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Abstract: It is important that the strategic mine plan makes optimum use of available resources
and provides continuous quality ore to drive sustainable mining and profitability. This requires the
development of a well-integrated strategy of mining options for surface and/or underground mining
and their interactions. Understanding the current tools and methodologies used in the mining
industry for surface and underground mining options and transitions planning are essential to
dealing with complex and deep-seated deposits that are amenable to both open pit and underground
mining. In this study, extensive literature review and a gap analysis matrix are used to identify
the limitations and opportunities for further research in surface-underground mining options and
transitions optimization for comprehensive resource development planning.

Keywords: strategic mining options optimization; mathematical programming models; transition
depth; open pit-underground mining; resource development planning

1. Introduction

Surface mining is known to be relatively highly productive, very economic, and safer
for workers compared to underground mining for most suitable deposits. However, recent
evolution in environmental regulations and societal expectations may result in the devel-
opment of small, high-grade deposits by shallow open pits (OP) or in the establishment of
high-grade underground (UG) mines in place of extensive OP operations [1]. Optimizing
the extraction of a mineral deposit in the presence of both surface mining methods and
UG mining methods result in the most economic decision generated by identifying the
best mining option for the deposit. In resource development planning, optimizing resource
exploitation depends largely on the mining option used in the extraction. The term mining
options optimization has been used by researchers and professionals to refer to the initia-
tives or choices undertaken in the extractive industry to expand, change, defer, abandon,
or adopt strategies for a mining method(s) and sometimes investment opportunities; based
on changing economics, technology, or market conditions [2-10]. For mineral deposits with
orebodies that extend from near surface to several depths, such orebodies are amenable to
different variations of either open pit mining, underground mining, or both.

Some studies have been conducted to solve the surface-underground mining options
and transitions optimization (SUMOTO) problem. These studies have focused on determin-
ing the transition depth and the resulting production schedules for the OP and UG mining
operations using simplified optimization frameworks. These models do not extensively
address the multi-objective optimization nature of the SUMOTO problem, and do not
formulate the problem with a complete description of the practical mining environment.
Specifically, the existing models do not incorporate essential developmental infrastructure
such as primary and secondary mine accesses, ventilation requirement, and geotechnical
support and reinforcement in the optimization framework. Results from these models
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often lead to localized optimal solutions or biased solutions that are usually impractical to
implement in the mining environment [2,3,11-24].

Existing optimization algorithms used in attempting the mining options problem
include the Lerchs-Grossman (LG) algorithm, Seymour algorithm, floating cone tech-
nique, network flows, dynamic programming, neural network, theory of graphs, and
mathematical formulations [25]. Some authors have studied the surface-underground
mining options and transitions optimization problem with available commercial software
packages including Surpac Vision, Datamine’s NPV Scheduler, Whittle Four-X, Geovia
MineSched, integrated 3D CAD systems of Datamine, Vulcan, MineScape, MineSight, Isatis,
XPAC, Mineable Reserve Optimizer (MRO), Blasor pit optimization tool, COMET cut-off
grade and schedule optimizer, and Datamine Studio 3 [7,9,17,26,27]. The techniques used
by these authors are not generic but mostly scenario based and often lead to localized
optimization solutions.

Although Bakhtavar, Shahriar, and Oraee [3] employed a heuristic algorithm to com-
pare economic block values computed for both open pit and underground mining on a
depth flow basis to solve the SUMOTO problem, results from the heuristic algorithm do not
offer a measure of optimality as it is the case in mathematical programming optimization.
Notable authors that used mathematical programming to solve the mining transition prob-
lem limit their model to the determination of transition depth and block extraction sequence
for the open pit and underground mining operations [2,4,8,9,11-15,17-19,24,25,28,29]. Sim-
ilarly, other authors have developed stochastic mathematical programming models to
solve the surface-underground mining options and transitions optimization problem. They
focused on determination of the transition depth in 2D environment, and do not incor-
porate other essential underground mining constraints such as primary and secondary
development, ventilation shaft development, and geotechnical requirements for the devel-
opment openings and stopes in the optimization framework [7,20,30,31]. This is because
the optimization of underground mines is computationally complex [32] and integrating it
with open pit mining makes it more challenging [33].

The positioning of the required crown pillar thickness in the SUMOTO problem is key
to the operations of such mines. Some authors pre-selected the depth of the crown pillar
(transition depth) before evaluating portions above the crown pillar for open pit mining
and portions below the crown pillar for underground mining [4,18,25,27,28]. This may lead
to suboptimal solutions and will require evaluating multiple crown pillar locations in a
scenario-based approach. A few authors have attempted to incorporate the positioning
of the crown pillar in the optimization process [14,24,30,31,34,35]. Their models were
good improvements over previous works but were missing some constraints such as the
ventilation requirement and rock strength properties required for practical implementation.
The transition from OP to UG mining is a complicated geomechanical process which
requires the consideration of rock mass properties [36,37].

Bakhtavar [12] reviewed the combined open pit with underground mining methods
for the past decade and noticed that the transition problem has been implemented in either
simultaneous or non-simultaneous modes. He asserts that non-simultaneous mode of
combined mining is more acceptable because large-scale underground caving methods with
high productivity and low costs can be used. However, in simultaneous mode, horizontal
and vertical slices underhand cut and fill with cemented backfill is more feasible to be used
with OP mining. Afum, Ben-Awuah, and Askari-Nasab [35] implemented a mathematical
programming model that allows the optimization approach to decide whether the mineral
deposit should be exploited with either simultaneous, non-simultaneous, sequential, or
any of these combinations thereof.

Most existing models in general do not include the requirements of essential under-
ground mining infrastructure such main access to the underground mine (shaft or decline
or adit development), ventilation development, operational development (levels, ore and
waste drives, crosscuts), and necessary vertical development (ore passes, raises). Equally,
these existing models do not incorporate rock strength properties in the SUMOTO problem.
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Although these essential infrastructure and geotechnical characteristics of the rock forma-
tion are significant to underground mining operations, their added complexities make it
difficult to be included in the SUMOTO models. According to Bullock [38], mine planning
is an iterative process that requires looking at many options and determining which, in the
long run, provides the optimum results. Using such iterative process could lead to some
inferior or sub-optimal solution(s) that do not constitute the global optimal solution.

In summary, this paper reviews relevant literature on algorithms and models for
the SUMOTO, identifies gaps and opportunities that can be explored for further research
and implementation in the mining industry, and further introduces the significance of
employing mathematical programming for planning resources amenable to both options.
Figure 1 is a schematic representation of the surface-underground mining options and
transitions planning problem for deposits amenable to both mining options.
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Figure 1. Schematic representation of the surface-underground mining options and transitions
planning problem. (A) illustrates evaluation of an orebody to generate maximum net present value
(NPV) depending on how each mining block is extracted; either through open pit mining, open
stope extraction, or both. (B,C) demonstrate the extraction of a mineral resource by open pit (OP),
underground (UG), or both open pit and underground (OPUG) mining for optimum resource
development planning. ((A)—Ben-Awuah, Otto, Tarrant, and Yashar [4]; (B)—Afum, Ben-Awuah,
and Askari-Nasab [34]).

1.1. Classification of Mining Methods (Mining Options)

Mining is defined as the process of exploiting a valuable mineral resource naturally
occurring in the earth crust [39,40]. The extraction of mineral resources from the earth
crust is classified broadly into two; surface mining and UG mining. In surface mining,
all the extraction operations are exposed to the atmosphere while in UG mining, all
the operations are conducted in the bosom of the earth crust. The main objective of
a mineral project development is the maximization of investment returns; the “golden
rule” of mining or the investor’s “law of conservation” [41]. Therefore, adopting the best
mining option that maximizes the project’s value is a requirement to the establishment of a
successful mine. Planning a surface mine is often simpler compared to an underground
mine because there are broad similarities between different variations of surface mining as
opposed to the variations of underground mining. Thus, planning an underground mine
is necessarily complicated by the availability of many different types and variations of
mining systems [37]. These surface and underground mining variations are also generally
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referred to as classes of mining methods. The classification of surface mining methods and
underground mining methods are respectively illustrated in Figures 2 and 3.
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Figure 2. Classification of surface mining methods.
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Figure 3. Classification of underground mining methods.

Surface mining methods are broadly classified into mechanical and aqueous extrac-
tion methods (Figure 2). Mechanical surface mining methods include open pit mining,
quarrying, strip mining, and auger mining, while aqueous surface mining methods include
placer mining and solution mining. Placer mining includes dredging and hydraulic mining
while solution mining includes surface techniques such as in-situ leaching and evaporite
processing. Based on the rock formation strength, UG mining methods are broadly classi-
fied into naturally supported methods, artificially supported methods, and unsupported
methods (Figure 3). Naturally supported mining methods include room and pillar, sub-
level stoping, open stoping, vertical crater retreat (VCR), and vein mining. Artificially
supported mining methods include stull stoping, square set, cut and fill, shrinkage, and
resuing while unsupported methods include longwall, sublevel caving, block caving, and
top slicing. According to Nelson [1], some of the factors that must be considered when
choosing between surface or underground mining methods include:

1. Extent, shape, and depth of the deposit;
2. Geological formation and geomechanical conditions;
3.  Productivities and equipment capacities;
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Availability of skilled labor;

Capital and operating costs requirements;

Ore processing recoveries and revenues;

Safety and injuries;

Environmental impacts, during and after mining;
Reclamation and restoration requirements and costs;
10. Societal and cultural requirements.

O X NG

1.2. Mineral Projects Evaluation

When a mineral deposit is discovered, several evaluations are conducted towards the
project’s viability. The evaluation methods used are broadly grouped into two: positive
evaluation methods and normative evaluation methods [42]. Positive evaluation methods
assess the quantity and quality of the mineral project while normative evaluation methods
assess the social and ethical values of the mineral project. Positive evaluation methods deal
with investigations related to the geology of the formation, technology required to develop
the deposit, investment decisions such as net present value (NPV), internal rate of return
(IRR), and options valuations, and financial evaluation to show how funds will be raised
and repaid in future. This research focuses on positive evaluation methods for mineral
projects with the exception of how funds are raised and repaid for the project.

A mineral property could be described as being at early-stage or advanced-stage
exploration, development, defunct, dormant, or production stage [43]. Three types of
studies are undertaken according to the stage of life of the mineral project under evaluation.
These studies are scoping study, prefeasibility study, and feasibility study [44,45]. Scoping
study is a preliminary assessment of the technical and economic viability of a mineral
property while a prefeasibility study is a comprehensive study of the viability of the mineral
project subject to operational constraints at which the preferred UG mining method or
OP mining arrangement is established, including an effective mineral processing method.
Feasibility study, on the other hand, is a comprehensive study on the design and cost of the
selected mining option for developing the mineral project. Usually, the confidence level
associated with a prefeasibility study is lower than a feasibility study while the confidence
level for a scoping study is also lower than a prefeasibility study.

The outcome of a prefeasibility study on a mineral property is a mineral reserve that
is profitable. Thus, the mineral resource is technically and economically evaluated and
if it is profitable, it becomes a mineral reserve otherwise it remains a mineral resource
until prevailing factors (commonly referred to as modifying factors) become favorable [44].
The details of the evaluation studies for a mineral project depends mainly on the stage of
life of the mine and the prevailing regulatory requirements of the region. These detailed
evaluation considerations may include geological and geostatistical modeling, geotechni-
cal investigation, mining optimization studies, cost-benefit analysis, equipment selection,
rock transportation studies, rock stability and slope requirement assessment, crown pillar
location investigation, blasting and fragmentation studies, environmental baseline studies,
environmental management and impact studies, and mine closure and reclamation studies.
During prefeasibility studies, typical technical and economic considerations include geolog-
ical, geostatistical, and mining optimization investigations. These investigations primarily
define the spatial grade distribution of the deposit, and uncovers the size, shape, depth
(extent), and orientation of the deposit, and further validate the profitability associated
with the mining strategy.

Identifying the preferred mining option (whether OP or UG or both) during prefeasi-
bility studies on a mineral property involves strategic optimization analysis. This analysis
ensures much value is attained during the implementation of the resource development
plan. When the mineral resource is closer to the earth surface (sometimes with significant
outcrop), OP mining evaluation studies are outrightly conducted. When the mineral re-
source is deeply buried in the earth crust (with no significant outcrop or presence near
the earth surface), UG mining evaluation studies are conducted. However, when the
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mineral deposit is significantly closer to the earth surface and, also, deeply buried in the
earth crust, the deposit becomes amenable to both OP and UG mining. In such cases, the
portion of the orebody near the earth surface is evaluated to be exploited by OP mining
method to produce early revenue, while the deeper portion is either outrightly evaluated
for UG mining or the evaluation is deferred for later years in the future [7]. In general,
OP mining methods are characterized by relatively low mining and operating costs, high
stripping ratio, and extended time in accessing the mineral ore [4,46] while UG mining
is characterized by high mining and operating costs, high-grade ore, and earlier times in
retrieving the ore [31,47-50].

In most cases, for mineral deposits amenable to OPUG mining, the UG mining evalua-
tion is not undertaken during prefeasibility studies but conducted in later years when the
OP mine stripping ratio increases towards the critical limit. The effect of this traditional
evaluation approach is an increased overall mining cost and a potential loss of financial
benefits [51,52]. Similarly, where UG mining commences at the onset of the mineral project,
and later converts or transitions to OP mining, significant financial loss can occur if the
global mining strategy was not defined for the entire mineral deposit during prefeasibility
studies. Historically, some mining companies that transitioned from OP to UG or vice
versa include Telfer, Golden Grove, and Sunrise Dam in Australia [53]; Grasberg mine in
Indonesia [54]; Akwaaba and Paboase mines of Kinross Chirano Gold Mine in Ghana [55].
In addition, Lac Des Iles mine located in Canada and Newmont Ahafo mine in Ghana both
operate OPUG mining operations.

The extraction evaluation of such mineral resources amenable to OPUG mining is
referred to in this research as mining options optimization [2,6,10,15]. The importance of
rigorously assessing the economics for a mineral deposit extraction, before deciding on
the mining option to adopt is therefore essential to mineral resource planning. This may
ensure important decisions of canceling a major OP pushback and transitioning to UG
mining or vice versa is known at the onset of the mining project [3,52].

2. Evaluation Techniques for Mining Options and Transitions Planning

The outcome of an evaluation study for a mineral deposit amenable to OPUG mining
includes the optimal mining option, strategic extraction plan, and a transition depth or
location. The variations of the mining option are independent OP mining, independent
UG mining, concurrent OP and UG mining, OP mining followed by UG mining, and UG
mining followed by OP mining. The strategic extraction plan includes the sequences of
rock extraction and the determination of life of mine and transition depth. The transi-
tion depth defines the location or position of the crown pillar. The extraction strategy
when OPUG mining is preferred could either be sequential mining or parallel mining or
both [47]. Respectively, other researchers used the terms simultaneous or non-simultaneous
or combined OPUG mining to refer to these same mining options [30].

Sequential mining is when the mineral deposit is continuously extracted by an in-
dependent OP mining method(s) until the pit limit is completely mined out before being
followed by UG mining method(s), while parallel mining is when the mineral deposit
is simultaneously or concurrently extracted by OP and UG mining in the same period
or time. Transitioning is the main challenge for OPUG mining projects due to the com-
plexity and implications of where and when to position the crown pillar (or identify the
transition depth) [7] in the presence of various mining constraints. Over the years, five
fundamental approaches have been used to determine the transition point or location of the
crown pillar [24,47,56,57]. These techniques are (1) biggest economic pit, (2) incremental
undiscounted cash flow, (3) automated scenario, (4) stripping ratio, and (5) opportunity
cost analyses.

For the biggest economic pit approach, the mineral resource is primarily evaluated
for OP mining. When the OP mining limit is obtained, the portion of the mineral resource
falling outside the OP outline is evaluated for UG mining. The biggest economic pit is the
simplest and most commonly used traditional approach for evaluating a mineral resource
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amenable to OPUG mining options. For the biggest economic pit, the pit usually terminates
when the marginal cost of waste stripping outweighs the marginal revenue obtained from
processing additional amounts of ore.

In the case of the incremental undiscounted cash flow approach, the marginal OP
profit from the mineral project per depth is evaluated and compared to the marginal UG
profit. Due to increasing cost of stripping waste per depth, there is a point where the
marginal OP profit is lower than the marginal UG profit. This depth is the transition point
which then acts as the crown pillar during transition. This transition depth is typically
shallower compared to the largest economic pit [47]. This method assumes that UG mining
profits do not depend on the depth of operation, therefore, there will be a point where the
marginal profits from UG mining operation will exceed that from OP mining operation.

The automated scenario analysis approach accounts for discounting unlike the incre-
mental undiscounted cash flow approach. It is based on the premise that, per an equivalent
unit of throughput, UG mines are characterized by high cut-off grades and therefore have
higher cash flow compared to OP mines for the same throughput. The approach is imple-
mented by compiling schedules for OP and UG mining and comparing the computed NPV
for each potential transition point. Thus, a set of transition points are evaluated and the
OPUG mining arrangements that offers the highest NPV is selected for further analysis
and design [47]. This method is time consuming and complex.

The stripping ratio analysis features the use of allowable stripping ratio (ASR) planned
by mine management for the OP mine and overall stripping ratio (OSR) computed per
depth for the OP mine to determine the transition depth [56,57]. The stripping ratio is
expressed by this relation with emphasis on exploitation cost of 1 tonne of ore in UG mining
and in OP mining, as well as, removal cost of waste in relation to 1 tonne of ore extracted
by OP mining. As OP mining deepens, the stripping ratio usually increases, increasing the
overall mining cost. An OSR is calculated and used to determine the breakeven point of
the OP mine relative to its depth. The OP mine transitions to UG mine when OSR is equal
to the ASR established by management of the mining project.

The opportunity cost technique is an extension of the LG algorithm that optimizes the
OP ultimal pit while considering the value of the next best alternative UG mining option.
This approach also employs the strength of the undiscounted cashflow technique and
assumes that rock materal in the transition zone will be mined by UG method if not mined
by OP method [24]. The methodology ensures that a minimum opportunity cost is achieved
for the selected optimal mining option at the expense of the unselected mining option.

An evaluation technique that seeks to leverage the advantages of all these five funda-
mental approaches were recently introduced by Afum and Ben-Awuah [33]. This approach
is referred to as the competitive economic evaluation (CEE) technique. The CEE process
evaluates each block of the mineral deposit and economically decides: (a) blocks suitable
for OP mining, (b) blocks suitable for UG mining, (c) unmined blocks, and (d) unmined
crown pillar simultaneously. The CEE optimization strategy is an unbiased approach that
provides fair opportunity to each mining block for selection by a mining option.

2.1. Notable Research on Mining Options and Transitions Planning Optimization

Historically, a cash flow and NPV based algorithm was introduced in 1982 to examine
the open pit-underground (OP-UG) transition interface [21]. Subsequently, in 1992, Nilsson
reviewed the previous 1982 algorithm and produced a new algorithm that considers
the transition depth as a critical input for evaluating deposits amenable to OP and UG
extraction [22]. An algorithm for determining the depth of transition was thereafter
introduced by Camus [58]. This algorithm was presented based on the economic block
values for OP and UG extraction methods. The technique involves the implementation
of the OP extraction algorithm taking into consideration an alternate cost due to UG
exploitation. In 1997, a model was developed by Shinobe [10] that enables the mine
operator to determine the optimum time of conversion based on discounted cash flow
(DCF) techniques, and cost estimation equations according to O’Hara and Suboleski [59].
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The model assumed that the underground resources were confined, and their extraction is
technically feasible. Whittle Programming Pty developed an applied approach referred to
as quantified operational scenarios for interfacing OP-UG mining methods in the OP to
UG transition problem [60].

In 2001 and 2003, an evaluation technique based on allowable stripping ratio with
a mathematical form for the objective function was introduced by Chen, Li, Luo, and
Guo [57] and Chen, Guo, and Li [56]. Volumes of ore and waste within the final pit limit
were assumed to be a function of depth for determining the transition point. A heuristic
algorithm based on economic block values of a two-dimensional block model that compares
the total value when using OP mining for extracting a particular level to UG mining of
the same level was developed for the mining options problem [15]. The algorithm was
based on the fact that typical ore deposits showing significant outcrops can be potentially
exploited by OP mining followed by UG mining. Thus, mining is completed at the initial
levels by OP extraction methods while transitioning to UG mining as the operation deepens
from the middle levels.

Until 2009, only a few available algorithms could solve the optimal transition depth
problem with some limitations. Bakhtavar, Shahriar, and Oraee [2] developed a model
for solving the transition depth problem by modifying Nilsson’s algorithm. The model
generated two different mining schedules for OPUG mining. Each mining method is
employed to extract mining blocks on the same level in series. The incremental NPVs of
the extraction for each level blocks are compared and if the incremental NPV of the OP
mine is larger than that of the UG mine, the algorithm transcends by adding the next series
of level blocks to the previously optimized mining schedule; and the incremental NPV of
the OPUG mine is compared again. Evaluation results from the first level to the last level is
monitored to identify the optimal transition depth (level) for the establishment of a crown
pillar. The remaining portions of ore below the crown pillar were evaluated and extracted
utilizing UG stoping method(s).

Another heuristic model based on the economic block values of OPUG extraction
was developed by Bakhtavar, Shahriar, and Mirhassani [14]. This new model was an
improvement over the previous model by factoring in the NPV achieved through the
mining process. Thus, for any level of the block model, the computed NPV from OP
mining operation is compared to the NPV derived from UG mining operation for the
same level. Although the model solves the transition problem using some technical and
economic parameters, it does not consider mining and processing capacities (equipment
requirements), and uncertainties in the geological and geotechnical characteristics of the
orebody. Uncertainties of ore grades were considered in subsequent mathematical pro-
gramming frameworks for the transition problem [20,30]. However, the implementation
of these existing models has always assumed the mining options and transitions plan-
ning scheme to be a stepwise process and hence implements their solution strategy as
OP mining followed by UG mining either in parallel (simultaneous) modes or sequential
(non-simultaneous) modes [4,18,20,24,30]. The challenge to this assumption also forms the
basis of this research. Table 1 shows a matrix comparison of notable research on the OP-UG
mining options optimization problem in the last decade.
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Table 1. Notable research on the open pits (OP)-underground (UG) mining options optimization problem for the past decade.

MacNeil &
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As seen in Table 1, previous research on the mining options and transitions problems
mainly focuses on the determination of transition depth before optimizing the production
schedule for the mining arrangement. Formulating a model that allows the optimizer to
select the most suitable extraction strategy, including independent OP, independent UG,
simultaneous OPUG, sequential OPUG, or combinations of simultaneous and sequential
OPUG, to exploit any deposit under consideration will be a major addition to the mining
industry. It is important to note that in general previous research employed NPV and
feasible production schedule as major performance indicators for the developed models
and algorithms.

2.2. Factors Influencing Mining Options and Transitions Planning

The factors influencing mining options and transitions planning are also referred to as
transition indicators. These transition indicators mostly depend on the shape and size of
the mineral deposit and quantity of high-grade ore present in the selective mining units.
These indicators usually vary for different orebodies and commodities, and the philosophy
of mine management. The indicators can be broadly grouped into geologic, operational,
geotechnical, economic, and mine management strategy on global business economic
outlook [7,61]. These transition indicators are key to the identification and development of
the set of constraints required for optimizing the OP-UG mining options and transitions
planning problem [4,9,25].

Some of the indicators to consider in OP-UG transition optimization are mining recov-
ery, commodity price, mineral grade, cost of extracting ore and stripping waste, mining
and processing capacities, and UG dilution [62]. Subsequent research highlighted some
additional important parameters that must be considered during transition planning [19].
These include workforce requirement, shape and size of the orebody, and geotechnical
properties of the rock formation. Economic parameters such as discounting rate of expected
cash flows and OPUG mining costs, and primary factors including the competence of mine
management, characteristics of the geology of the orebody, stripping ratio, productivity
rate, and capital cost requirements for the UG mining option will affect the decision for
OP-UG transition as well [9,63].

The OP-UG mining options and transitions planning problem becomes complex
when critical indicators such as crown pillar positioning and other essential underground
mining constraints including primary and secondary access development, ventilation
development, and geotechnical requirements for the development openings and stopes
are integrated into the optimization framework. These essential UG mining developments
were previously not considered in the optimization process because of computational
complexities and the difficulty of integrating them with open pit mining operations [32].
The importance of incorporating crown pillar positioning, geotechnical support activity
sequencing, underground infrastructure development, and mine management strategy
in OP-UG mining options optimization studies are essential to attaining realistic mine
plans [9,30].

When investigating OP-UG mining options, it is important to model all constraints
and factors that have direct and remote impact on the economic and technical feasibility
of the project. The strategic production plan is generally subject to several constraints
that enforce the extraction sequence, blending requirements, and mining and processing
capacity requirements for practical implementation.

2.3. Crown Pillar and Rock Strength Considerations in Mining Options and Transitions Planning

A crown pillar is the horizontal part of a rock formation between the first upper stope
of an underground mine and an open pit excavation. A crown pillar is often provided to
prevent the inflow of water from the OP floor to the UG workings, while reducing surface
subsidence and caving. Finding the most suitable location of the crown pillar in a combined
mining method of OPUG operations is one of the most interesting problems for mining
engineers today, especially when crown pillar must collapse [14]. It is however worthy to
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note that crown pillar usage in the OPUG mine is not universal as sometimes it is desirable
for the crown pillar to collapse during the life of mine [24].

The positioning of the required crown pillar in the surface-underground mining
options and transitions planning problem is key to the operations of such mines. Some
researchers pre-selected the depth of the crown pillar (transition depth) before evaluating
portions above the crown pillar for OP mining and portions below the crown pillar for
underground mining [4,18,25,27,28]. This may lead to suboptimal solutions and will require
evaluating multiple crown pillar locations in a scenario-based approach. A few authors
have attempted to incorporate the positioning of the crown pillar in the optimization
process [24,33,34]. Their models were good improvements over previous works but were
missing some constraints such as the ventilation requirement and rock strength properties
required for practical implementation. The transition from open pit to underground mining
is a complicated geomechanical process which requires the consideration of rock mass
properties [35,36].

In OP to UG transition, the challenge of deformation, displacement, and rock for-
mation stability need to be meticulously investigated. These will ensure their effect on
production, worker and equipment safety, and the working environment of the UG opera-
tion are highly secured [64]. When the crown pillar thickness is large, considerable quantity
of mineral deposit is lost but when the pillar is undersized and thin, the probability of pillar
failure and instability of the mine is eminent [65]. According to Ma, Zhao, Zhang, Guo,
Wei, Wu, and Zhang [35], ground movement and deformation study of OP mines such as
geometrical, geomechanical, and analytical analyses are important in the transition study.

Optimizing the crown pillar dimensions and positioning is particularly significant in
UG mining operations. Estimation of the optimum crown pillar thickness is a complicated
study which involves the experience of the engineer and the use of numerical and empirical
techniques [65]. Several parameters influence crown pillar stability. These parameters
are broadly grouped into mining and geological [5]. The mining parameters include the
crown pillar geometry; stope surroundings; supporting methods employed (including
backfilling); sequence of mining operations and stress redistribution resulting from material
extraction. The geological parameters include the strength and deformation characteristics,
and inclination of the hanging wall, footwall, and orebody in general; geometry of the
mineral deposits; virgin stress conditions and properties of the contact regions between the
ore and country rock.

Crown pillar placement invariably defines the interface of the OP to UG transition.
Appropriately defining a suitable location of the crown pillar is fundamental to the min-
ing options optimization problem. Leaving an appropriate crown pillar thickness will
minimize the destructive interference between the OP and UG mining operations, while
maximizing ore recovery. The assumption of a uniform crown pillar of known height below
the optimized pit bottom is common [14]. Subsequently, an ad-hoc branch-and-bound
technique to exhaustively search the appropriate locations for crown and sill pillar place-
ments before computing the relaxed linear programming (LP) model for the OPUG mining
problem was developed by King, Goycoolea, and Newman [18]. A rounding heuristic was
used to transform the relaxed LP solution into integer programming (IP) solution using
satisfactory values of the objective function. The IP solution was used to terminate the
several potential crown and sill pillar placements and hence decrease the computational
time required. The researchers further concluded that, only 40 out of the over 3500 crown
and sill pillar placement options had a relaxed LP objective function value greater than the
best-known IP objective function value.

In a recent research, MacNeil and Dimitrakopoulos [20] pre-determined four possible
crown pillar positions while evaluating a gold deposit for OPUG mining. Their approach
resulted in four distinct transition points acting as potential candidates for a crown pillar.
The size of the crown pillar however remained the same for each candidate, as the location is
varied. This assumption does not support the geotechnical variability of the rock formation.
According to King, Goycoolea, and Newman [18], the crown pillar is usually positioned by
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industrial experts based on: (1) the optimal OP mining limit, or (2) the largest undiscounted
profit resulting from the extraction technique for each 3-D discretization of the orebody
and country rock. This is conducted after a detailed geotechnical assessment of the rock
formation in the immediate vicinity of the crown pillar.

The stability and placement of the crown pillar or transition interface significantly
affects the NPV of a mining project. Numerical simulation and machine learning are
among the most effective techniques for studying the crown pillar stability [66-68]. The
Fast Lagrangian Analysis of Continua (FLAC) software based on numerical modeling
and a hybrid support vector regression (v-SVR) analysis based on supervised machine
learning algorithm are used to examine deformation characteristics of surrounding rocks
in complex conditions of OP to UG mining transition. These analyses can provide ap-
proximation of rock strength properties to be incorporated in the transitions planning
optimization problem.

2.4. Existing Evaluation Tools for Mining Options and Transitions Planning Crown

Most of the existing optimization models and algorithms for evaluating OP-UG mining
options and transitions planning have been incorporated into software packages for easy
implementation. These are mostly based on the fundamental evaluation techniques dis-
cussed in Section 2.3. Modeling techniques for optimization problems have been discussed
in Appendix A. Some of the models and algorithms are Lerchs-Grossman algorithm, Sey-
mour algorithm, floating cone technique, dynamic programming, neural network, theory
of graphs, and network flow algorithm. These models and algorithms are used in software
packages including NPV Scheduler, Whittle Four-X, MineSched, Vulcan, MineScape, and
MineSight [25,26].

GEOVIA Whittle® software which is based on the Lerchs—Grossman algorithm [69] is
commonly used to optimize the OP limit prior to assessing the remaining mineral resource
outside the pit boundary for underground extraction [7]. Similarly, Blasor pit optimization
software which is developed based on a combinatorial mathematical programming model
is also used to identify the independent OP mining outline before UG extraction evaluation
for remaining mineral resources [9]. Mathematical programming frameworks based on IP,
mixed integer linear programming (MILP), and dynamic programming models have been
formulated and implemented with commercial optimization solvers for the transitions
planning problem [4,17,20,30].

After obtaining the OP outline and thereafter knowing the extent of the UG mining
limits, production schedules are generated for each mining option. Software packages
based on heuristics and mathematical programming models including GEOVIA Whittle,
OptiMine®, and COMET® have been used to produce strategic production schedules for
the OP portion of the mine [4,7,17]. Similarly, software packages including Snowden’s
Evaluator, XPAC®, and OptiMine® have been used to produce the strategic production
schedule for the UG portion of the mine [4,7,9,17,18,30].

2.5. Limitations of Current Models and Algorithms for OP-UG Mining Options and
Transitions Planning

Primary challenges to the mining options optimization problem include the optimiza-
tion approach used, the exhaustive consideration of contributing variables to the models
and algorithms, and geotechnical considerations in defining the transition interface and
its contribution to the mining operation. Progressively integrating geotechnical models in
strategic mine plans at the prefeasibility stage similar to how geologic models are incor-
porated will improve the reliability of the mine plan [70,71]. However, the information
required to produce a detailed geotechnical model at the prefeasibility stage is limited and
therefore difficult to model. Some of the limitations with current models and algorithms
for OP-UG mining options optimization include one or more of the following:

1.  Consideration of rock support and reinforcement in the optimization process;
2. Consideration of essential infrastructural development in the optimization process;
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3. Consideration of stochastic variables;
4. Comprehensiveness and efficiency of models;
5. Optimality assessment.

2.5.1. Consideration of Rock Support and Reinforcement in the Optimization Process

Rock support and reinforcement are essential to the stability of openings during the
development of an underground mine. The term support generally refers to the various
types of geotechnical rock support used to protect underground workers and may include
steel mesh, shotcrete, fibrecrete, and a variety of types of steel straps. Reinforcement on
other hand refers to the various types of rock reinforcement to help prevent rock movement
and may include a variety of types of rockbolts, cablebolts, rebar, and dowel. Cablebolting
in stope development can particularly be very costly and may introduce considerable time
delays. Most cablebolts need 30 days for the Portland cement grout to properly set for the
cablebolts to be fully functional.

Several authors have acknowledged the importance of incorporating geotechnical
constraints to the OP-UG transition problem [9,14,15,20,25,47,72]. To verify the impact
of geotechnical constraints on the optimal solution, Roberts, Elkington, van Olden, and
Maulen [9] recommended that, such constraints need to be incorporated in subsequent
studies. Moving beyond determining transition depth and incorporating geotechnical pa-
rameters in locating and sizing the transition zone will have direct impact on the feasibility
and sustainability of the OP-UG mining project.

These existing models do not integrate the geomechanical classification of the rock
formation in the surface-underground mining option and transition problem. Although
the geotechnical characteristics of the rock formation are significant to underground min-
ing operations, their added complexities make it difficult to be included in the surface-
underground mining option and transition optimization models. According to Bullock [37],
mine planning is an iterative process that requires looking at many options and determin-
ing which, in the long run, provide the optimum results. Using such iterative process could
lead to some inferior solution(s) or sub optimal solution(s) that do not constitute the global
optimal solution.

Rock support and reinforcement in the development openings and stopes will increase
the operational costs and time (delay the mine life), and further affect the quantity and
sequence of rock material extracted from the stopes to the processing plants. To incorporate
the rock formation’s strength into the formulation, rock mass classification systems [73,74]
such as the Geological Strength Index (GSI), Rock Structure Rating (RSR), Rock Mass
Rating (RMR), and Q system are determined to characterize the rock formation, and then
Kriging applied to populate the block model. According to Abbas and Konietzky [73],
these classification systems could be grouped as qualitative or descriptive (e.g., GSI)
and quantitative (e.g., Q system, RMR, and RSR) with RMR being more applicable to
tunnels and mines. According to Kaiser and Cai [74], data obtained from the geology and
geomechanics of the rock formation are fundamental to mine planning and development
designs. This is because the behavior of the rock formation varies in the mine and therefore
rock mass domaining based on stress data, and geology and geometric data becomes
essential. Knowledge of the strength of the rock mass and its behavior are important for
the engineering design of all kinds of support for underground excavations [75,76].

2.5.2. Consideration of Essential Infrastructural Development in the Optimization Process

The typical UG mine is interspersed with important infrastructure development that
ensures the facilitations of the UG mining operations. These infrastructures include but
not limited to primary access development, secondary access development, ventilation
development, ore pass development, sumps, maintenance and refuge chambers, and fuel
station bays. Primary access developments are usually the main development that links
the entire UG mine to the surface and could be vertical or inclined shaft(s), decline(s) or
adit(s), or tunnel(s). The shaft(s) are often equipped with facilities to transport humans
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(workers) and materials for the UG operations. Secondary access development includes the
construction of lateral openings such as levels, ore and waste drives, or crosscuts, to link
the UG operational activities to the primary access(es) while ventilation development often
incorporates a series of bored raises and lateral drive development, and the construction of
ventilation controls. Ventilation controls are a range of objects such as regulators, doors,
and walls which need considerable time and money to create. Ore pass development
entails the construction of vertical or near vertical openings to link the various UG levels to
the main ore hoisting station. Similarly, sumps, maintenance and refuge chambers, and
fuel station bays are constructed to enable the removal of water being used for the UG
operations and the provision of several essential services to operating equipment UG rather
than being transported to the surface for such services.

2.5.3. Consideration of Stochastic Variables

In recent studies, the industrial practice has been that the production for OP mine and
UG mine are independently scheduled and merged into one for the OPUG mine. According
to King, Goycoolea, and Newman [18], this approach creates a myopic solution. However,
the discussions of the approach were limited to open stoping and extraction sequence. No
stochastic variables such as grade and price uncertainty, were included in their model.
King, Goycoolea, and Newman [18] further acknowledged that, their methodology in
handling the transition problem require further work to handle the applicability, accuracy,
and reduction of the optimality gap. Grade uncertainty has been identified to have a
significant impact on the determination of the transition point [16].

Although MacNeil and Dimitrakopoulos [20] incorporated grade uncertainty in their
work, they further identified some important notable geological uncertainties such as the rock
formation, metal content, and relevant rock properties and their impact on the strategic long
term planning of a mining project. MacNeil and Dimitrakopoulos [20] further recommended
that, financial uncertainty should be incorporated into future studies to improve on their
solution method. Ben-Awuah, Otto, Tarrant, and Yashar [4] did not consider uncertainty in
their model formulation and further recommended that pre-production capital expenditure
(CAPEX) and geological uncertainties should be added to the mining options evaluation. By
considering stochastic variables in a risk-based mining options optimization framework, mine
plans that can stand the test of time can be generated.

2.5.4. Comprehensiveness and Efficiency of Models

Comprehensiveness and efficiency of the models relates to the ability of the opti-
mization framework to exhaustively formulate various scenarios of the OP-UG mining
options problem and deliver practical results in a reasonable time frame. Such models are
exhaustive and are applicable in a wide range of mining systems. Stacey and Terbrugge [77]
indicated that a complete model for handling the transition problem remained a challenge
they further reckoned that the transition study for a mine should start at the onset of the
mine life and not be deferred to latter years since the planning and implementation could
sometimes take up to 20 years for completion. Shinobe [10] developed a software based on
a mathematical programming model for this challenge but assumed that the existence of
underground reserves have been confined and that their extraction is technically feasible.
He later recommended that the results of the program should be viewed only as a prelimi-
nary level indication of the economics of underground conversion. No final decision to
proceed with the conversion should be taken, solely based on the program’s output.

Majority of the current work on the transition problem lack some constraints and
solution to a more general problem. This includes consideration of the design capacities
and depth as primary indicators for transition in the joint evaluation problem [25]. The
approach however was limited in scope in relation to a more generic framework. NPV
curves and transition depth for OP to UG mining for the Botuobinskaya pipe deposit were
generated to solve the transition problem. From their results, the total NPV of the OPUG
mining operation was higher than the standalone NPVs of OP and UG mines for the same
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mining depth. In subsequent research, re-handling cost proved to be insignificant when
incorporated into the transition model [18]. Additionally, it was observed that there exist
undesirable fluctuations in the OPUG production schedules that must be smoothened to
achieve a more practical solution. In their work, MacNeil and Dimitrakopoulos [20] incor-
porated the constraints for mining, processing, metal content, and precedence relationships
in their model. According to the constraints affecting the transition problem identified in
the works of Opoku and Musingwini [7], those constraints considered are not exhaustive
since UG mining capital expenditures were not considered in the model application.

2.5.5. Optimality Assessment

Optimality assessment is a real challenge to current heuristic and meta-heuristic mod-
els and algorithms for OP-UG mining options optimization. The underlying optimization
approach fundamentally affects the optimality of the resource evaluation. Unless additional
steps are put in place to define an upper bound, the extent of optimality of the solution from
these models is unknown. Some of the current models can solve the transition problem,
usually producing near optimal solutions [14,47]. These existing models and algorithms
assume open pit mining operations must surely be an option in the evaluation process
and usually precedes the underground mining. Similarly, few models assess the resource
with the assumption that underground mining could precede open pit mining. However, a
resource assessment that is devoid of the traditional arrangement of the mining options but
allows the optimization process to decide the choice and sequence of the mining option(s)
is key to achieving global optimal solution. Bakhtavar, Shahriar, and Oraee [2] noted
that, few methods (algorithms) have some disadvantages and deficiencies in finding the
optimal transition depth. According to Askari-Nasab et al. [78], heuristic algorithms may
not produce optimal solutions. This could lead to loss of huge financial benefits resulting
from implementing sub-optimal mine plans.

Finch [47] also highlighted that, the effort of producing OPUG mining schedules for
the possible candidates of transition interface for all the various mining and processing
capacities could be time consuming and costly. The process commonly leads to the genera-
tion of sub-optimal solutions since the problem is not thoroughly investigated. According
to Richard and Stefan [79], designs optimized for deterministic cases are often sub-optimal
when uncertainties are recognized and their effects understood. By applying mathematical
programming models with current high computing resources [31], optimal or near opti-
mal solutions with known optimality gap can be obtained for the OP-UG mining options
optimization problem in a practical time frame and at an acceptable computational cost.

3. Summary and Conclusions

The problem of optimizing resource exploitation depends largely on the mining
option used in the extraction. Some mineral deposits extend from the near surface to
several meters in depth. Such deposits can be amenable to both surface mining and/or
underground mining, and this leads to the surface-underground mining options and
transitions optimization. Relevant literature review on the SUMOTO problem has been
conducted and documented. Research works in this area have primarily focused on
different variations of determining the transition depth between open pit and underground
mines, and the subsequent optimization of the strategic schedule for each mining option.
Heuristics and exact solution methods have both been used in the past to attempt the
SUMOTO problem. An algorithm or model that comprehensively and simultaneously
determines an optimized open pit mine, transition interface and an underground mine
for any orebody by both surface and underground mining methods in a single run will
significantly add value to the mining industry. A matrix showing the various approaches
adopted by researchers in tackling the OP-UG transition problem in the last decade has
been developed (Table 1).

Shortfalls on previous research for mining options optimization have been discussed
and opportunities for further studies identified. Notable limitations of current models
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and algorithms for the SUMOTO problem include: (1) consideration of rock support and
reinforcement in the optimization process; (2) consideration of essential infrastructural
development in the optimization process; (3) consideration of stochastic variables; (4)
comprehensiveness and efficiency of models; and (5) optimality assessment of model
solution. These identified limitations may often lead to sub-optimal global solution to
the SUMOTO problem thereby affecting the viability of the mining project. It is therefore
essential to develop a rigorous optimization framework that attempts to address some of
these deficiencies.

Although the main sources of uncertainties in mining options studies have been found
to include financial, technical, and geological, research on strategic mining options have
handled these uncertainties independently. Incorporation of geological uncertainties in
current strategic mining options studies have been applied in different forms, including,
grade and tonnage uncertainties, probability indices, and the use of algorithms to further
define these uncertainties. The incorporation of financial uncertainties together with
geological uncertainties is limited in current research on mining options studies. As
uncertainties cannot be eliminated in the mining options problem, the best strategy is
to quantify uncertainty, reduce uncertainty and manage the associated risk during the
production scheduling process.

In the last decade, different variations of mathematical programming models have
been used by researchers to solve challenges associated with the surface-underground
mining options problem. The main variations are either deterministic (linear programming
and integer and mixed-integer programming) or stochastic (dynamic programming and
stochastic programming) or combination of both.

4. Recommendations

The authors conclude by proposing further research into the formulation of an inte-
grated stochastic programming model for the mining options and transitions optimization
problem for all deposits including base and critical minerals. Figure 4 is a representation of
the recommended research considerations to solve the complexities associated with the
strategic surface-underground mining options and transitions optimization problem.

To add significant value to the mining industry, the proposed research approach in
Figure 4 will result in a stochastic mining options and transitions optimization model that
has the capacity to generate strategic mining options including: OP mining, UG mining,
simultaneous OPUG mining, OP mining followed by UG mining, and UG mining followed
by OP mining. The proposed model should be applicable at the prefeasibility stage of
mining project to guide mine planners and investors in making important decisions. Some
of the performance indicators of the model should include net present value, internal rate
of return, discounted cashflow, price to cost ratio, blending ratio, production smoothness,
stripping ratio, mine life, mining recovery, and average run-of-mine (ROM) grade. The
proposed model should have the features and capacity to:

(a) Take in simulated block models as inputs in a risk-based or stochastic framework that
considers grade, price, and cost uncertainty;

(b) Evaluate strategic mining options with exhaustive constraints for large-scale mining
projects through efficient numerical modeling and computational techniques. In
addition to standard mining and technical constraints, other notable constraints
include controls for safety, geotechnical, geological, and hydrogeological conditions
of the mining area;

(c) Integrate waste management constraints and synergies wherein waste material and
tailings from open pit mining can be used for underground backfilling; as well as
characterizing mineralized waste material as future resource;

(d) Leverage resource governance and synergies whereby open pit low grade ore can
be blended with underground high-grade ore to improve processing recovery and
extend mine life;

(e) Determine the size and capacity of the mining project using real value options approach.
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Figure 4. Schematic representation of the proposed research approach for strategic OP-UG mining options optimization.
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Appendix A. Modeling Techniques for Optimization Problems

The literature review conducted on the surface-underground mining options and
transitions optimization (SUMOTO) problems indicate that mining options and transitions
optimization planning are modeled and solved using different evaluation techniques. Un-
derstanding the various classifications of optimization models and their advantages are
essential to the development of an optimization framework capable of handling the notable
limitations and gaps associated with the current models and algorithms for SUMOTO prob-
lems. These optimization models may be grouped into four broad types according to how
well they are able to define a given problem: (1) operational exercise models, (2) gaming
models, (3) simulation models, and (4) analytical or mathematical programming models.
Simulation and analytical models are widely used for mining optimization problems due
to their practicality, robustness, and efficiency [80,81]. Table A1 shows classification of
certainty and uncertainty models.
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Table A1. Classification of certainty and uncertainty models [23].

Class Strategy Evaluation Strategy Generation
Deterministic simulation Linear programming
. Network models
Econometric models . .
. . Integer and mixed integer
Certainty Systems of simultaneous .
. programming
equations li .
Input-output models Nonlinear programming
P Control theory
Monte Carlo simulation Decision theory
Econometric models Dynamic programming
Uncertainty Stochastic processes Inventory theory

Queueing theory
Reliability theory

Stochastic programming
Stochastic control theory

Appendix A.1. Operational Exercise Models

Operational exercise is a modeling method that relates variables to the actual en-
vironment where the study decision will be applied [23]. This method has the highest
degree of realism when compared to other techniques of modeling. It is usually prohibitive,
expensive to implement, and associated with extreme challenge when alternatives must be
assessed. This then leads to sub-optimization of the final solution. A human decision-maker
forms part of the modeling processes of operational exercises.

Appendix A.2. Gaming Models

Gaming is a modeling approach constructed to represent more simple or abstract
entities in the real world [23]. This method gives the mine planner the opportunity to
try several variations of the decisions to make. A human decision-maker is part of the
modeling processes for gaming models.

Appendix A.3. Simulation Models

Simulation models provide several ways to assess the performances of alternatives
outlined by the planner. They do not allow much interferences from human interactions
during the computational analyses stage of implementation [23]. Simulation models could
sometimes be compared to gaming models. However, they involve the application of
logical arithmetic performed in a particular sequence usually by computer programs. If
the problem is exclusively defined in an analytical form, much flexibility and realistic
results are attained. This is essential if uncertainties are critical components of the decisions
being made. A human decision-maker is external or not part of the modeling processes of
simulation and analytical models.

Appendix A.4. Analytical or Mathematical Programming Models

The fourth model category is analytical models. These models represent the problem
completely in mathematical forms, usually by means of a criterion or objective subject
to series of constraints that impact on the decision being made [23]. The mathematical
formulation helps to determine the optimal solution in the presence of the set of constraints.
Although mathematical models highly simplify the problem, they are less expensive and
easy to develop.

Mathematical programming is a significant method when decision variables must
be quantified for planning. The problem is defined with mathematical expressions in
a well-defined structure to find an optimal solution based on performance evaluation
criteria including cost, profit, and time. The optimal solution is obtained from a feasible
region of alternative results. The expressions are parameters (input data) and variables
which represent the optimization results or outcome. When multiple criteria decisions
are required for any complex problem, a multi-objective mathematical programming
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model involving more than one objective function is deployed simultaneously. The main
advantages of mathematical programming models (MPMs) are: (a) comparatively simple
with high approximations of complicated problems, and (b) ability to search the feasible
solution spaces among competing variables and alternatives [82]. Common MP techniques
are stochastic programming, deterministic programming, dynamic programming, LP,
nonlinear programming, IP, and MILP.

Appendix A.4.1. Stochastic Programming

Stochastic programming is a special case of programming in which some of the
constraints or parameters depend on random variables. This type of programming is used
to solve problems that involve uncertainty and allow stochastic variables to be accounted
for [82].

Appendix A.4.2. Deterministic Programming

Deterministic programming is a form of MP that is rigorous and solves problems in
finite time. The optimization model is deterministic when the parameters considered in
the model are known constants [23]. The method is useful when global solution is required
and is extremely difficult to find a feasible solution.

Appendix A.4.3. Dynamic Programming

Dynamic programming is a form of mathematical programming used to solve multistage
complicated problems [82]. A large-scale problem is simplified by breaking it down into
simpler sub-problems in a nested recursive manner as opposed to deterministic programming.

Appendix A.4.4. Linear Programming

This is a distinct case of convex programming where the model objective and the
equality and inequality constraints are expressed as linear functions. The feasible solution
set is usually a polytope or polyhedron with connected sets of polygonal faces and convex.
The optimal solution could be a single vertex, edge or face, or even sometimes the entire
feasible region when dealing with high dimension problems. Typical LP solutions could
arrive as infeasible or unbounded [83].

Appendix A.4.5. Nonlinear Programming

Nonlinear programming is a special case of programming which could be convex
or non-convex with nonlinear objective functions or nonlinear constraints or [83]. Some
assumptions are often made on the shape and function behavior when solving nonlinear
programming problems [23]. Nonparametric and simulation-based optimization tech-
niques have been used to explicitly solve models with nonlinear constraints. However,
computational feasibility have been a major disadvantage in the development and imple-
mentation of MPMs [82].

Appendix A.4.6. Integer Programming

Integer programming (IP) is a special type of LP where some or of all the decision
variables are constrained to take on integers and therefore not continuous. If all the
variables are discrete or integers or binaries, the model is referred to as pure integer
programming. Essentially, IP problems are hard problems because they are difficult to
solve and therefore referred to as combinatorial analysis than LP [23].

Appendix A.4.7. Mixed Integer Linear Programming

This is a special form of IP in which some decision variables are constrained to take
on integers and others continuous. Continuous variables indicate that the variables could
take on fractions as part of the solution regime. Due to the strength of MILP formulations,
it is proposed as the model for solving the SUMOTO problem in this research. The MILP
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formulation structure is well defined with objective function, and a set of constraints to
achieve the mining decisions that are usually made up of continuous variables and integers.
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