Biological Activity of Gold Compounds against Viruses and Parasitosis: A Systematic Review
Abstract
:1. Introduction
2. Methodology
3. Gold Compounds with Biological Activity against Virus and Parasites
3.1. Gold Compounds Used in Anti-Virus Studies
3.2. Gold Compounds Used in Anti-Parasite Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
HCV | hepatitis C virus |
HSC | (human) hepatic stellate cells |
MUST | mercapto-undecane sulfonic acid |
OT | octane thiol |
CD | β-cyclodextrins |
ACE2 | Angiotensin converting enzyme 2 |
S | spike |
PLpro | papain-like protease |
ROS | reactive oxygen species |
AuNPs | gold nanoparticles |
EC50 | Effective concentration that inhibits 50% of the viral/cell activity |
DENV | Dengue virus |
DHA | dihydroartemisinin |
S.I. | selectivity index |
References
- Higby, G.J. Gold in Medicine: A Review of Its Use in the West before 1900. Gold Bull. 1982, 15, 130–140. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Mirzadeh, N.; Privér, S.H.; Blake, A.J.; Schmidbaur, H.; Bhargava, S.K. Innovative Molecular Design Strategies in Materials Science Following the Aurophilicity Concept. Chem. Rev. 2020, 120, 7551–7591. [Google Scholar] [CrossRef] [PubMed]
- Schmidbaur, H.; Schier, A. Aurophilic Interactions as a Subject of Current Research: An up-Date. Chem. Soc. Rev. 2012, 41, 370–412. [Google Scholar] [CrossRef] [PubMed]
- Stratakis, M.; Garcia, H. Catalysis by Supported Gold Nanoparticles: Beyond Aerobic Oxidative Processes. Chem. Rev. 2012, 112, 4469–4506. [Google Scholar] [CrossRef]
- Yeh, Y.-C.; Creran, B.; Rotello, V.M. Gold Nanoparticles: Preparation, Properties, and Applications in Bionanotechnology. Nanoscale 2012, 4, 1871–1880. [Google Scholar] [CrossRef]
- Chakraborty, I.; Pradeep, T. Atomically Precise Clusters of Noble Metals: Emerging Link between Atoms and Nanoparticles. Chem. Rev. 2017, 117, 8208–8271. [Google Scholar] [CrossRef]
- Hashmi, A.S.K. Dual Gold Catalysis. Acc. Chem. Res. 2014, 47, 864–876. [Google Scholar] [CrossRef]
- Hashmi, A.S.K.; Hutchings, G.J. Gold Catalysis. Angew. Chem. Int. Ed. 2006, 45, 7896–7936. [Google Scholar] [CrossRef]
- Li, Z.; Brouwer, C.; He, C. Gold-Catalyzed Organic Transformations. Chem. Rev. 2008, 108, 3239–3265. [Google Scholar] [CrossRef]
- Arcadi, A. Alternative Synthetic Methods through New Developments in Catalysis by Gold. Chem. Rev. 2008, 108, 3266–3325. [Google Scholar] [CrossRef]
- Corma, A.; Leyva-Pérez, A.; Sabater, M.J. Gold-Catalyzed Carbon−Heteroatom Bond-Forming Reactions. Chem. Rev. 2011, 111, 1657–1712. [Google Scholar] [CrossRef] [PubMed]
- Gorin, D.J.; Toste, F.D. Relativistic Effects in Homogeneous Gold Catalysis. Nature 2007, 446, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Gorin, D.J.; Sherry, B.D.; Toste, F.D. Ligand Effects in Homogeneous Au Catalysis. Chem. Rev. 2008, 108, 3351–3378. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Obradors, C.; Echavarren, A.M. Gold-Catalyzed Rearrangements and Beyond. Acc. Chem. Res. 2014, 47, 902–912. [Google Scholar] [CrossRef]
- Gaillard, S.; Cazin, C.S.J.; Nolan, S.P. N-Heterocyclic Carbene Gold(I) and Copper(I) Complexes in C–H Bond Activation. Acc. Chem. Res. 2012, 45, 778–787. [Google Scholar] [CrossRef]
- Ott, I. On the Medicinal Chemistry of Gold Complexes as Anticancer Drugs. Coord. Chem. Rev. 2009, 253, 1670–1681. [Google Scholar] [CrossRef]
- Zou, T.; Lum, C.T.; Lok, C.-N.; Zhang, J.-J.; Che, C.-M. Chemical Biology of Anticancer Gold(iii) and Gold(i) Complexes. Chem. Soc. Rev. 2015, 44, 8786–8801. [Google Scholar] [CrossRef]
- Mora, M.; Gimeno, M.C.; Visbal, R. Recent Advances in Gold–NHC Complexes with Biological Properties. Chem. Soc. Rev. 2019, 48, 447–462. [Google Scholar] [CrossRef]
- Herrera, R.P.; Gimeno, M.C. Main Avenues in Gold Coordination Chemistry. Chem. Rev. 2021, 121, 8311–8363. [Google Scholar] [CrossRef]
- Sadler, P.J.; Sue, R.E. The Chemistry of Gold Drugs. Metal-Based Drugs 1994, 1, 107–144. [Google Scholar] [CrossRef][Green Version]
- Azharuddin, M.; Zhu, G.H.; Das, D.; Ozgur, E.; Uzun, L.; Turner, A.P.F.; Patra, H.K. A Repertoire of Biomedical Applications of Noble Metal Nanoparticles. Chem. Commun. 2019, 55, 6964–6996. [Google Scholar] [CrossRef] [PubMed]
- Pettenuzzo, N.; Brustolin, L.; Coltri, E.; Gambalunga, A.; Chiara, F.; Trevisan, A.; Biondi, B.; Nardon, C.; Fregona, D. CuII and AuIII Complexes with Glycoconjugated Dithiocarbamato Ligands for Potential Applications in Targeted Chemotherapy. ChemMedChem 2019, 14, 1162–1172. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Gust, R. Metal N-Heterocyclic Carbene Complexes as Potential Antitumor Metallodrugs. Chem. Soc. Rev. 2013, 42, 755–773. [Google Scholar] [CrossRef] [PubMed]
- Stratton, M.; Ramachandran, A.; Camacho, E.J.M.; Patil, S.; Waris, G.; Grice, K.A. Anti-Fibrotic Activity of Gold and Platinum Complexes—Au(I) Compounds as a New Class of Anti-Fibrotic Agents. J. Inorg. Biochem. 2020, 206, 111023. [Google Scholar] [CrossRef]
- Azria, D.; Blanquer, S.; Verdier, J.-M.; Belamie, E. Nanoparticles as Contrast Agents for Brain Nuclear Magnetic Resonance Imaging in Alzheimer’s Disease Diagnosis. J. Mater. Chem. B 2017, 5, 7216–7237. [Google Scholar] [CrossRef]
- Bondžić, A.M.; Janjić, G.V.; Dramićanin, M.D.; Messori, L.; Massai, L.; Parac Vogt, T.N.; Vasić, V.M. Na/K-ATPase as a Target for Anticancer Metal Based Drugs: Insights into Molecular Interactions with Selected Gold(III) Complexes. Metallomics 2017, 9, 292–300. [Google Scholar] [CrossRef]
- Fonseca, C.; Fraqueza, G.; Carabineiro, S.A.C.; Aureliano, M. The Ca2+-ATPase Inhibition Potential of Gold(I, III) Compounds. Inorganics 2020, 8, 49. [Google Scholar] [CrossRef]
- Aikman, B.; Wenzel, M.; Mósca, A.; de Almeida, A.; Klooster, W.; Coles, S.; Soveral, G.; Casini, A. Gold(III) Pyridine-Benzimidazole Complexes as Aquaglyceroporin Inhibitors and Antiproliferative Agents. Inorganics 2018, 6, 123. [Google Scholar] [CrossRef][Green Version]
- Berrocal, M.; Cordoba-Granados, J.J.; Carabineiro, S.A.C.; Gutierrez-Merino, C.; Aureliano, M.; Mata, A.M. Gold Compounds Inhibit the Ca2+-ATPase Activity of Brain PMCA and Human Neuroblastoma SH-SY5Y Cells and Decrease Cell Viability. Metals 2021, 11, 1934. [Google Scholar] [CrossRef]
- Forestier, J. Rheumatoid arthritis and its treatment by gold salts: The results of six years’ experience. J. Lab. Clin. Med. 1935, 20, 827–840. [Google Scholar]
- Abdalbari, F.H.; Telleria, C.M. The Gold Complex Auranofin: New Perspectives for Cancer Therapy. Discov. Oncol. 2021, 12, 42. [Google Scholar] [CrossRef] [PubMed]
- Gamberi, T.; Chiappetta, G.; Fiaschi, T.; Modesti, A.; Sorbi, F.; Magherini, F. Upgrade of an Old Drug: Auranofin in Innovative Cancer Therapies to Overcome Drug Resistance and to Increase Drug Effectiveness. Med. Res. Rev. 2021, 42, 1111–1146. [Google Scholar] [CrossRef] [PubMed]
- Vollenbroek, F.A.; Van den Berg, J.P.; Van der Velden, J.W.A.; Bour, J.J. Phosphorus-31 [Proton] Nuclear Magnetic Resonance Investigation of Gold Cluster Compounds. Inorg. Chem. 1980, 19, 2685–2688. [Google Scholar] [CrossRef]
- Assefa, Z.; McBurnett, B.G.; Staples, R.J.; Fackler, J.P.; Assmann, B.; Angermaier, K.; Schmidbaur, H. Syntheses, Structures, and Spectroscopic Properties of Gold(I) Complexes of 1,3,5-Triaza-7-Phosphaadamantane (TPA). Correlation of the Supramolecular Au.Cntdot. .Cntdot. .Cntdot.Au Interaction and Photoluminescence for the Species (TPA)AuCl and [(TPA-HCl)AuCl]. Inorg. Chem. 1995, 34, 75–83. [Google Scholar]
- Cagno, V.; Gasbarri, M.; Medaglia, C.; Gomes, D.; Clement, S.; Stellacci, F.; Tapparel, C. Sulfonated Nanomaterials with Broad-Spectrum Antiviral Activity Extending beyond Heparan Sulfate-Dependent Viruses. Antimicrob. Agents Chemother. 2020, 64, e02001-20. [Google Scholar] [CrossRef]
- Ershov, A.Y.; Martynenkov, A.A.; Lagoda, I.V.; Kopanitsa, M.A.; Zarubaev, V.V.; Slita, A.V.; Buchkov, E.V.; Panarin, E.F.; Yakimansky, A.V. Gold Glyconanoparticles Based on Aldoses 6-Mercaptohexanoyl Hydrazones and Their Anti-Influenza Activity. Russ. J. Gen. Chem. 2021, 91, 1735–1739. [Google Scholar] [CrossRef]
- Ershov, A.Y.; Martynenkov, A.A.; Lagoda, I.V.; Yakimansky, A.V. Synthesis of 6-Mercaptohexanoylhydrazones of Mono- and Disaccharides as a Potential Glycoligands of Noble Metal Glyconanoparticles. Russ. J. Gen. Chem. 2020, 90, 1863–1868. [Google Scholar] [CrossRef]
- Rothan, H.A.; Stone, S.; Natekar, J.; Kumari, P.; Arora, K.; Kumar, M. The FDA-Approved Gold Drug Auranofin Inhibits Novel Coronavirus (SARS-COV-2) Replication and Attenuates Inflammation in Human Cells. Virology 2020, 547, 7–11. [Google Scholar] [CrossRef]
- Zacheo, A.; Hodek, J.; Witt, D.; Mangiatordi, G.F.; Ong, Q.K.; Kocabiyik, O.; Depalo, N.; Fanizza, E.; Laquintana, V.; Denora, N.; et al. Multi-Sulfonated Ligands on Gold Nanoparticles as Virucidal Antiviral for Dengue Virus. Sci. Rep. 2020, 10, 9052. [Google Scholar] [CrossRef]
- Gil-Moles, M.; Türck, S.; Basu, U.; Pettenuzzo, A.; Bhattacharya, S.; Rajan, A.; Ma, X.; Büssing, R.; Wölker, J.; Burmeister, H.; et al. Metallodrug Profiling against SARS-CoV-2 Target Proteins Identifies Highly Potent Inhibitors of the S/ACE2 Interaction and the Papain-like Protease PLpro. Chem. A Eur. J. 2021, 27, 17928–17940. [Google Scholar] [CrossRef]
- Ouji, M.; Bourgeade-Delmas, S.; Álvarez, F.; Augereau, J.; Valentin, A.; Hemmert, C.; Gornitzka, H.; Benoit-Vical, F. Design, Synthesis and Efficacy of Hybrid Triclosan-Gold Based Molecules on Artemisinin-Resistant Plasmodium Falciparum and Leishmania Infantum Parasites. ChemistrySelect 2020, 5, 619–625. [Google Scholar] [CrossRef]
- Ouji, M.; Barnoin, G.; Fernández Álvarez, Á.; Augereau, J.-M.; Hemmert, C.; Benoit-Vical, F.; Gornitzka, H. Hybrid Gold(I) NHC-Artemether Complexes to Target Falciparum Malaria Parasites. Molecules 2020, 25, 2817. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Pomel, S.; Latre de Late, P.; Taravaud, A.; Loiseau, P.M.; Maes, L.; Cho-Ngwa, F.; Bulman, C.A.; Fischer, C.; Sakanari, J.A.; et al. Repurposing Auranofin and Evaluation of a New Gold(I) Compound for the Search of Treatment of Human and Cattle Parasitic Diseases: From Protozoa to Helminth Infections. Molecules 2020, 25, 5075. [Google Scholar] [CrossRef]
- Koko, W.S.; Jentzsch, J.; Kalie, H.; Schobert, R.; Ersfeld, K.; Al Nasr, I.S.; Khan, T.A.; Biersack, B. Evaluation of the Antiparasitic Activities of Imidazol-2-ylidene–Gold(I) Complexes. Arch. Pharm. 2020, 353, e1900363. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, Y.; Aggarwal, S.; Celaje, J.J.A.; Ihara, S.; Ang, J.; Eremin, D.B.; Land, K.M.; Wrischnik, L.A.; Zhang, L.; Fokin, V.V.; et al. Gold(I) Phosphine Derivatives with Improved Selectivity as Topically Active Drug Leads to Overcome 5-Nitroheterocyclic Drug Resistance in Trichomonas vaginalis. J. Med. Chem. 2021, 64, 6608–6620. [Google Scholar] [CrossRef]
- Tu, X.; Tan, X.; Qi, X.; Huang, A.; Ling, F.; Wang, G. Proteome Interrogation Using Gold Nanoprobes to Identify Targets of Arctigenin in Fish Parasites. J. Nanobiotechnol. 2020, 18, 32. [Google Scholar] [CrossRef][Green Version]
- Minori, K.; Rosa, L.B.; Bonsignore, R.; Casini, A.; Miguel, D.C. Comparing the Antileishmanial Activity of Gold(I) and Gold(III) Compounds in L. amazonensis and L. braziliensis In Vitro. ChemMedChem 2020, 15, 2146–2150. [Google Scholar] [CrossRef]
- Cagno, V.; Andreozzi, M. Broad-Spectrum Non-Toxic Antiviral Nanoparticles with a Virucidal Inhibition Mechanism. Nat. Mater. 2018, 17, 195–203. [Google Scholar] [CrossRef]
- Cagno, V.; Tseligka, E.D.; Jones, S.T.; Tapparel, C. Heparan Sulfate Proteoglycans and Viral Attachment: True Receptors or Adaptation Bias? Viruses 2019, 11, 596. [Google Scholar] [CrossRef][Green Version]
- Jones, S.T.; Cagno, V.; Janeček, M.; Ortiz, D.; Gasilova, N.; Piret, J.; Gasbarri, M.; Constant, D.A.; Han, Y.; Vuković, L.; et al. Modified Cyclodextrins as Broad-Spectrum Antivirals. Sci. Adv. 2020, 6, eaax9318. [Google Scholar] [CrossRef][Green Version]
- Guven, Z.P.; Silva, P.H.J.; Luo, Z.; Cendrowska, U.B.; Gasbarri, M.; Jones, S.T.; Stellacci, F. Synthesis and Characterization of Amphiphilic Gold Nanoparticles. J. Vis. Exp. 2019, 149, 58872. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Paloque, L.; Hemmert, C.; Valentin, A.; Gornitzka, H. Synthesis, Characterization, and Antileishmanial Activities of Gold(I) Complexes Involving Quinoline Functionalized N-Heterocyclic Carbenes. Eur. J. Med. Chem. 2015, 94, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Bourgeade Delmas, S.; Fernández Álvarez, Á.; Valentin, A.; Hemmert, C.; Gornitzka, H. Synthesis, Characterization, and Antileishmanial Activity of Neutral N-Heterocyclic Carbenes Gold(I) Complexes. Eur. J. Med. Chem. 2018, 143, 1635–1643. [Google Scholar] [CrossRef] [PubMed]
- Straimer, J.; Gnädig, N.F.; Stokes, B.H.; Ehrenberger, M.; Crane, A.A.; Fidock, D.A. Plasmodium Falciparum K13 Mutations Differentially Impact Ozonide Susceptibility and Parasite Fitness In Vitro. mBio 2017, 8, e00172-17. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Jortzik, E.; Farhadi, M.; Ahmadi, R.; Tóth, K.; Lohr, J.; Helmke, B.M.; Kehr, S.; Unterberg, A.; Ott, I.; Gust, R.; et al. Antiglioma Activity of GoPI-Sugar, a Novel Gold(I)–Phosphole Inhibitor: Chemical Synthesis, Mechanistic Studies, and Effectiveness In Vivo. Biochim. Biophys. Acta (BBA)-Proteins Proteom. 2014, 1844, 1415–1426. [Google Scholar] [CrossRef] [PubMed]
- Ielo, I.; Rando, G.; Giacobello, F.; Sfameni, S.; Castellano, A.; Galletta, M.; Drommi, D.; Rosace, G.; Plutino, M.R. Synthesis, Chemical–Physical Characterization, and Biomedical Applications of Functional Gold Nanoparticles: A Review. Molecules 2021, 26, 5823. [Google Scholar] [CrossRef] [PubMed]
Viruses/Parasitosis | Gold Compound/Structure | Ref |
---|---|---|
Fibrosis and hepatitis C virus (HCV infection) | Gold complexes: auranofin; sodium aurothiomalate; Ph3PAuCl; (PTA)AuCl; | [24] |
H1N1 | Nanoparticle: gold (Au) core and the ligands mercaptoundecansulfonate (MUS) and 1-octanethiol (OT) | [35] |
H1N1 | Nanoparticles: gold glyconanoparticles | [36,37] |
SARS-CoV-2 | Auranofin | [38] |
Dengue virus | Nanoparticles: gold nanoparticles coated with ω-terminated with sugars bearing multiple sulfonate groups (L-AuNPs) | [39] |
SARS-CoV-2 | Gold(I) complexes with N-heterocyclic carbene (NHC) or gold(III)–dithiocarbamato complexes | [40] |
Plasmonium falciparum and Leishmania infantum | Gold(I) complexes combined with triclosan | [41,42] |
Protozoa and Helminth infections | Gold(I) complex | [43] |
Leishmania major, Toxoplasma gondii and Trypanosoma brucei parasites | Gold(I)–carbene complexes | [44] |
Trichomonas vaginalis | Gold Complexes: gold(I) phosphine derivatives | [45] |
Helmintic | Gold(I) nanoparticles | [46] |
L. amazenensis and L. braziliensis | Gold(I) and gold(III) complexes | [47] |
Parasite | Biological Activity of GoPI-Sugar a |
---|---|
Schistosoma mansoni | [GoPI-sugar] = 5 µM 100% dead in day 1 [GoPI-sugar] = 2.5 µM 100% dead in day 5 |
Brugia pahangi (worms) | [GoPI-sugar] = 10 µM 100% inhibition in day 3 |
Brugia pahangi (worms) | IC50 1.7 µM day 6 |
Onchocerca ochengi (adults) | 100% inhibition motility day 5 |
Tripanossoma b. gambiense (trypomastigotes) | IC50 1.11 µM |
Tripanossoma b. brucei (trypomastigotes) | IC50 1.83 µM |
Tripanossoma cruzi (amastigotes) | IC50 0.56 µM |
Leishmania infantum (amastigotes) | IC50 2.38 µM |
Leishmania donovani (Axenic amastigotes) | IC50 1.45 µM |
Leishmania donovani (intramacrophage amastigotes) | IC50 0.42 µM |
Acanthamoeba castellanii | IC50 13.04 µM |
Parasite | Biological Activity of Cationic Gold(I)-Carbene Complexes with 4,5-Diarylimidazolylidene Ligands a |
---|---|
Tripanossoma gondii | EC50 0.013 µM—Compound a 1 EC50 0.195 µM—Compound d 1 S.I. (Vero/T. gondii) 28.1—Compound a 2 |
Leishmania major promastigotes | EC50 0.31 µM—Compound f 1 EC50 3.11 µM—Compound e 1 |
Leishmania major amastigotes | EC50 0.11 µM—Compound a 1 EC50 0.46 µM—Compound f 1 S.I. (Vero/T. gondii pro) 2.16—Compound d 2 S.I. (Vero/T. gondii amas) 3.321—Compound a 2 |
Tripanossoma b. brucei | IC50 0.000092 µM—Compound a 1 IC50 0.028 µM—Compound c 1 S.I. (HeLa/T. b.brucei) 168—Compound b 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fonseca, C.; Aureliano, M. Biological Activity of Gold Compounds against Viruses and Parasitosis: A Systematic Review. BioChem 2022, 2, 145-159. https://doi.org/10.3390/biochem2020010
Fonseca C, Aureliano M. Biological Activity of Gold Compounds against Viruses and Parasitosis: A Systematic Review. BioChem. 2022; 2(2):145-159. https://doi.org/10.3390/biochem2020010
Chicago/Turabian StyleFonseca, Custódia, and Manuel Aureliano. 2022. "Biological Activity of Gold Compounds against Viruses and Parasitosis: A Systematic Review" BioChem 2, no. 2: 145-159. https://doi.org/10.3390/biochem2020010