mistakes made
by the model. t-SNE was used to visualize the performance of the model on unseen test
data. As seen in Figure 11, there was a huge overlap between abrasion–high pressure
and abrasion–defective, which implies that the model could not extract valuable features
from the abrasion vibration signals to distinguish it from high pressure and defective. We
believe that because defective and abrasion both represent a faulty state of the drill bit,
they are likely to produce similar vibration signatures, and that is why there was a huge
misclassification between defective–abrasion and abrasion–high pressure.

5.2. Comparison with SOTA Models

We selected three deep neural networks that are considered baselines for time series
classification, published by Wang et al. [19] and Fawaz et al. [21]: MLP, FCN, and ResNet.
The aim was to compare the proposed DBFD model to the SOTA models by evaluating the
models using classification accuracy and processing time. There is a significant difference
between the architectures of the four models. The proposed model utilizes a longer kernel
size and local max pooling, while FCN and ResNet 50 use a shorter kernel size and global
average pooling and MLPs employ fully connected layers throughout their architecture.
ResNet 50, which is 50 layers deep, was employed to assess if the model’s accuracy will
improve when utilizing a deeper network. The training and testing process for all models
was carried out using similar experimental conditions, for example, data splitting, number
of epochs, and batch size.
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Table 9 summarizes the accuracy and processing time of all four models. Processing
time was used to evaluate the computational complexity and processing efficiency of the
models. The results demonstrate that in terms of classification accuracy, the proposed
model performed better than all three SOTA models. The DBFD model had an overall
classification accuracy of 88.7%. ResNet model ranked second with a classification accuracy
of 81.6%. FCN ranked third with an accuracy of 76.7%. MLP had the lowest classification
accuracy of 54.0%, which indicates that the model could not learn distinct patterns to
differentiate the five drilling conditions. Based on the computation time it took each model
to make classifications, MLP showed the best performance, by taking the shortest time
of 170.52 min for 6150 iterations; this is because it has three fully connected layers, each
with 500 neurons; therefore, forward and backpropagation can be carried out swiftly. The
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proposed DBFD model had the shortest processing time of 428.50 min compared to FCN
(476.57 min) and Resnet50 (1805.29 min), which implies a better processing efficiency.
Resnet had the longest training time because it is 50 layers deep. Figure 12 shows the
confusion matrix of the SOTA models. From Figure 12, it can be noted that normal and
misdirection had the highest recall and precision in all models compared to other classes.
Across all SOTA models, the most misclassifications occurred between the class pairs of
abrasion–high pressure and abrasion–defective. The proposed DBFD model outperforms
the SOTA models in terms of classification accuracy and processing efficiency, which makes
it superior in predicting drill bit failure in rotary percussion drills.

Table 9. Summary of performance metrics for the proposed model and SOTA models.

Model Classification
Accuracy (%) Time (min) Learnable

Parameters

Proposed DBFD 88.7 428.50 31,515,805
MLP 54.7 170.52 2,003,002
FCN 76.7 476.57 167,558

ResNet50 81.6 1805.29 16,185,685
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6. Conclusions

Over the years, the detection of drill bit failure has been done by drill rig operators
based on the experience and skills they gain over years of drilling. This method is sus-
ceptible to human error; hence, a reliable method to detect drill bit failure is needed. This
research utilizes drill vibrations and a 1D CNN to build a reliable drill bit failure detection
model. Vibration measurement using accelerometers was considered, as we aimed to
build a cost-effective and easy-to-implement system. 1D CNN was employed because
of its unique abilities to optimize both feature extraction and classification in a single
learning body, minimal data pre-processing abilities, and low computational complexity.
A two-layered CNN model with 128 filters, a stride of 2, and kernel sizes of 751 and 281
was utilized to classify five drilling conditions: normal, defective, abrasion, high pressure,
and misdirection. The model had an overall classification accuracy of 88.7%. The model
was able to successfully classify drill conditions with few incorrect predictions. Most
of the misclassification errors occurred between the pairs of abrasion–high pressure and
abrasion–defective. We showed that the proposed model can achieve better classification
accuracy and processing time compared to SOTA models. Our work demonstrates that a
simple and compact 1D CNN model which utilizes a longer kernel size than most studies
and local pooling is effective in predicting drill bit failure in rotary percussion drilling. In
application, the drill bit failure detection model could be used simultaneously with the
expertise of drill rig operators. In this study, only one type of rock was considered; in the
future, more experiments with different types of rocks need to be conducted.
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