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Abstract: Convolutional Neural Networks (CNNs) are well-studied and commonly used for the
problem of object detection thanks to their increased accuracy. However, high accuracy on its own
says little about the effective performance of CNN-based models, especially when real-time detection
tasks are involved. To the best of our knowledge, there has not been sufficient evaluation of the
available methods in terms of their speed/accuracy trade-off. This work performs a review and
hands-on evaluation of the most fundamental object detection models on the Common Objects in
Context (COCO) dataset with respect to this trade-off, their memory footprint, and computational
and storage costs. In addition, we review available datasets for medical mask detection and train
YOLOv5 on the Properly Wearing Masked Faces Dataset (PWMFD). Next, we test and evaluate a set
of specific optimization techniques, transfer learning, data augmentations, and attention mechanisms,
and we report on their effect for real-time mask detection. Based on our findings, we propose
an optimized model based on YOLOv5s using transfer learning for the detection of correctly and
incorrectly worn medical masks that surpassed more than two times in speed (69 frames per second)
the state-of-the-art model SE-YOLOv3 on the PWMFD while maintaining the same level of mean
Average Precision (67%).

Keywords: real-time object detection; medical mask detection; video surveillance; YOLOv5; PWMFD;
COVID-19

1. Introduction

Computer vision has become an integral part of modern systems in transportation,
manufacturing, and healthcare. In the last decade, the task of object detection as a deep
learning problem has accumulated immense scientific interest. Convolutional Neural
Networks (CNN) have shown excellent results in extracting the abstract features of image
data, thanks to their similarities to the biological neural networks of the human brain [1].
Their promising capabilities have motivated scientists toward inventions of new state-
of-the-art object detectors resulting in a continuous increase in accuracy. Nevertheless,
their performance is ambiguous when detection speed is considered, which is usually
sacrificed in favor of accuracy. Conducting accurate object detection in real time is a realistic
requirement of modern systems, especially embedded ones with hardware limitations.
However, the available methods have yet to be fully evaluated as published research [2–5]
tends to overlook the trade-off between accuracy and speed, compares models on different
machine learning frameworks, or excludes newer models, resulting in indefinite results.

This work focuses on giving a solution to this problem by reviewing and evaluating
some of the most fundamental CNN-based object detection models: Faster R-CNN [6]
and Mask R-CNN [7] of the family of Region-based Convolutional Neural Networks (R-
CNN) [8], RetinaNet [9], Single-Shot MultiBox Detector (SSD) [10], and You Only Look
Once (YOLO) [11] and its newer versions [12–15]. The objective is to evaluate and compare
them in terms of GPU memory footprint, computational and storage costs, as well as
their speed/accuracy trade-off. We seek to reach fair conclusions by executing the models

Digital 2023, 3, 172–188. https://doi.org/10.3390/digital3030012 https://www.mdpi.com/journal/digital

https://doi.org/10.3390/digital3030012
https://doi.org/10.3390/digital3030012
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/digital
https://www.mdpi.com
https://orcid.org/0000-0003-4847-0100
https://orcid.org/0000-0002-9223-9726
https://doi.org/10.3390/digital3030012
https://www.mdpi.com/journal/digital
https://www.mdpi.com/article/10.3390/digital3030012?type=check_update&version=2


Digital 2023, 3 173

through a common pipeline, using the same machine learning framework, dataset, and
GPU. At the same time, we ensure that our experiments can be reproduced through our
accompanying open-source code.

In addition, we review and compare available datasets for medical mask detection;
among the models we evaluate, we choose YOLOv5 as a highly efficient one to train for real-
time medical mask detection on a topical and novel dataset that has yet to be extensively
tested, the Properly Wearing Masked Faces Dataset (PWMFD) [16]. In view of the protective
measures put in place during the COVID-19 pandemic, the need for real-time detection
of correctly and incorrectly worn medical masks in data streams has become evident.
According to the World Health Organization (WHO), the use of medical masks combined
with other health measures is recommended for the containment of the virus [17]. In this
context, we propose an optimized real-time detector of correctly and incorrectly worn
medical masks. Next, we review, test, and investigate various optimization techniques used
before in medical mask detection and report on their effect, including transfer learning,
data augmentations, and attention mechanisms. For instance, transfer learning from larger
and more diverse object detection datasets is expected to improve model accuracy.

The main contributions of this work are the following:

• A review and evaluation of state-of-the-art object detectors and an analysis of their
speed/accuracy trade-off, using the same framework, dataset, and GPU. No other
similar study has been published that includes YOLOv5 [15], whose performance has
yet to be extensively tested.

• The accuracy and speed of YOLOv5s are evaluated for the first time on the newly
developed Properly Wearing Masked Faces Dataset (PWMFD) [16]. Furthermore,
the effects of transfer learning, data augmentations, and attention mechanisms are
assessed for medical mask detection.

• A real-time medical mask detection model based on YOLOv5 is proposed that sur-
passed more than 2 times in speed (69 fps) the state-of-the-art model SEYOLOv3 [16]
on the PWMFD while maintaining the same level of the mean Average Precision (mAP)
at 67%. This increase in speed gives room for using the model on embedded devices
with lower hardware capabilities, while still achieving real-time detection.

A preliminary version of this paper has appeared in [18]. In comparison, this article
shows the following:

1. It presents new evaluation results of object detection models in terms of their accuracy
and speed vs. computational performance (GFLOPS).

2. It includes new results demonstrating the (detrimental) effect of augmenting the
model with Transformer Encoder (TE) Attention blocks.

3. It involves a more thorough description of the detection models reviewed and evaluated.
4. It includes a new section on the characteristics, availability, and usage of datasets

suitable for medical mask detection.

All results are reproducible through our open-source code on GitHub (https://github.
com/joangog/object-detection accessed on 1 June 2023) as well as the measurements’
data. The weight file of our medical mask detector is also available on GitHub (https:
//github.com/joangog/object-detection-assets accessed on 1 June 2023) and on Hugging
Face (https://huggingface.co/joangog/pwmfd-yolov5 accessed on 1 June 2023).

The rest of this paper is organized as follows: Section 2 reviews the current state of the
art for object and mask detection and describes models from an architectural point of view.
Section 3 is devoted to the comparative, hands-on evaluation of several object detection
models, employing a uniform evaluation testbed and metrics and discussing observed
tradeoffs. Section 4 presents a qualitative review of datasets that can be leveraged for imple-
menting effective mask detection pipelines. The results of testing various optimizations for
this task on well-performing models are shown in Section 5 along with our final proposed
model. Finally, Section 6 summarizes the lessons learned and the outlook of our work.

https://github.com/joangog/object-detection
https://github.com/joangog/object-detection
https://github.com/joangog/object-detection-assets
https://github.com/joangog/object-detection-assets
https://huggingface.co/joangog/pwmfd-yolov5
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2. Related Work
2.1. Object Detection Models

The development of AlexNet [19] in 2012 paved the way toward the CNN-based
object detection models we know today. Introduced in 2014, R-CNN [8] was the first one
to adopt the idea of region proposals for object detection, produced through a selective
search algorithm. In 2015, its successor, Fast R-CNN [20], increased detection speed by
computing a feature map for the whole image rather than for each proposal. It was
improved further with Faster R-CNN [6] by replacing selective search with a more efficient
fully convolutional region proposal network. In 2017, Mask R-CNN [7] was an extension of
Faster R-CNN for image segmentation. In 2015, the first one-shot model was published,
named YOLO [11]. Two iterations followed, YOLOv2 [12] and YOLOv3 [13], improving its
performance with the addition of anchors, batch normalization, the Darknet-53 backbone,
and three detection heads. In 2020, its development resumed with YOLOv4 [14]. It included
the enhanced CSPDarknet53 backbone, a Spatial Pyramid Pooling (SPP) [21] layer, and a
Path Aggregation Network (PANet) [22]. Shortly after, YOLOv5 [15] was launched with
only small alterations. Its role as the fifth version of YOLO was a controversial subject as no
official publication has been released to this day. Nevertheless, it shows promising results
through consistent updates, which are worth investigating. As of January 2023, YOLOv8
was released. Early results appearing in Github (https://github.com/ultralytics/ultralytics
accessed on 1 June 2023) show a consistent improvement to previous versions, both in
terms of accuracy and speed; however, no scientific paper has been published reporting
and/or comparing the results. Finally, SSD [10] proposed in 2016 and RetinaNet [9] in 2017
are two other notable one-shot models. The latter became known for introducing focal loss
to combat foreground–background imbalance.

2.2. Models Description

The architecture of the models to be evaluated is described below, in terms of their
backbone, number of parameters, and input size. The PyTorch Torchvision package pro-
vides SSD in two variants. The first is a lightweight version of SSD, the SSDlite320, with the
backbone of the MobileNetV3-Large [23], which is optimized for mobile devices with a very
small number of parameters, and an input image size of 320 × 320. The second variant, the
SSD300, has as its backbone the larger VGG16 network with 16 layers of neurons (13 conv
and 3 fc leaving out the 5 pooling layers) and an input size of 300 × 300. The SSD300 has
35.6 million parameters, while the SSDlite320 has about a tenth of them, i.e., 3.4 million.

Implementing RetinaNet in Torchvision uses the backbone ResNet-50 consisting of
50 layers and 34 million parameters. For Faster R-CNN, two variants with different
backbones are provided, one with MobileNetV3-Large and the second with ResNet-50.
For the MobileNet variant, there are two versions with different input sizes, one with
800 × 800 and the other with 320 × 320. Also included is Faster R-CNN’s version for
the segmentation problem, the R-CNN Mask with Resnet-50 backbone, which produces
simultaneously segmentation masks as well as bounding boxes. Mask R-CNN has a few
more parameters than Faster R-CNN due to its additional functionality.

In the PyTorch implementation of G. Jocher’s YOLOv3, the backbone of Darknet53 is
used, as in the original implementation in the Darknet framework. Two further variants are
provided, YOLOv3-tiny and YOLOv3-spp. YOLOv3-tiny is a smaller version of YOLOv3,
which replaces some conv layers of the backbone with pooling layers and removes one
of the three heads of YOLOv3, the one for small objects, to reduce computational costs.
It consists of only 8.8 million parameters compared to YOLOv3 which has 61.9 million.
YOLOv3-spp is virtually the same as YOLOv3, but one of the conv layers has been replaced
by an SPP layer which helps the network to perceive the characteristics of the image at
various levels of resolution, which only slightly increases the number of parameters to
63 million.

For YOLOv4, the PyTorch implementation by T. Xiaomo is used, which employs the
improved backbone of CSPDarknet53, as in the original YOLOv4 implementation of the

https://github.com/ultralytics/ultralytics
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Darknet framework, and in total consists of 64.4 million parameters. Finally, G. Jocher’s
YOLOv5 is distributed in five variants, n, s, m, l, and x, depending on the size of the
network, of which we will consider n, s, m, and l. The number of its parameters ranges
from 1.9 million up to 47 million depending on the variant. YOLOv5 uses a backbone based
on CSPDarknet53 with some modifications in the implementation of the CSP Bottleneck.
All the above implementations of YOLO can accept any input size. However, in order to
ensure the validity of the results, we define the input size as the size of the data with which
the pretrained models we use were trained. This size is 640 × 640 for YOLOv3 and v5, and
608 × 608 for YOLOv4.

2.3. Speed/Accuracy Trade-Off of Object Detection Models

In recent years, several reviews of modern object detection models have been pub-
lished. In 2019, a survey [2] was conducted on the improvements in object detection in the
last 20 years. Nonetheless, the survey merely reported on the performance of the models in
question in the related bibliography. No experiment was performed to measure their accu-
racy and speed. In contrast, another review in the same year [3] included an experimental
evaluation of more than 26 models on the Visual Object Classes (VOC) [24] and Common
Objects in Context (COCO) [25] datasets. Although both accuracy and speed were mea-
sured, the trade-off between the two parameters was not analyzed. Moreover, the tested
models were implemented in different machine learning frameworks and programming
languages, thus obscuring the detection speed.

Two studies published in 2017 [4] and 2018 [5] assessed the speed/accuracy trade-off
of object detection models using the same framework. In [4], the Tensorflow implemen-
tations of Faster R-CNN [6], SSD [10], and Region-based Fully Convolutional Network
(R-FCN) [26] were evaluated on COCO [25] based on their speed/accuracy trade-off while
testing different backbones, image resolutions, and number of region proposals. In [5],
a similar analysis was conducted using the same models with the addition of Mask R-
CNN [7] and SSDlite [27]. The aspect of memory consumption and detection speed on
different devices was investigated as well. Nevertheless, both studies did not take into
account newer models, such as YOLOv5 [15] and RetinaNet [9].

2.4. Medical Mask Detection

Initially, interest in medical mask detection was limited. After the outbreak of
COVID-19, numerous medical mask detection models were proposed to limit infection.

In 2020, the Super-Resolution and Classification Network [28] was designed and
trained using transfer learning. In 2021, RetinaFaceMask [29] was introduced, a one-shot
model based on RetinaNet, using transfer learning from a human face dataset to the Masked
Faces for Face Mask Detection Dataset (MAFA-FMD) made by the authors. In the same year,
a hybrid medical mask recognition model [30] combining ResNet-50 [31] with a Support
Vector Machine (SVM) was proposed, after being trained on both real-world and synthetic
data using transfer learning. Later, in [32], the authors replaced the SVM with YOLOv2 [12].
A medical mask detector published in [33] was based on Inception-v3 [34] and trained on a
synthetic mask dataset using transfer learning from a general object dataset and several
data augmentations.

Despite achieving near-perfect accuracy, the above models were not evaluated on
their detection speed. In view of this, a real-time mask detection model was designed, SE-
YOLOv3 [16] and trained on the novel Properly Wearing Masked Face Detection (PWMFD)
dataset created by the authors. It introduced a Squeeze-and-Excitation (SE) attention
mechanism [35] to YOLOv3, achieving a 66% mAP and 28 fps. However, its performance
was evaluated using a high-end GPU, rendering it unsuitable for lightweight devices.
Moving to YOLOv4, the hybrid mask detection model tiny-YOLOv4-SPP was proposed [36].
It significantly reduced the training time while increasing the accuracy compared to the
original tiny-YOLOv4, but the aspect of real-time detection was not considered.
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3. Materials and Methods
3.1. Evaluation Methodology of Object Detection Models

We evaluate the object detection models shown in Table 1 in terms of memory con-
sumption, computational and storage costs, as well as their speed/accuracy trade-off. The
models include Faster R-CNN with two different backbones and image sizes, Mask R-CNN,
RetinaNet, SSD and its memory-efficient version SSDlite, YOLOv3 with its SPP and tiny
variants, YOLOv4, and YOLOv5, including its large, medium, small, and nano variants.
For all models, we utilize the same framework, dataset, and GPU.

Table 1. Models evaluated on the COCO2017 dataset.

Model Backbone Image Size a

Faster R-CNN [6] MobileNetV3-Large [23] 800

Faster R-CNN MobileNetV3-Large 320

Faster R-CNN ResNet-50 [31] 800

Mask R-CNN [7] ResNet-50 800

RetinaNet [9] ResNet-50 800

SSD [10] VGG16 [37] 300

SSDlite [25] MobileNetV3-Large 320

YOLOv3 [13] Darknet53 [13] 640

YOLOv3-spp [13] Darknet53 640

YOLOv3-tiny [13] Darknet53 640

YOLOv4 [14] CSPDarknet53 [14] 608

YOLOv5l [15] Modified CSPDarknet [15] 640

YOLOv5m [15] Modified CSPDarknet 640

YOLOv5s [15] Modified CSPDarknet 640

YOLOv5n [15] Modified CSPDarknet 640
a Given a value of N, the image size in pixels is N × N.

1. Framework: All models are implemented in PyTorch and are offered in the Torchvision
package. The only exceptions are YOLOv3, YOLOv4, and YOLOv5, which are imple-
mented in GitHub repositories (https://github.com/ultralytics/yolov3 accessed on
1 June 2023; https://github.com/Tianxiaomo/pytorch-YOLOv4 accessed on 1 June
2023; https://github.com/ultralytics/yolov5 accessed on 1 June 2023).

2. Dataset: The evaluation is performed on the val subset of the COCO2017 [25] dataset.
COCO appears to be among the de facto standards for measuring accuracy and speed
in modern object detection models as it strikes a balance between manageable size and
adequate image scene density. It contains 118,000 examples for training and 5000 for
validation belonging to 80 classes of everyday objects. In addition, COCO training
has been extensively used in the past as a basis for transfer learning on the specific
problem of medical mask detection. No training phase is performed as all models are
already pretrained on the train subset. The data are loaded with a batch size of 1 to
imitate the stream-like insertion when detecting in real time.

3. Environment: The code for the experiment is organized in two Jupyter notebooks
(coco17 inference.pynb, analysis.pynb) and is executed through the Google Colab
platform. We chose the option of a local runtime, which uses the GPU of our sys-
tem (Nvidia Geforce GTX 960, 4 GB). Every model goes through the same infer-
ence pipeline.

4. Metrics: To estimate the memory usage of each model, we calculate the maximum
GPU memory allocated to our GPU device by CUDA for the program. To quantify
computational costs, Giga Floating Point Operations (GFLOPs) are counted using the

https://github.com/ultralytics/yolov3
https://github.com/Tianxiaomo/pytorch-YOLOv4
https://github.com/ultralytics/yolov5


Digital 2023, 3 177

ptflops (https://github.com/sovrasov/flops-counter.pytorch accessed on 1 June 2023)
Python package. The storage cost is derived from the size of the weight file of each
respective model. We measure detection speed in frames (images) per second (fps).
For accuracy, we use the mean Average Precision (mAP) of all classes. According to
the COCO evaluation standard (https://cocodataset.org/#detection-eval accessed on
1 June 2023), Average Precision (AP) is calculated using 101-point interpolation on the
area under the P-R (Precision–Recall) curve, as follows:

AP101 =
1

101 ∑
R={0,0.01,...,0.99,1}

Pinterp(R) (1)

where
Pinterp(R) = max

∼
R:
∼
R≥R

P(
∼
R) (2)

3.2. Memory Footprint

In Figure 1a, the higher the number of parameters and image size, the more GPU
memory the model consumes. Interestingly, YOLOv4 has a 925 MB memory footprint
that is 3 times more than models with roughly the same parameter count and image size,
such as YOLOv3 (301 MB). In contrast, YOLOv3 utilizes approximately three-fourths of the
memory consumed by YOLOv5l, despite having more parameters and the same image size.
SSDlite, having the fewest parameters and smallest image size, uses merely 33 MB.
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3.3. Computational Performance and Storage Costs

Firstly, the number of GFLOPs of a model is closely related to its number of parameters
and image size. For instance, in Figure 1b, between the two implementations of Faster
R-CNN with MobileNet-v3 and ResNet-50, the second executes 27 times more GFLOPs
than the first while having just over twice the same number of parameters. In general,
models that use the MobileNet-v3 backbone, i.e., SSDlite and Faster R-CNN, prove to
be the least expensive in GFLOPs. Subsequently, comparing the two versions of Faster
R-CNN with different image sizes, the one with size 800 costs almost 6 times more GFLOPs

https://github.com/sovrasov/flops-counter.pytorch
https://cocodataset.org/#detection-eval
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than the one with 320. The sole exception to the rule is RetinaNet and YOLOv3 which,
despite having the same image size and fewer parameters than Faster R-CNN ResNet50
and YOLOv4, respectively, execute more GFLOPs than their counterpart.

According to Figure 2, storage cost increases linearly with the number of parameters
in a model. Nevertheless, YOLOv3 and YOLOv5 cost significantly less storage space than
models with an equivalent number of parameters.
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3.4. Accuracy and Speed

For a fair comparison of the models’ accuracy, it is necessary to evaluate this metric
in terms of speed. There is no point in ranking the models based on their accuracy, if we
do not understand the larger context in which a model manages to provide its degree of
accuracy. This means that if a model achieves high accuracy but at the same time sacrifices
a significant part of its speed for this purpose, then it becomes unsuitable for the problem
of real-time detection. Accordingly, the same is true for the reverse.

Therefore, in Figure 3, we illustrate the trade-off between the speed (fps) and accuracy
(mAP) of all models. An immediate observation is a decrease in speed as the accuracy
of a model increases. On a general note, a favorable model would be one that achieves
both high accuracy and speed. Thus, it would be found in the top right corner of Figure 3.
All variations of YOLOv5 provide the best balance between accuracy and speed, whereas
RetinaNet, SSD, SSDlite, and YOLOv3-tiny rank last.

3.5. Accuracy and Speed vs. Computational Performance

In Figure 4, we demonstrate the relationship between mAP and GFLOPs for each
model. We notice that the higher the count of GFLOPs, the higher the accuracy, forming a
hyperbolic curve of “y = −α/x + β” between the two measures. Ideally, we strive to find a
model that achieves the highest possible mAP for the lowest possible GFLOPs. According
to this, the best performance is attained by the models of the YOLOv5 family, especially the
medium and large variants, with Faster R-CNN MobileNetV3-Large rivaling the smaller
variants. The worst mAP/GFLOPs balance is observed for YOLOv3-tiny, which shows the
lowest mAP in comparison to other models of a similar level of GFLOPs, and RetinaNet,
which executes far more GLOPs than other models of the same order of mAP.
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Figure 5 illustrates the relationship between inference speed in fps and GFLOPs. We
observe that it is approximated by a hyperbolic curve of the form “y = α/x”. In other
words, as the GFLOPs of a model increase, the fps decrease. Nevertheless, achieving the
highest fps possible with the least amount of GFLOPs is favorable. Thus, we conclude that
the most efficient model in terms of speed is YOLOv5n, with YOLOv3-tiny ranking second.
The implementation of RetinaNet is the least efficient with the largest number of GFLOPs
and the least fps.
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4. Datasets for Medical Mask Detection

For the problem of medical mask detection, we performed an extensive survey of the
available datasets. The choice of a complex and diverse set is crucial for the development
of a robust model. Although a model may exhibit maximum accuracy in a simplistic set,
this does not necessarily hold in real conditions. The first datasets of medical masks have
been appearing since 2017. However, since the outbreak of the COVID-19 pandemic, they
have multiplied rapidly in number and some of them have already been used in medical
mask detection systems. These datasets are analyzed below.

4.1. MAFA and MAFA-FMD

The Masked Faces (MAFA) dataset [38] was developed in 2017 by S. Ge et al. as the
first dataset of faces with masks. It includes 30,811 non-synthetic images and a total of
35,806 masked faces divided across the number of images. On average, the faces of the set
have a size of 143 × 143 pixels. A distinct characteristic of the dataset lies in the fact that
the annotations of faces, in addition to the bounding box that encloses the face, include
information about the orientation of the face, the degree of mask overlap, and the type of
mask. In terms of orientation, faces are classified as left, left-front, front, right-front, and
right, with the majority (71%) belonging to the front. In terms of degree of overlap, they
are divided into weak, medium, and strong, depending on the number of areas they cover
on the face, with the majority belonging to medium (81%). Finally, regarding the type of
mask, the faces are grouped into simple, complex, body, and hybrid. In essence, “mask” is
considered not only a medical mask but also a garment or part of the body, such as a hand.

In 2019, following the outbreak of COVID-19, the Masked Faces for Face Mask Detec-
tion Dataset (MAFA-FMD) [29] was formed as an improvement on MAFA. In particular, the
labels of the original set were modified with the aim of specializing it in medical conditions,
and the labels of persons who had not already been tagged were added. MAFA-FMD
contains 56,024 identifications of persons who, unlike MAFA, also include faces without a
mask at all. Faces are organized into three groups depending on whether a strictly medical
mask has been placed correctly, wrongly, or not at all. Body parts or clothing used to cover
the face are not considered valid masks and faces are classified as maskless. At the same
time, the dataset was augmented with labels for low-resolution face samples i.e., smaller
than 32 × 32 pixels. One disadvantage of MAFA-FMD is the imbalance of class samples,
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most notably the misplaced mask class with only 1388 samples compared to the other two
classes with 28,233 and 26,463 samples, respectively.

4.2. RMFD and SMRFD

In 2020, a large dataset of medical masks was issued by Z. Wang et al., the Real-
World Masked Face Recognition Dataset (RMFRD) [39]. RMFRD contains 95,000 images
of 525 different public faces in frontal view, of which 5000 contain a face with a medical
mask and 90,000 without. Alongside this set, the Simulated Masked Face Recognition
Dataset (SMFRD) [39] was published. It was used to exploit already existing large-scale
face datasets. For its construction, the creators placed medical masks on each face of such
sets, in an automatic way, after developing the appropriate software. In total, it contains
500,000 images of 10,000 different people with one face in each image. The advantage of
synthetic sets is that they enable the usage of large-scale datasets of common problems in
our own, especially in cases where the problem is new and sufficient data do not yet exist.
However, the introduction of synthetic information requires the researcher to take some
initiatives based on their own perception about what data the problem needs. Thus, there
is a danger that the model will form biases during training. For example, in the SMFRD
set, synthetic masks added to faces are drawn from only one image of a medical mask.
Therefore, if the model is faced with the detection of masks of various colors, shapes, and
textures, it is very likely that it will not be able to generalize sufficiently. In conclusion,
the use of synthetic sets must be accompanied by the use of image sets from real life to
maximize the ability of the model to generalize. Both RMFRD and SMFRD categorize faces
into only two classes, those who wear a mask and those who do not. However, the labels of
the two sets do not include bounding boxes, so the sets are not suitable for detecting masks,
only for recognition.

4.3. MaskedFace-Net

In 2020, MaskedFace-Net [40] was developed by A. Cabani et al., and it is the largest
synthetic dataset of masks differentiating correctly and incorrectly placed medical masks.
The facial images were drawn from the Flickr-Faces-HQ (FFHQ) set comprising faces of high
diversity in terms of age, ethnicity, and environmental conditions. Then, a medical mask
image was automatically added to them with varying degrees of overlap using a machine
learning model to identify the parts of the face to which the mask attaches. MaskedFace-
Net contains a total of 137,016 images and is a synthesis of two subsets developed by the
creators, the Correctly Masked Face Dataset (CMFD) and the Incorrectly Masked Face
Dataset (IMFD), with 67,193 and 69,823 images, respectively. In the IMFD set, faces are
grouped into three subsets which are differentiated according to whether the mask does
not cover the nose (80%), whether it does not cover the chin (10%), and whether it does not
cover the nose and mouth (10%). Unlike the large-scale SMFRD dataset, MaskedFace-Net
can be used for both recognition and detection and provides detailed analysis of faces with
misplaced masks. Of course, like SMFRD, as a synthetic dataset, it is proposed to be used
in conjunction with a non-synthetic set.

4.4. PWMFD

The Properly Wearing Masked Face Detection Dataset (PWMFD) [16] is a dataset of
faces with medical masks developed by X. Jiang et al. in 2021. It includes 9205 non-synthetic
images of faces from multiple sources. Specifically, 3615 were collected from the internet,
2951 from the WIDER FACE dataset, 2581 from MAFA, and 58 from RMFRD. There are
three classes used to classify faces: faces with correct mask placement, with wrong mask
placement, and without a mask. In the maskless class, not only persons who did not wear
a mask were placed but also persons with body parts or objects covering a part of them.
Thus, the set is an important tool to ensure the proper use of medical masks, even in cases
of attempts to deceive the system. Of the 9205 images, a total of 18,532 faces are highlighted:
7695 in the correct placement class, 366 in the wrong placement class, and 10,471 in the
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maskless class. We observe a balance between correct and maskless classes, but the number
of samples in the wrong mask class is relatively incomplete.

For implementing a medical mask detection and recognition system, we select PWMFD
among the datasets reviewed. Initially, due to the nature of the problem, it is necessary
for the dataset chosen to include markings for both the class and the coordinates of each
face. Therefore, sets exclusively specialized in either detection or recognition, such as
RMFRD and SMFRD, are not readily suitable. In addition, it is important that the dataset
contains realistic and diverse images so that the model can generalize with a high degree of
accuracy after training. Synthetic sets have limitations in this respect, such as SMFRD and
MaskedFace-Net sets, which use a single mask format from a particular image to compose
the set. To avoid prolonged training times, we need a balance between the dataset size and
the percentage of realistic vs. synthetic images it contains rather than an arbitrary expansion
with synthetic images. At the same time, PWMFD is also an average solution in terms of
sample count per image, averaging two faces per image. A large count gives the model
the opportunity to train in scenes with dense crowds of people, something that responds
to realistic situations. After all, the PWMFD set is a synthesis of subsets of MAFA and
RMFRD, enriched with additional data. Finally, as already mentioned, PWMFD allows the
detection of misplaced masks as well, a significant advantage in real medical applications.

5. Results of Optimizations for Medical Mask Detection
5.1. Configuration

Dataset: To achieve desirable results, a realistic and diverse dataset for both localization
and recognition of medical masks is required, one that is large enough to ensure high
accuracy but does not exceed our hardware limitations. Therefore, we selected the newly
created PWMFD [16] dataset, using its train and validation subsets to train and evaluate
our model, respectively. It includes 9205 real-life images with 18,532 annotations of faces
belonging to three classes: “with mask”, “incorrect mask”, and “without mask.”

Environment: The code for the experiment was executed through Google Colab and
was organized in three Jupyter notebooks (mask training.pynb, mask inference.pynb,
analysis.pynb). Training was performed using the GPU provided by Colab (Nvidia Tesla
K80, 12 GB) due to its memory facilitating a larger batch size, whereas the evaluation was
performed using our local GPU (Nvidia Geforce GTX 960, 4 GB) because of its higher
detection speed.

Training and Evaluation: During training, a batch size of 32 was used. Training lasted
for 50 epochs, as more resulted in overfitting. The learning rate was updated according
to the OneCycleLR [41] policy, with values in the range of [0.001, 0.01]. As an optimizer,
Stochastic Gradient Descent was employed with a value of 0.937 for momentum and 0.0005
for weight decay. Cross-Entropy was used for classification loss and Complete Intersection
over Union (CIoU) for localization loss. After training, the final weights were selected from
the epoch with the highest mAP. During evaluation, inference was performed with a batch
size of one to mimic the sequential input of data in real time. The COCO mAP and fps were
measured as metrics.

5.2. Implementing Optimizations for Medical Mask Detection

According to our study in Section 3, YOLOv5 [15], and particularly its medium,
small, and nano variants, provided the best balance between accuracy, speed, memory
consumption, and computational and storage costs for real-time object detection. Its
architecture is depicted in Figure 6. To implement our medical mask detector, we chose to
train its small variant, YOLOv5s, on PWMFD [16] with an image size of 320, achieving 33%
mAP and 69 fps. To elevate its performance, we experimented with various optimizations
during training.
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layer, a PANet [22] as the neck, and three heads for the detection of objects of different sizes.

5.3. Transfer Learning

Inspired by the success of transfer learning in previous medical mask detectors [28–30,32,33],
we applied weights pretrained on COCO [25] to PWMFD [16]. This technique is known for
significantly decreasing training time and the need for a large dataset [42], both crucial in our case.
We tested various training schemes for YOLOv5s on PWMFD, without transfer learning using
random initial weights (row 1 in Table 2) and with transfer learning using the COCO weights
(rows 2–4 in Table 2), while experimenting with freezing the weights of different layers before
training. The highest mAP (38%) was achieved by freezing the pretrained backbone, that is,
training only the head on PWMFD.

Table 2. Performance of YOLOV5s [15] on PWMFD [16] with various transfer learning (TL) and layer
freezing schemes.

mAP mAP@50 mAP@75

No TL 0.33 0.59 0.33

TL + No Freeze 0.35 0.60 0.39

TL + Freeze Backbone 0.38 0.63 0.43

TL + Freeze All a 0.03 0.10 0.01
a Except output layer.

5.4. Data Augmentations

To prevent overfitting, we utilized the following basic data augmentations: translation,
scaling, flipping, and Hue–Saturation–Value (HSV) transformations. Furthermore, we
assessed the effect of two novel transformations, mosaic and mixup [43]. The first combined
multiple images forming a mosaic, while the second stacked two images on top of one
another with a degree of transparency. The potential benefits of mosaic and mixup for
YOLO were explored in [14,16] for mask detection. We trained YOLOv5s with three
different data augmentation combinations as shown in Table 3. Mosaic nearly doubled the
accuracy (mAP 67%), but the addition of mixup was not beneficial.
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Table 3. Performance of YOLOV5S [15] on PWMFD [16] with various data augmentation combinations.

mAP mAP@50 mAP@75

Basic Transformations a 0.38 0.63 0.43
Basic Trans. + Mosaic 0.67 0.92 0.81

Basic Trans. + Mosaic + Mixup 0.65 0.91 0.78
a Translation, scaling, flipping, and Hue-Saturation-Value.

5.5. Attention Mechanism with Squeeze-and-Excitation (SE) Block

In [16], by introducing two SE blocks to the backbone of YOLOv3 as an attention
mechanism along with mixup and focal loss, the accuracy of YOLOv3 on PWMFD raised
by 8.6%. The SE mechanism applies input-dependent weights to the channels of the
feature map to create a better representation of the image. Focal loss is an improvement
on Cross-Entropy loss that assists the model in focusing on hard misclassified examples
during training. We applied the same strategy to YOLOv5. Our ablation study in Table 4
shows that these optimizations did not affect speed, but they impacted accuracy negatively.
Therefore, they were not used in our final mask detector. Nevertheless, Figure 7 illustrates
higher accuracy for small and medium-sized objects when using SE with mixup.

Table 4. Performance of YOLOV5S [15] on PWMFD [16] with selected optimizations from SE-
YOLOV3 (Squeeze-and-Excitation attention mechanism, mixup, and focal loss).

mAP mAP@50 mAP@75 fps

No SE 0.67 0.92 0.81 69
SE 0.61 0.93 0.74 68

SE + Mixup 0.58 0.90 0.68 69
SE + Focal Loss 0.38 0.63 0.45 71

SE + Mixup + Focal Loss 0.37 0.62 0.43 70
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5.6. Attention Mechanism with Transformer Encoder (TE) Block

In the TPH-YOLOv5 model [44], the basic architecture of YOLOv5 was enhanced by
adding a Transformer Encoder block as an attention mechanism at the end of the backbone
and the beginning of each head. The purpose of the backbone addition is to enhance
feature maps with information about the general context in which they appear, i.e., their
relationship to neighboring objects. The purpose of the head addition is to improve feature
maps on each output size scale. In addition, by using TE blocks, TPH-YOLOv5 improved
the accuracy of locating small, densely placed objects. Based on the architecture of TPH-
YOLOv5, we evaluated the insertion of TE blocks into YOLOv5s at the end of the backbone
and at the beginning of each head. The structure of the TE block was the one implemented
within the C3TR block in the official code repository of YOLOv5. The new C3TR blocks
replaced the C3 blocks of YOLOv5 located at the end of the backbone and at the beginning
of each head. A C3TR block, like the C3, consists of a CSPNet, except that in the former a
TE block is nested and in the latter a bottleneck block.
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Table 5 shows the influence of using TE blocks on the backbone, heads, and the
architecture as a whole. We note that using TE blocks in each case did not improve accuracy.
In fact, due to the addition of the new units, the speed dropped. Adding three TE blocks to
the heads reduced the speed much more (−13 fps) than adding to the backbone (−1 fps).
The drop in accuracy was not as dramatic (−5%) but still greater than the drop after adding
to the backbone (−1%). The use of TE blocks across the architecture had the greatest
decrease in accuracy (−7%) and speed (−14 fps). For a loose IoU boundary, we observed
that using TE blocks did not affect accuracy as negatively as with a tighter limit, meaning
that the generated bounding boxes with TE blocks are less “tight” around each object. We
also noticed that using TE blocks solely on the backbone or heads improved the detection of
medium objects but negatively affected accuracy on large and especially small objects. We
conclude that for our problem, the use of the attention mechanisms we examined helped
the model for medium objects in terms of accuracy, but not overall, and therefore we did
not use them in the final model.

Table 5. Performance of YOLOV5S [15] on PWMFD [16] with and w/o TE blocks.

mAP mAP@50 mAP@75 fps

No TE Block 0.67 0.92 0.81 69
TE Block (Backbone) 0.66 0.90 0.78 68

TE Block (Heads) 0.62 0.92 0.76 56
TE Block (Backbone + Heads) 0.60 0.88 0.75 55

5.7. Final Optimized Model

Our final mask detector was based on YOLOv5s with transfer learning from COCO to
PWMFD while freezing the backbone and uses mosaic and other basic data augmentations.
According to Table 6, it is twice as accurate as the baseline YOLOv5s while being equal in
speed. At the same time, when compared using PWMFD, it was as accurate and more than
two times faster on our own lower-end GTX 960 GPU than the state-of-the-art SE-YOLOv3
on a GTX 2070. This significant increase in speed gives room for its use in embedded
devices with lower hardware capabilities while still achieving real-time detection. Detection
examples are illustrated in Figure 8.

Table 6. Performance of our optimized YOLOv5s compared to baseline YOLOv5 [15] and SE-YOLOv3 [16].

mAP mAP@50 mAP@75 fps

SE-YOLOv3 a [16] 0.66 0.96 0.79 28
YOLOv5s [15] 0.33 0.59 0.33 69

YOLOv5s + TL + Freeze BB + Mosaic 0.67 0.92 0.81 69
a With image size 320 and a GTX 2070 GPU.
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more than two times faster on our own lower-end GTX 960 GPU than the state-of-the-art 
SE-YOLOv3 on a GTX 2070. This significant increase in speed gives room for its use in 
embedded devices with lower hardware capabilities while still achieving real-time detec-
tion. Detection examples are illustrated in Figure 8. 

 

Figure 8. Detection examples using our optimized YOLOv5s model.
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6. Discussion

Evaluating object detection models fairly is a task that requires multiple parameters
to be addressed besides accuracy. Our goal is to provide an informative analysis of fun-
damental object detectors that also includes speed, accuracy, memory consumption, and
computational and storage costs. YOLOv5 currently appears to provide the best balance be-
tween these parameters for real-time object detection. For the specific task of medical mask
detection, our review and survey of currently available models and datasets can be useful
for further designing end-to-end systems for public health administration and protection.

We also perform an evaluation of an inspiring set of potential optimizations for the
task at hand. Using our findings, we propose an optimized YOLOv5s-based model for
real-time mask detection to protect public health amidst the COVID-19 pandemic. Our
optimizations led to increased accuracy (mAP 67%) that rivaled that of the state-of-the-art
SE-YOLOv3 on PWMFD while being more than two times faster (69 fps). At the same
time, applying the SE attention mechanism of SEYOLOv3 to YOLOv5s along with mixup
improved the accuracy for small and medium-sized objects but not large ones.

In the future, we would like to research optimizations to combat the side effects on
large objects, thus improving total accuracy. Moreover, our model does not utilize an
important characteristic of data streams, the relationship between consecutive frames.
This could be achieved by exploring object detection models that implement this using
Recurrent Neural Networks. In addition, further optimized models such as YOLOv8 as
well as Transformer-based models (ViTs) have yet to be fully evaluated specifically for the
problem per se. Some of the optimizations we have tested and reported on have now been
incorporated into v8, including mixup, for which we already concluded that it does not
offer overall gains.

After the end of the pandemic, we are hopeful that with the help of our model the
healthcare sector can be better prepared for a similar crisis. Our proposed optimizations
may also be useful for other related problems, such as face detection.
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