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Abstract: Metalloenzymes are the most proficient nature catalysts that are responsible for diverse
biochemical transformations introducing excellent selectivity and performing at high rates, using
intricate mutual relationships between metal ions and proteins. Inspired by nature, chemists started
using naturally occurring proteins as templates to harbor non-native metal catalysts for the sustain-
able synthesis of molecules for pharmaceutical, biotechnological and industrial purposes. Therefore,
metalloenzymes are the relevant targets for the design of artificial biocatalysts. The search and devel-
opment of new scaffolds capable of hosting metals with high levels of selectivity could significantly
expand the scope of bio-catalysis. To meet this challenge, herein, three native scaffolds: [1Fe-4Cys]
(rubredoxin), [3Fe-4S] (ferredoxin), and [S2MoS2CuS2MoS2]-ORP (orange protein) protein scaffolds
are case studies describing templates for the synthesis of non-native monomeric to mixed metal–
sulfur clusters, which mimic native Ni containing metalloenzymes including [Ni-Fe] Hydrogenase
and [Ni-Fe] CO Dehydrogenase. The non-native metal-substituted metalloproteins are not only
useful for catalysis but also as spectroscopic probes.

Keywords: designed metalloproteins; models of [Ni-Fe]-hydrogenase and [Ni-Fe]-CODH; orange-
protein and spectroscopic probes

1. Introduction

Nature has evolved in order to utilize metal ions and/or metal clusters within protein
scaffolds to build up metalloproteins that accomplish diverse chemical reactions enabling to
sustain of life [1–4]. The versatility of the metals and biological ligands available in proteins
is amazing. The same metal (with a set of conserved amino acids as ligands) may show
different electronic/physical properties, performing a wide range of biological roles in different
metalloproteins [5–7]. Nature utilizes a range of different metals and recruits the correct
metal into proper protein environments to execute selective functions [5–7]. The nuclearity
of metal-cofactors varies from monomeric to multimeric. Monomeric metalloenzymes
are well studied, such as cupredoxin [8], rubredoxin [9], cytochrome P450 [10,11], and
molybdenum-enzymes [12], which are involved in a variety of biochemical transformations,
and with relevant roles in electron transfer processes. Furthermore, many biochemical
transformations occurred by a variety of complex metalloenzymes such as nitrogen-fixing
nitrogenases [13,14], photosystem [15,16], hydrogenases [17,18], and carbon monoxide-
dehydrogenase (CODH) [19,20].

However, many enzymes show intrinsic promiscuity [21,22] for various forms of
chemical reactions, whereas other activities are obtained by only a small alteration of their
active site or protein environment [23]. The diversity of promiscuous enzymatic activity
can be expanded by the incorporation of a variety of metallic ions at the active sites of
metalloproteins, catalyzing a wide range of chemical transformations [2,24–26]. Handling
of the metal-binding site of metalloprotein is usually aimed for two main reasons: (i) to
replicate the active site of other native metalloenzymes, and (ii) to design spectroscopic
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probes for elucidating the structure and function of native metalloenzymes. Herein, three
native protein scaffolds, [1Fe-4Cys] (rubredoxin) [9], [3Fe-4S] (ferredoxin) [27,28] and
[S2MoS2CuS2MoS2]-ORP (orange protein) [29,30] polypeptides are considered as templates
and have proven a handy platform for the synthesis of non-native metal–sulfur or mixed-
metal–sulfur clusters with novel functions. The protein-assisted metal–sulfur cluster synthesis
was started in the 1980s to investigate the structures and functions of metalloproteins [31–33]
and then explored in many metalloproteins [34–36]. Indeed, Rubredoxin (Rd) is the simplest
and smallest iron–sulfur protein possessing one Fe that is replaced by a series of non-
native metal ions to study the biochemical properties of Rd [9] and to design the model
compounds, such as Ni-Rd, that are considered as a model of [Ni-Fe]-Hydrogenase [37,38].

In the case of [3Fe-4S]-ferredoxin, the vacant Fe-site is filled up by a variety of metal
ions to yield a wide range of hetero-metal–sulfur cubane clusters ([M,3Fe-4S]). Interestingly,
designed [Ni,3Fe-4S]-ferredoxin mimics the native [Ni-Fe] carbon monoxide dehydro-
genase [39]. The third protein, ORP, Ref. [29] is used as a template for the synthesis
of hetero-metal-clusters as spectroscopic probes by replacing the diamagnetic CuI from
[S2MoS2CuS2MoS2]3− of ORP, enlarging the scope of the initial studies [40]. Therefore,
this review focuses on non-native metal ions that are incorporated in active sites by chemi-
cal manipulation of protein template, aiming at the synthesis of derivatives that may be
described as either model enzymes or spectroscopic probes.

2. Covalently vs. Non-Covalently Coordinated Metal-Cofactors

In metalloenzymes, metal cofactors are bound to certain amino acid residues, which
are necessary to drive the many biochemical transformations. Naturally occurring met-
alloproteins possess a native metallocofactor that can be attached to protein templates
through covalent or non-covalent interactions by a group of side chain amino acid residues.
The covalently attached metallocofactors are commonly found in many metalloproteins
such as rubredoxin [9], ferredoxin [27], molybdoenzymes [12], nitrogenase [13], and hy-
drogenase [17]. In contrast, non-covalently attached metallocofactors are observed in a
very limited number of metalloproteins, such as orange protein (ORP) [29] and Mo-Fe
protein [41]. However, covalent anchoring metallocofactors are more strongly embedded
in protein scaffolds than non-covalent anchoring metallocofactors, but both types of metal-
cofactors are directly tuned by protein scaffolds. Furthermore, unlike covalent assembly,
non-covalent (supramolecular) assembly can allow the entry and exit of the guest molecule
in the host cavity reversibly. The designed information of molecular structure is stored
in the host-cavity (protein template) that builds the guest structure through non-covalent
interactions, including hydrogen-bonding, ion-pair, and hydrophobic interactions [42,43].
Inspired by Nature, the non-native metal ions have been recruited into protein scaffolds by
non-covalent or covalent chemical ways to design artificial metalloenzymes.

3. Iron–Sulfur Proteins

Iron–sulfur ([Fe-S]) clusters are the utmost ancient and ubiquitous biological inorganic
cofactors that are involved in a wide range of biochemical processes, including electron
transfer, gene regulation, and catalysis [44–46]. [Fe-S] clusters show a variety of frameworks
in biology and the most common structural types are [1Fe-4Cys] in rubredoxin [9], [2Fe-2S]
in plant ferredoxin [4,47], and [4Fe-4S] in bacterial ferredoxin [48]. In addition, [3Fe-4S]
type clusters are found in biology, structurally related to [4Fe-4S] cores, namely in ferre-
doxins and several complex metalloproteins [27,28]. Apart from the classic [Fe-S]-clusters,
the unique, bigger, and highly complex [Fe-S]-clusters are found in many proteins such
as shiroheme-[4Fe-4S]-cluster in sulfite reductase [49–51], [Mo-7Fe-9S] (FeMo-cofactor)
and [8Fe-7S] (P-cluster) clusters in nitrogenase [52], a unique H-cluster in [Fe-Fe] hydro-
genases [53], a hetero-metal cluster in [Ni-Fe] hydrogenase [17] and [Ni,4Fe-5S] cluster
in carbon monoxide dehydrogenase [54]. Furthermore, a complex [8Fe–9S] cluster in
the ATP-dependent reductase from Carboxydothermus hydrogenoformans [55] and a non-
cubane [4Fe-4S] cluster in the heterodisulfide reductase from methanogenic archaea are
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observed [56]. Due to structural/functional variability, iron–sulfur clusters are attractive
templates to be used for the design of artificial metalloproteins/enzymes, aiming at the
elucidation of the structure and function of the intricate systems and possibly other per-
formances such as catalysts. Therefore, in this review, we are focusing on two types of
iron–sulfur proteins, mononuclear-rubredoxin, and trinuclear-[3Fe-4S]-ferredoxin.

3.1. Overview of Rubredoxin

Rubredoxins (Rds), a small (5.6 kDa) and simplest case among iron–sulfur proteins,
are observed mainly in anaerobic bacteria and archaea [9,57] and one group of eukaryotes
(photosynthetic algae and plants) [58,59]. The active site of Rd possesses one iron atom,
tetrahedrally ligated by four cysteine residues from two –CX2C–Xn–CX2C–segments in a
polypeptide chain (Figure 1). A variation of this binding site contains two adjacent cysteine-
binding modes (–CX2C–Xn–CC–) in a protein, namely desulforedoxin [60]. Based on metal
composition, Rds are mainly two types which are single Fe-centre systems (rubredoxins
and flavo-rubredoxins) and complex Fe-centre systems, wherein the Rd center is coupled
with other types of iron centers (rubrerythrins, nigerythrins, desulfoferrodoxins, and
desulforedoxins) [9,61]. The biological functions of Rds are still unclear, but it presumes
to participate in the e− transfer process cycling between ferrous and ferric forms, in many
biochemical processes, which are fatty acid metabolism, detoxification of reactive oxygen
species [62,63], and carbon fixation [64]. The redox potentials of all types of Rds fall in the
range from −0.1 V to +0.1 V (vs. NHE) in spite of the same prosthetic group, FeS4 [9,61]. It
is well established that the redox potential of Rds is highly influenced by many parameters,
which are Fe-S bonds, hydrogen bondings [65,66], variation in solvation, electrostatic
interaction, and dipole moment. The crystal structures of reduced and oxidized Rds reveal
that the average Fe-S bond distance in the oxidized Rd is smaller than the reduced Rd
(dFe

III
−S = 2.25–2.30 Å vs. dFe

II
−S = 2.30–2.40 Å) (Figure 1) [67].
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sual biological ligands, CO and CN− are bonded to Fe-atom in the active site and make 
them fascinating examples of ‘organometallic’ cofactors [75–77] (Figure 2A). The Ni-atom 
is believed to be the center of activity for hydrogen evolution. The extensive study of Hy-
drogenases has a central focus on structure/function aspects for a future protein-based H2-
evolving technology. Parallelly, the bio-inspired small synthetic model systems have ex-
tensively progressed for hydrogen conversion catalysts but are not yet comparable to the 
naturally occurring enzymes [78–81]. It is known that the protein matrix plays a vital role 
in tuning the activity of the inorganic active site, but direct enzymological studies may be 
hampered by biological complications/complexities due to its large size with complex cat-
alytic cofactor and toxicity toward the dioxygen molecule. Therefore, size scale interme-
diates between native enzymes and organometallic model compounds can provide many 
advantages for both regimes [82–84]. In this perspective, small stable proteins such as ru-
bredoxin and its metal substituted derivatives are available for modeling the active site of 
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of native [Ni-Fe]-hydrogenase (Figure 2A) and native-enzyme-like activity including the 
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ated H2 production with a high turnover frequency of about 20-100 s−1 at 4ºC in solution 
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Figure 1. Superimposed of X-ray structures of native Rds from Clostridium pasteurianum; oxidized
FeIII-Rd (light brown ribbon with red FeIII ball) (PDB: 1FHH) and reduced FeII-Rd states (light green
ribbon with green FeII ball) (PDB: 1FHM).

Furthermore, the protein fold of Rd is remarkably stable under aerobic conditions, in
a wide range of pH, solvents, and temperatures, and also stable toward mutagenesis [68].
The native iron in Rd can be replaced by a wide range of metal ions, including 57FeII, CoII,
NiII, CuII, ZnII, CdII, HgII, GaIII, InIII, and MoVI [9,38,69–72]. A series of non-native metal
substituted Rd variants have been studied to explain the structural, electronic, and magnetic
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properties of metal ions in active sites and are also useful as model systems. Indeed, The
Cu-Rd derivative enlarges our knowledge of the redox chemistry interplay between CuI

and CuII in a sulfur-rich protein environment [70,71]. Interestingly, cysteine-rich CuII-Rd is
a remarkably stable compound under dark and argon, indicating thermodynamically unfa-
vorable to “Cu-thiol-auto-reduction” [71]. In addition, molybdenum was also incorporated
in apo-rubredoxin to afford the insertion of molybdenum in a cysteinyl coordination sphere,
which is of interest as a model complex for resting or active state of molybdoenzymes,
which hold a remarkable place in bioinorganic chemistry, because they perform a series of
metabolic reactions in the carbon, nitrogen, and sulfur biocycles. However, the designed
MoO2-Rd derivative promotes the oxygen atom transfer reactions, such as the oxidation of
arsenite to arsenate [72]. Among these, designed Ni-Rd is mostly studied as a model of
[Ni-Fe]-hydrogenase [37,38,73].

3.1.1. Ni-Substituted Rd: Model of [Ni-Fe]-Hydrogenase

Nature designed an efficient enzyme, Hydrogenases, that reversibly cleave hydrogen,
a clean and alternative chemical feedstock to non-renewable energy sources. Hydrogenases
have three distinct families, which are [Fe-Fe], [Ni-Fe], and Fe (only) hydrogenases [17,74].
Among them, the bimetallic active site in [Ni-Fe]-hydrogenases are covalently ligated by
four cysteine residues. Two cysteines bridge the two metal centers (Ni and Fe), and the other
two cysteines are terminally coordinated to the Ni-atom. In addition, unusual biological
ligands, CO and CN− are bonded to Fe-atom in the active site and make them fascinating
examples of ‘organometallic’ cofactors [75–77] (Figure 2A). The Ni-atom is believed to
be the center of activity for hydrogen evolution. The extensive study of Hydrogenases
has a central focus on structure/function aspects for a future protein-based H2-evolving
technology. Parallelly, the bio-inspired small synthetic model systems have extensively
progressed for hydrogen conversion catalysts but are not yet comparable to the naturally
occurring enzymes [78–81]. It is known that the protein matrix plays a vital role in tuning
the activity of the inorganic active site, but direct enzymological studies may be hampered
by biological complications/complexities due to its large size with complex catalytic cofactor
and toxicity toward the dioxygen molecule. Therefore, size scale intermediates between
native enzymes and organometallic model compounds can provide many advantages for
both regimes [82–84]. In this perspective, small stable proteins such as rubredoxin and
its metal substituted derivatives are available for modeling the active site of bacterial
[Ni-Fe]-Hydrogenases.

Ni-substituted Rd (Ni-Rd), an air-stable derivative (Figure 2B), is one such model
showing identical structural features at the primary coordination sphere of Ni-fragment
of native [Ni-Fe]-hydrogenase (Figure 2A) and native-enzyme-like activity including the
evolution of hydrogen, deuterium-proton exchange, and inhibition of hydrogen-evolving
activity by carbon monoxide [38]. The characterization of hydrogen-evolving Ni-Rd ac-
tivity has been significantly expanded during the last decade [85–87]. The first study
by Moura and Co-workers reported that recombinant Ni-Rd from Desulfovibrio exhibited
lower hydrogen-evolving activity, but recently, Shafaat and Co-workers have reported that
recombinant Ni-Rd from Desulfovibrio desulfuricans ATCC 27774 displays light initiated
H2 production with a high turnover frequency of about 20–100 s−1 at 4 ◦C in solution
upon electrochemical study. The electrocatalytic over-potential is about 550 mV, which
is comparable to native [Ni-Fe]-hydrogenase at the same condition [85,87]. Furthermore,
the covalent attachment of Ni-Rd to the graphite electrode, coupling through amide bond
formation shows stable H2-evolving activity for many weeks with a higher turnover num-
ber of about 6700, but it shows lower turnover frequency due to the slower interfacial
electron transfer (ET) rates that modulates the catalytic rate [88]. Ni-Rd is an ideal candidate
for studying the molecular mechanism of the native [Ni-Fe]-hydrogenase. A combined
experimental and theoretical data indicate that the proton-coupled electron transfer is a
vital step for catalysis where Cys-thiolates act as the site for protonation, suggesting a
similar mechanism as native [37,86]. The secondary coordination sphere of metalloprotein
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plays a significant role in the catalytic cycle. In order to understand the effect of the protein
environment on the H2-activity of Ni-Rd, a group of mutated Rds is generated, which influ-
ences the H2-evolving activity, suggesting the modulation of the H-bonding network at the
vicinity of the active site. The result indicates that Cys35 is the primary site for protonation
during catalysis [73]. Moreover, Ni-Rd is generated in vivo, and it is indistinguishable
from chemically substituted Ni-Rd, presenting a structural and functional replica of native
enzymes [89].
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of Ni-fragment of native [Ni-Fe]-hydrogenase. (A) Crystal structures of [Ni-Fe]-Hydrogenase from
Desulfovibrio vulgaris Miyazaki F (PDB:1H2R), highlighted the [Ni-Fe] active site with cysteine coordi-
nation and (B) Crystal structure of Ni-Rd from Desulfovibrio gigas (PDB:1R0J), highlighted the Ni-site
with cysteine coordination.

Ni-Rd is also extended to design hybrid catalysts for light-driven H2 evolution, namely
“solar fuel”, which is an emerging research area [90–93]. In order to meet this, a ruthenium-
based chromophore is covalently connected to mutated Ni-Rd through free Cys31 residue
to build a hybrid enzyme, Ru,Ni-Rd, that is capable of photo-induced hydrogen produc-
tion [87,94]. The hydrogen generation rate highly depends on the distance between Ru
and Ni centers in Ru,Ni-Rd suggesting the intramolecular electron transfer in catalysis.
A series of Rd variants are designed as probes where free cysteine residue is located at
different positions 17, 31, 38, and 45 to understand the impact of chromophore attachment
site on hydrogen evolving activity of Ru,Ni-Rd [87]. The hydrogen production efficiency
is lowest when the Ru-chromophore is the longest distance from the Ni-active site. This
approach is ideal for the manufacture of solar fuels [87]. The modification of metal-site
in rubredoxin will be considered great progress and a breakthrough in the biosynthetic
inorganic chemistry field. Therefore, the outstanding results and progress in this research
would certainly have a great impact on the future as a potential alternative fuel source.

3.1.2. Spectroscopic Probes-M-Rd

A number of metal-substituted Rd derivatives are available and are also useful for
the study of various spectroscopies due to their rich optical and magnetic nature in order
to understand the structure and function of Rds [9]. Indeed, the non-native 57Fe-Rd is



BioChem 2022, 2 187

employed as a Mössbauer probe for the study of the oxidation state of the Fe center as
well as the covalent nature of the Fe-S bond. Mössbauer spectroscopy study indicates
larger Fe-S covalency nature in Desulforedoxin over Rd [95,96]. The other spectroscopic
probe is NMR, which gives the information about the cysteine coordination at Fe-site in
Rd but paramagnetic Fe causes broadening of 1H-NMR [97]. In order to overcome this
paramagnetic NMR, the native Fe in Rd is replaced by a diamagnetic ZnII [98,99]. The
NMR study of Zn-Rd shows well-defined as well as well-resolved NMR peaks that indicate
a similar structure to the native structure [100,101]. Likewise, Cd substituted Rd is more
advantageous for 113Cd-NMR study to gain more structural information [102,103]. The
Cd-Rd is extensively used as a 113Cd-NMR probe for studying the metal–cysteine ligation
in various metalloproteins [104]. The potential redox value of Rds is highly affected by the
six conserved H-bonding interactions which are observed between cysteine–sulfur and
vicinal amide-protons [85]. The NMR study of 113Cd-substituted Rd-Cp and WT-Rd-Cp
shows a large 1H chemical shift of amide proton in the vicinity of the active site (NH—S),
suggesting the variation of the redox potential [105]. The small M-Rd derivative is an
efficient NMR probe to study the Fe-S—HN interaction in other [M,Fe-S] proteins.

Interestingly, the native Fe-Rd is also chosen as a paramagnetic NMR probe to be useful
for the protein–protein interaction study [98]. Indeed, two proteins, Fe-Rd and cytochrome
c3 (cyt c3), are considered binding partners. The paramagnetic probe Fe-Rd maps the interface
of the target protein, cyt c3, by NMR study. The NMR study identifies the heme methyl
groups in cyt c3 that participate in the binding surface interface of the Rd-cyt c3 complex [98].
This is a valuable approach to extending the study to other protein partners.

3.2. Overview of [3Fe-4S] Ferredoxin

Widespread distribution and multiple roles of iron–sulfur clusters with variable struc-
ture and oxidation states have been increasingly disclosed. [Fe-S]-proteins show diverse
functions, which are electron transfer, nitrogen fixation, photosynthesis, enzymatic catal-
ysis, signaling, respiration, gene regulation, and DNA repair and replication [106–110].
Ferredoxins (Fds) are an important class of [Fe-S] proteins and have different sub-classes
according to their composition of iron–sulfur, including [2Fe-2S], which is known as plant–
Fd [111,112], and [3Fe–4S] and [4Fe–4S] centers are known as bacteria ferredoxin [27,28].
Like Rd, the redox chemistry of [3Fe-4S] is also highly influenced by pH because it has an
inherent tendency for protonation [7,113]. This protonation chemistry has been found in all
[3Fe-4S]-ferredoxin such as [3Fe–4S] ferredoxins from P. furiosus [114], D. gigas (Fd II) [115],
and beef heart aconitase [116], and [7Fe-8S] ([3Fe– 4S] and [4Fe-4S]) ferredoxins from A.
Vinelandii (Fd I) [117], and D. africanus (Fd III) [118]. The structure of the cuboidal [3Fe-4S]
cluster is an open-faced crown-like structure (Figure 3) with three inorganic µ2-S atoms,
which are active centers for protonation [113]. This chemistry is flourished for the synthesis
of hetero-metal cluster synthesis by introducing the non-native metal into the open-faced
site (below).

A common [4Fe–4S] cluster is covalently attached to a protein scaffold with a typical
cysteine binding motif: –Cys–X2–Cys–X2–Cys–Xn–Cys– or Cys-X-X-Cys-X-X-Cys. The
other type, the [3Fe-4S] cluster, differs in only one Fe-center missing at the corner site of
the cubane [4Fe-4S] cluster [119] and is generally bound in a polypeptide chain with three
cysteine residues. Interestingly, both trimeric cuboidal and terameric cubane clusters are
reversibly interconverted. The first protein-bound [3Fe-4S] cluster was found in aconitase
in 1984 [120]. The [3Fe-4S] is an inactive form of aconitase, and it is easily interconverted to
form an active [4Fe-4S] cluster [120]. Indeed, an easy interconversion between [3Fe–4S] and
[4Fe–4S] clusters is observed in Pyrococcus furiosus ferredoxin, where one cysteine out of
four is replaced by aspartate residue (Figure 3) [121]. In addition, in Desulfovibrio africanus
ferredoxin III, one of two [4Fe–4S] clusters coordinates with three Cys residues, and it readily
converts to the [3Fe-4S] cluster [122]. The fourth iron is ligated by abiological water and
hydroxide ligands [123] or protein-derived carboxylate ligands [124].
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This conversion has suggested a possible route of recruiting other metal ions into the
[3Fe-4S] core to yield a series of novel heteromeric [M,3Fe-4S] type clusters. The construction
of [M,3Fe-4S] clusters is preceded by reactions with exogenous metal ions. Indeed, the
first result was the formation of the [Co,3Fe-4S]2+ cluster that was recognized in 1986 [125].
Since that time, the [3Fe-4S] core has served as a precursor of the formation of [M,3Fe-4S].
Therefore, a series of metal ions are incorporated into the [3Fe-4S] core to yield various
hetero-metal–sulfur clusters [M,3Fe-4S] within the protein environment [36,126–128].

3.2.1. Ni-Incorporated in [3Fe-4S]-Fd: Model of Ni-Containing CODH

CO dehydrogenases (CODHs) catalyze the reversible and selective oxidation of CO
to CO2 [129,130]. Nature evolves two types of CODHs: (1) Mo-Cu containing CODHs
found in aerobic organisms [131,132], and (2) [Ni-Fe] containing CODHs found in anaer-
obic organisms [133,134]. Anaerobic bacteria such as Carboxydothermus hydrogenoformans
(CODHCh), Moorella thermoacetica (CODHMt), and Rhodospirillum rubrum (CODHRr) use CO
as a carbon source [135]. The crystal structures of the active sites of [Ni-Fe]-CODH have
been reported and harbor a [Ni,4Fe-4S–OHx], [Ni,4Fe-5S] (µ2-sulfide covalently bridges
the Ni-atom and the distal Fe-atom) and [Ni,4Fe-4S] cluster (Figure 4) [135,136].
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(PDB file 3B53).

A wide range of metal substituted [3Fe-4S]-ferredoxin derivatives are reported. Among
them, [Ni-3Fe-4S] ferredoxin can be considered as a simplified protein-based model of the
native [Ni-Fe]-CODH [39]. Indeed, Pyrococcus furiosus ferredoxin (Pf -Fd), a small e− transfer
protein contains a cubane [4Fe-4S] cluster that facile interconverts to [3Fe-4S] cluster under
suitable experimental conditions due to the presence of non-cysteinyl ligation (mainly
asparted) at the specific one Fe site [121,137–139]. The apo-pf -Fd protein has been recruited
with a [Ni,3Fe-4S] cluster that mimics the active site core of the native CODH. Recently,
Lewis et al. reported that the [Ni,3Fe-4S] cluster is reconstituted in pf -Fd to generate a
protein-based simplified model for [Ni-Fe]-CODH that shows reversible e- transfer process
and binding of both CO (as substrate) and CN− (as inhibitor) of CODH [39].



BioChem 2022, 2 189

3.2.2. Spectroscopic Probes-[M,3Fe-4S] Ferredoxin

A wide range of non-native metals such as Cu [140], Mn [127], Ni [36,115], Co [115,125,127],
Zn [118,141,142], Cd [115,118] and Ag [143] are incorporated into the vacant space in
the cuboidal [3Fe-4S] core for the studies of the optical, electronic, magnetic, and redox
properties of mixed metal cluster, [M,3Fe-4S]. Indeed, [Cd,3Fe-4S] cluster shows the ground
state spin value of S = 2 whereas [Cu,3Fe-4S] shows S = 1/2 [128]. Furthermore, the redox
potentials of [Cd,3Fe-4S]2+/+ and [Cu,3Fe-4S]2+/+ couples are -470 mV and +190 mV (vs. NHE)
respectively [128], suggesting that the ground spin state and redox potential are functions
of the incorporation of metal ions in the [3Fe-4S] fragment. The [3Fe-4S]0 core has two sites,
including a delocalized FeII•FeIII pair and a localized FeIII site. Upon addition of ZnII ion in
[3Fe-4S] fragment, the formation of [Zn,3Fe-4S]+ shows unusual hyperfine interaction with
spin state of 5/2 using Mossbauer spectra. In contrast, Mossbauer spectra of three FeII sites
in [Ni,3Fe-4S]+ show the same quadrupole splitting with the same isomer shifts suggesting
that three FeII sites are delocalized rather than localized FeII sites [141]. Therefore, small
[M,3Fe-4S] derivatives are efficient spectroscopic probes that can be applied to other cubane
iron–sulfur proteins.

4. Overview of Orange Proteins

Orange protein (ORP), a monomeric small (~12 kDa) protein possesses a novel hetero-
metallic cofactor of the type [S2MoS2CuS2MoS2]3− that was first isolated from sulfate-
reducing bacteria, Desulfovivrio gigas in 2000, and still, the function is unknown [29,30].
Now, the ORP encoded gene is found in many anaerobic bacteria [47,144]. The mixed
metal–sulfur cluster is non-covalently attached to the protein matrix through hydrophobic
and electrostatic interactions [29]. The ORP-Cu cluster is stable in solution for a long
time, but the cofactor can be released from the host cavity by disrupting the non-covalent
interaction in an irreversible process due to the self-rearrangement to yield a larger cluster
that cannot be fit into the protein cavity [145]. Unfortunately, the holo-ORP is crystalized
as apo-ORP without a metallocofactor, and the crystal structure of apo-ORP is shown in
Figure 5 [146]. Furthermore, NMR data of apo-ORP [147,148] reveal a metal cluster-binding
region in D21–A27, H53–N58, and L72–F81 amino acid residues. However, the exact metal
cofactor binding region of ORP remains uncharacterized yet. This unusual mixed metal–
sulfide cofactor in ORP is the result of the Mo/Cu antagonism that was first found in
ruminants [149] and is now being utilized in Wilson’s diseases and various states of cancer
for the applications of anticopper therapies [149,150].
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Protein-assisted syntheses of metal-cluster methodologies are quite inspired by the
large experience of the Mour’s group acquired in the past on self-assembly of iron–sulfur
centers and hetero-metal sites in iron–sulfur proteins (described above) [125,142]. During
the reconstitution procedure, firstly CuCl2 was added, followed by TTM (Tetrathiomolyb-
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date; MoS4
2−), and the [Cu(TTM)2]3−-ORP was obtained with the exact composition of

Mo:Cu stoichiometric ratio of 2:1, but in reverse additions, different mixed metal–sulfur
composition were obtained. This result can be concluded since TTM has a tendency to
absorb protein by either non-covalently interaction or charge interaction with positive
charge amino acid; consequently, TTM does not go smoothly towards the protein cavity
site. Therefore, the addition of TTM, followed by the addition of CuCl2, makes TTM sulfur
ligands bind more copper ions resulting in the formation of different types of non-native
Mo/Cu composition that is not allowed into the apo-ORP cavity. We can also propose that,
in the first step of metal-cofactor formation, copper goes into the cavity region of apo-ORP
and promotes the entry of TTM due to the nature of Mo-Cu antagonism, suggesting a
driving force for this process. In an alternative way, we can propose that the apo-ORP
protein does not promote a specific cavity, but upon the addition of CuCl2 and TTM into
apo-ORP, the protein makes a cavity for the accommodation of the discrete a native mixed
metal–sulfur cluster. The simple inorganic cofactor, [S2MoS2CuS2MoS2]3− [151], in the solu-
tion is no longer stable and itself rearranges to afford a bigger cluster, but in the presence of
a protein matrix, the cluster is stable for long days. Apart from vitro reconstitution, for un-
derstanding the cluster assembly in vivo in ORP, the ATCUN tag (Amino terminus Cu and
Ni binding motif) [152] is inserted at N-terminus in the ORP (Ala1Ser2His3-native amino
acid residues). The NMR spectrum of that event indicates that metal-cofactor formation
has occurred through inter-molecular protein–protein interaction [30].

A series of metal derivatives replacing the native copper with iron, cobalt, nickel, and cad-
mium ions were reported. All derivatives, [S2MoS2FeS2MoS2]3− (ORP-Fe), [S2MoS2CoS2MoS2]3−

(ORP-Co), [S2MoS2NiS2MoS2]3− (ORP-Ni) and [S2MoS2CdS2MoS2]2- (ORP-Cd), were syn-
thesized using the apo-ORP as template [40]. These substitutions of the diamagnetic CuI

ion ([S2MoS2CuS2MoS2]3−) gave origin to either paramagnetic or NMR active derivatives.
Therefore, the ORP-Fe cofactor is also interested as a minimal model of Fe-Mo-co in nitroge-
nase [13] and other derivatives such as [S2MoS2FeS2MoS2]3− (ORP-Fe), [S2MoS2CoS2MoS2]3−

(ORP-Co), and [S2MoS2NiS2MoS2]3− (ORP-Ni) are EPR probe whereas [S2MoS2CdS2MoS2]2−

(ORP-Cd) is NMR probe. This work represents the power of the protein matrix to determine
the final shape and structure of metal-cofactor in situ formation. Moreover, host molecules
encapsulate a variety of guests but the specific size and shape into the plastic cavity through
non-covalent interactions.

Spectroscopic Probes ORP

The metal cofactor of ORP contains CuI and MoVI, which are EPR inactive metal
species and have no satisfactory NMR reporters that can help to investigate the location
of metal-cofactor in the protein cavity. The 3D structure obtained by NMR spectroscopy
displays that the mixed metal cluster is located inside the ORP protein cavity by non-
covalent interactions, including H-bondings, electrostatic and hydrophobic interactions
with an array of amino acid residues [146,148]. However, the exact binding locations of
the metal cofactor in apo-ORP remain elusive. The amino acids are crucial for stabilizing
the mixed metal–sulfur center within the protein cavity, and their identification is crucial
for understanding the structure and the function of the metalloproteins. Therefore, the
biophysical characterization of the binding pocket within the protein is important and
different types of spectroscopic tools are now available for a diagnostic. Therefore, the metal
cofactor is manipulated by substituting the diamagnetic CuI atom with paramagnetic or
interesting NMR active metal reporters or coordinating the metal core with a small organic
thiol ligand (1H or 19F NMR). In order to achieve our aims, we have reported a few synthetic
inorganic semi-model compounds, where Mo-Cu cluster coordinated nonbiological thiols
and fluorinated thiols are characterized by 1H-NMR and 19F-NMR respectively [153,154].
In addition, reconstitution of the NMR active cadmium atom into [S2MoS2CuS2MoS2]3− is
originated a 113Cd-NMR active compound, [S2MoS2CdS2MoS2]2− [153]. The 19F-NMR of
Mo/Cu-thiol complexes shows a higher chemical shift, which is advantageous for the NMR
probe as an alternative to 1H-NMR, circumventing the narrow window of observation of
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protons and also the large number of protein-bearing protons that mask the protons in
synthesized compounds. Thus, our synthetic strategy of synthesis was directed toward
19F-NMR, because 19F-NMR has no background signal, a broad window of chemical shifts
(+400 to −400 ppm), and high sensitivity compared to 1H-NMR. Moreover, because the
chemical shift of 19F-NMR is highly influenced by the local environment at the active site,
the 19F-NMR may be tuned by the vicinity of amino acids in proteins.

Transition metal ions (such as iron, cobalt, and nickel) have been used extensively
as spin probes for the study of metalloproteins by means of NMR and EPR spectroscopy
techniques. In this respect, the diamagnetic CuI ion in [S2MoS2CuS2MoS2]3− is replaced by
a variety of paramagnetic metal ions (M = FeI/II, CoI/II and NiI/II) to obtain paramagnetic
probes of ORP [40].

5. Conclusions

Enzymes are complex molecules that may or not contain metals at the catalytic site,
where chemical transformations occur with amazing selectivity and at high rates. Of the
known enzymes, one-third contain metals coordinated by the side chains of amino acids of
the polypeptide chain and/or cofactors. In this case, the substrate is activated at the metal site.

Due to the chemical complexity of the system (large molecular mass, multiple subunit
composition, and intricate architectural structures involving metals), the study of model
compounds, retaining functional, structural (or both) characteristics has the advantage of
working with a smaller size problem, more suitable for biophysical studies enabling to an
inorganic chemistry approach for revealing the metal active site properties. Metalloenzymes
use a wide range of metals in a variety of structural arrangements and geometries, most in
parallel with inorganic compounds, but others are still a challenge for synthetic chemistry.
Iron contained in iron–sulfur centers and in hemes are the most ubiquitous, but several other
transition metals have specific roles, such as Ni, Mo, Cu, Zn, and others. Modeling efforts
also represent an opportunity for further exploring new applications and functionalities.

The chemical design of models for metalloprotein active sites can be based on small
inorganic compounds and now extend to peptides, protein-based synthetic analogs, and
simple proteins that are used as templates (or scaffolds). As explained in this short review,
we use as case studies three native scaffolds that provide very rich sulfur environments,
used as templates for the synthesis of non-native metal clusters that can be mono, multi,
and mixed metal–sulfur clusters, which mimic native metalloenzymes involved in key
biological steps. Another advantage is the design of metal sites that can be quite useful as
spectroscopic probes.
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Abbreviations

Rd Rubredoxin
ORP Orange Protein
Fd Ferredoxin
CODH Carbon monoxide dehydrogenase
cyt-c3 cytochrome c3
Pf Pyrococcus furiosus
Dg Desulfovibrio gigas
Dd Desulfovibrio desulfuricans
Ch Carboxydothermus hydrogenoformans
Rr Rhodospirillum rubrum
Mt Moorella thermoacetica
TTM Tetrathiomolybdate
EXAFS Extended X-ray absorption fine structure
PDB Protein data bank
ET Electron transfer
NHE Normal hydrogen electrode
NMR Nuclear magnetic resonance
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