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Abstract: Tumor necrosis factor α (TNF-α) induces the nuclear factor κB (NF-κB) signaling pathway
via TNF receptor 1 (TNF-R1). We recently reported that isopanduratin A inhibited the TNF-α-induced
NF-κB signaling pathway in human lung adenocarcinoma A549 cells. In the present study, we found
that isopanduratin A did not inhibit the interleukin-1α-induced NF-κB signaling pathway in A549
cells. Isopanduratin A down-regulated the expression of TNF-R1 in these cells. We also revealed that
isopanduratin A down-regulated the cell surface expression of TNF-R1 by promoting the cleavage of
TNF-R1 into its soluble forms. TAPI-2, an inhibitor of TNF-α-converting enzyme, suppressed the
inhibitory activity of isopanduratin A against the TNF-α-induced activation of NF-κB. The mitogen-
activated protein (MAP) kinase/extracellular signal-regulated kinase (ERK) kinase inhibitor U0126,
but not the p38 MAP kinase inhibitor SB203580, blocked the ectodomain shedding of TNF-R1 induced
by isopanduratin A. Consistent with this result, isopanduratin A induced the rapid phosphorylation
of ERK, but not p38 MAP kinase. Isopanduratin A also promoted the phosphorylation of eukaryotic
initiation factor 2α (eIF2α). The present results indicate that isopanduratin A inhibits TNF-α-induced
NF-κB signaling pathway by promoting ERK-dependent ectodomain shedding of cell surface TNF-R1,
and also decreases cellular TNF-R1 levels through the phosphorylation of eIF2α in A549 cells.

Keywords: isopanduratin A; tumor necrosis factor receptor 1; extracellular signal-regulated kinase;
eukaryotic initiation factor 2α; ectodomain shedding

1. Introduction

Inflammatory cytokines, such as tumor necrosis factor α (TNF-α), are produced
by activated macrophages, and stimulate other types of cells to provoke inflammatory
responses [1]. TNF-α induces intracellular signaling pathways, one of which leads to the
activation of the transcription factor nuclear factor κB (NF-κB) [2,3]. Upon engaging with
TNF-α, TNF receptor 1 (TNF-R1) recruits adaptor proteins to form a membrane-proximal
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complex, which is required for the activation of inhibitor of NF-κB (IκB) kinase [2,3]. IκBα
is associated with NF-κB subunits in the cytosol and is rapidly phosphorylated by IκB
kinase in response to a TNF-α stimulation, leading to its ubiquitination and degradation
by proteasomes [4,5]. NF-κB subunits, typically composed of RelA (also known as p65)
and p50, translocate to the nucleus and activate many of the genes that are essential for
inflammatory responses [6,7].

The metalloproteinase TNF-α-converting enzyme (TACE) (also known as ADAM17)
mediates ectodomain shedding by cleaving the membrane-bound forms of TNF-α to its
soluble forms and plays an essential role under physiological and pathological condi-
tions [8,9]. In addition to TNF-α, TACE is able to cleave other ligands and receptors,
including TNF-R1 [9]. TACE possesses the C-terminal cytoplasmic domain that regulates
the catalytic activity of its extracellular domain [9]. TACE activity is up-regulated via
the phosphorylation of Thr 735 by extracellular signal-regulated kinase (ERK) and p38
mitogen-activated protein (MAP) kinase [10–13]. Particular types of translation inhibitors
(e.g., anisomycin, glutarimides, and triene-ansamycins) induce the activation of ERK and
p38 MAP kinase via a ribotoxic stress response [14,15]. We previously reported that transla-
tion inhibitors (e.g., acetoxycycloheximide, cytotrienin A, deoxynivalenol, and irciniastatin
A) promoted TACE-dependent TNF-R1 ectodomain shedding by activating ERK and p38
MAP kinase [16–21].

Panduratins are characterized by cyclohexene chalcones and belong to a family of
flavonoids [22]. Panduratin derivatives have been reported to exert diverse biological
effects, including anti-cancer and anti-inflammatory activities [22–25]. Isopanduratin A
has been shown to exhibit anti-bacterial activity against Streptococcus mutans and acne-
causing microorganisms [26,27], inhibitory activities toward melanin biosynthesis and
tyrosinase [28], suppressive effects on TNF-α-induced cytotoxicity and aminopeptidase
N [29], and α-glucosidase and pancreatic lipase inhibitory activities [30]. We previously
identified eight new cyclohexene chalcones and seven known compounds, including
isopanduratin A, in the rhizome extracts of Boesenbergia pandurata, a medicinal plant be-
longing to the Zingiberaceae family, as agents that exhibited potent cytotoxic activities in
the human pancreatic cancer line PANC-1 [31]. Consistent with previous findings [32],
we showed that isopanduratin A exhibited anti-cancer activity towards PANC-1 and the
human hepatocellular carcinoma cell line HepG2 [31,33]. In addition to these anti-cancer
activities, we recently reported that isopanduratin A inhibited the TNF-α-induced NF-κB-
dependent signaling pathway in the human lung adenocarcinoma cell line A549 [34]. 4-
Hydroxypanduratin A has also been shown to inhibit the TNF-α-induced NF-κB-dependent
signaling pathway [34]. Consistent with our studies, panduratin A and its derivatives
inhibited the NF-κB signaling pathway in different cell lines [35–38]. However, the molecu-
lar targets of panduratin derivatives in the NF-κB signaling pathway remain unclear. In
the present study, we elucidated the mechanisms by which isopanduratin A inhibited the
TNF-α-induced NF-κB signaling pathway.

2. Materials and Methods
2.1. Cell Culture

A549 cells (JCRB0076) were obtained from the National Institutes of Biomedical
Innovation, Health, and Nutrition JCRB Cell Bank (Osaka, Japan) and maintained in
RPMI 1640 medium (Thermo Fisher Scientific, Waltham, MA, USA) supplemented with
heat-inactivated fetal calf serum (Sigma-Aldrich, St. Louis, MO, USA) and penicillin-
streptomycin mixed solution (Nacalai Tesque, Kyoto, Japan) as previously described [39,40].
RPMI 1640 medium without fetal calf serum was used in experiments to examine the
phosphorylation of ERK, p38 MAP kinase, and c-Jun N-terminal kinase (JNK).

2.2. Reagents

(±)-Isopanduratin A (Figure 1A) was purified from the methanol extract of rhizomes
of B. pandurata as previously described [31]. Deoxynivalenol (Sigma-Aldrich, St. Louis, MO,
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USA), SB253080 (Cayman Chemical, Ann Arbor, MI, USA), SP600125 (Sigma-Aldrich), TNF-
α protease inhibitor-2 (TAPI-2) (Peptide Institute, Osaka, Japan), and U0126 (Wako Pure
Chemical Industries, Osaka, Japan) were commercially obtained. TNF-α and interleukin
(IL)-1α were provided by Dainippon Pharmaceuticals (Osaka, Japan).
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Figure 1. Isopanduratin A inhibited IκBα degradation induced by TNF-α, but not IL-1α. (A) Structure
of isopanduratin A. (B) A549 cells were treated with (+) or without (−) isopanduratin A for 1 h, and
then stimulated with (+) TNF-α (2.5 ng/mL) or IL-1α (0.25 ng/mL) or without cytokines (−) for
15 min in the presence or absence of isopanduratin A (50 µM). Cell lysates were analyzed by Western
blotting. IκBα (%) is shown as the mean ± S.E. of three independent experiments. *** p < 0.001.

2.3. Antibodies

Primary antibodies reactive to β-actin (AC-15; Sigma-Aldrich), γ1-actin (2F3; Wako
Pure Chemical Industries), ERK (137F5; Cell Signaling Technology, Danvers, MA, USA), eu-
karyotic initiation factor 2α (eIF2α) (D7D3; Cell Signaling Technology), FLAG (1E6; Wako
Pure Chemical Industries), glyceraldehyde-3-phosphophate dehydrogenase (GAPDH)
(6C5; Santa Cruz Biotechnology, Dallas, TX, USA), IκBα (25; BD Biosciences, San Jose, CA,
USA), JNK (#9252; Cell Signaling Technology), lamin A/C (E-1; Santa Cruz Biotechnol-
ogy), p38 MAP kinase (#9212; Cell Signaling Technology), phospho-eIF2α (Ser51) (D9G8;
Cell Signaling Technology), phospho-ERK (Thr202/Tyr204) (#9101; Cell Signaling Tech-
nology), phospho-JNK (Thr183/Tyr185) (#9251; Cell Signaling Technology), phospho-p38
MAP kinase (Thr180/Tyr182) (D3F9; Cell Signaling Technology), RelA (C-20; Santa Cruz
Biotechnology), TNF-R1 (H-5; Santa Cruz Biotechnology), TNF-R1 (16803; R&D Systems,
Minneapolis, MN, USA), and the mouse IgG1 isotype control (MOPC-21; BioLegend, Sand
Diego, CA, USA) were used in experiments. γ1-Actin and β-actin were expressed similarly
in A549 cells.

2.4. Western Blotting

Cells were washed with phosphate-buffered saline (PBS) and then lysed with Triton X-
100 lysis buffer containing the protease inhibitor cocktail cOmpleteTM (Sigma-Aldrich) and
phosphatase inhibitor cocktail (Nacalai Tesque). Nuclear and cytoplasmic fractions were
prepared as reported in previous studies [19,41]. Cell lysates were centrifuged (15,300× g,
5 min) and separated into supernatants (cytoplasmic fractions) and pellets. The pellets
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were washed with Triton X-100 lysis buffer, sonicated, and collected as nuclear fractions.
The culture medium was processed to precipitate proteins by chloroform/methanol as
previously described [16,19]. Western blotting was performed according to a previously de-
scribed method [39,40]. Proteins were separated by SDS-polyacrylamide gel electrophoresis
and transferred to nitrocellulose membranes, followed by blocking with skimmed milk.
Membranes were then reacted serially with primary antibodies and peroxidase-conjugated
anti-mouse IgG or anti-rabbit IgG antibodies (Jackson ImmunoResearch, West Grove, PA,
USA), and subjected to a chemiluminescence reaction. Blots were analyzed by Image-
Quant LAS 4000 mini (GE Healthcare Japan, Tokyo, Japan) and Amersham Imager 680 (GE
Healthcare Japan).

2.5. Transfection

The pCR3 expression vector encoding C-terminal FLAG-tagged human full-length TNF-
R1 was previously described [42]. A549 cells were transfected with the pCR3 expression
vector encoding TNF-R1-FLAG by the lipofection method using HilyMax transfection reagent
(Dojindo, Kumamoto, Japan). Transfected A549 cells were then treated with compounds.

2.6. Flow Cytometry

Cells were harvested and then stained with either an anti-TNF-R1 antibody (16803) or an
isotype control antibody (MOPC-21). Cells were washed and stained with a phycoerythrin-
labeled anti-mouse IgG antibody (Jackson ImmunoResearch). Flow cytometric analysis was
performed using FACSCalibur (BD Biosciences) as previously described [43]. Data were
analyzed by FlowJo software (Tomy Digital Biology, Tokyo, Japan).

2.7. Statistical Analysis

Data were analyzed by a one-way ANOVA and Tukey’s post-hoc test for multi-
ple comparisons.

3. Results
3.1. Isopanduratin A Inhibited IκB Degradation Induced by TNF-α, but Not IL-1α

In NF-κB signaling pathways, TNF-α and IL-1α induce the formation of different
membrane-proximal complexes, which converge to activate IκB kinases as the main tar-
get [2,3]. To clarify whether isopanduratin A inhibits the converged NF-κB signaling
pathway, A549 cells were pretreated with isopanduratin A, followed by TNF-α or IL-1α.
Consistent with our previous findings [34], isopanduratin A inhibited IκBα degradation
induced by TNF-α (Figure 1B). By contrast, IκBα degradation induced by IL-1α was not
inhibited by isopanduratin A (Figure 1B). These results indicated that isopanduratin A
selectively inhibited the early NF-κB signaling pathway induced by TNF-α in A549 cells.

3.2. Isopanduratin A Decreased the Expression of TNF-R1

A549 cells have been shown to express TNF-R1, but not TNF-R2 [16]. We investigated
the expression of TNF-R1 at the protein level by Western blotting. The treatment with
isopanduratin A for 1 h markedly decreased bands reactive to the anti-TNF-R1 monoclonal
antibody (clone H-5) in a dose-dependent manner (Figure 2A). Allantopyrone A is a natural
metabolite produced by the endophytic fungus Allantophomopsis lycopodiana KS-97 and
contains two α,β-unsaturated carbonyl moieties [44], which are reactive to cysteinyl thiol
groups. We previously showed that allantopyrone A, which directly bound to TNF-R1,
possibly via cysteine residues, reduced the TNF-R1 reactivity of H-5, which appeared to
decrease TNF-R1 bands on Western blots [42]. To exclude this possibility, we transfected
A549 cells with an expression vector encoding C-terminal FLAG-tagged TNF-R1. Isopan-
duratin A also decreased the expression of TNF-R1-FLAG in a dose-dependent manner
(Figure 2B). Collectively, these results indicated that isopanduratin A reduced the amount
of TNF-R1 in A549 cells.
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Figure 2. Isopanduratin A decreased the amount of TNF-R1. (A) A549 cells were treated with
the indicated concentrations of isopanduratin A for 1 h. Cell lysates were analyzed by Western
blotting. The amount of TNF-R1 in non-treated A549 cells is set to 100%. TNF-R1 (%) is shown as the
mean ± S.E. of three independent experiments. * p < 0.05. (B) A549 cells were transfected with (+)
or without (−) an expression vector encoding TNF-R1-FLAG, and then treated with the indicated
concentrations of isopanduratin A for 1 h. The arrowhead indicates the high molecular weight
band of transfected TNF-R1-FLAG, which may form homotrimers under reducing conditions [42].
TNF-R1-FLAG (%) is shown as the mean ± S.E. of three independent experiments. *** p < 0.001.

3.3. Isopanduratin A Induced the Ectodomain Shedding of TNF-R1

TACE has the ability to cleave membrane-bound TNF-R1, and its soluble form is
released into culture medium [8,9]. The time-course experiment showed that soluble TNF-
R1 was steadily augmented 40–60 min after the exposure to isopanduratin A (Figure 3A).
The amount of membrane-bound TNF-R1 in the cell lysate was conversely decreased
by isopanduratin A (Figure 3A). TAPI-2, N-(R)-[2-(hydroxyaminocarbonyl)methyl]-4-
methypentanoyl-L-t-butyl-alanyl-L-analnine, 2-aminoethyl amide, is a small molecule
inhibitor of TACE. TAPI-2 has been shown to block the TACE-dependent cleavage of
TNF-R1 in A549 cells [16,18–20]. TAPI-2 decreased the augmentation of soluble TNF-R1
in isopanduratin A-treated A549 cells (Figure 3B). In contrast, TAPI-2 did not markedly
restore the decreased amount of membrane-bound TNF-R1 in the cell lysate of isopan-
duratin A-treated cells (Figure 3B). These results indicated that isopanduratin A induced
the TACE-dependent cleavage of membrane-bound TNF-R1 into its soluble form. An
additional TACE-independent mechanism was also suggested to be responsible for the
reduction induced in membrane-bound TNF-R1 in the cell lysate by isopanduratin A.



BioChem 2021, 1 179

BioChem 2021, 1, FOR PEER REVIEW 6 
 

 

dependent cleavage of membrane-bound TNF-R1 into its soluble form. An additional 
TACE-independent mechanism was also suggested to be responsible for the reduction 
induced in membrane-bound TNF-R1 in the cell lysate by isopanduratin A. 

 
Figure 3. Isopanduratin A induced the ectodomain shedding of TNF-R1 by TACE. (A) A549 cells were treated with iso-
panduratin A (30 µM) for the indicated times. (B) A549 cells were pretreated with (+) or without (−) TAPI-2 for 1 h, and 
were then treated with (+) or without (−) isopanduratin A. Final concentrations used: isopanduratin A (50 µM) and TAPI-
2 (25 µM). Cell lysates and culture medium were analyzed by Western blotting. The amount of TNF-R1 was normalized 
to that of γ1-actin. The amounts of soluble TNF-R1 and membrane TNF-R1 in control A549 cells were set to 1-fold and 
100%, respectively. Soluble TNF-R1 (fold) in medium and membrane TNF-R1 (%) in cell lysates are shown as the mean ± 
S.E. of three independent experiments. * p < 0.05, ** p < 0.01, and *** p < 0.001. 

We then evaluated the cell surface expression of TNF-R1 by flow cytometry. In com-
parison with the control (Figure 4(Aa)), isopanduratin A markedly decreased the expres-
sion of cell surface TNF-R1 (Figure 4(Ab)). TAPI-2 alone up-regulated the expression of 
cell surface TNF-R1 (Figure 4(Ac)), suggesting that TNF-R1 was constitutively processed 
by TACE. TAPI-2 reversed the expression of cell surface TNF-R1 in isopanduratin A-
treated A549 cells (Figure 4(Ad)). These results were confirmed by the quantitation of cell 
surface TNF-R1 (Figure 4B). These results clearly indicated that isopanduratin A induced 
the ectodomain shedding of TNF-R1. 

Figure 3. Isopanduratin A induced the ectodomain shedding of TNF-R1 by TACE. (A) A549 cells were treated with
isopanduratin A (30 µM) for the indicated times. (B) A549 cells were pretreated with (+) or without (−) TAPI-2 for 1 h, and
were then treated with (+) or without (−) isopanduratin A. Final concentrations used: isopanduratin A (50 µM) and TAPI-2
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We then evaluated the cell surface expression of TNF-R1 by flow cytometry. In com-
parison with the control (Figure 4Aa), isopanduratin A markedly decreased the expression
of cell surface TNF-R1 (Figure 4Ab). TAPI-2 alone up-regulated the expression of cell sur-
face TNF-R1 (Figure 4Ac), suggesting that TNF-R1 was constitutively processed by TACE.
TAPI-2 reversed the expression of cell surface TNF-R1 in isopanduratin A-treated A549
cells (Figure 4Ad). These results were confirmed by the quantitation of cell surface TNF-R1
(Figure 4B). These results clearly indicated that isopanduratin A induced the ectodomain
shedding of TNF-R1.
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3.4. Isopanduratin A Inhibited the TNF-α-Induced NF-κB Signaling Pathway by Inducing the
Ectodomain Shedding of TNF-R1

Consistent with our previous findings [34], isopanduratin A inhibited the nuclear
translocation of RelA in A549 cells stimulated with TNF-α (Figure 5A, Lanes 3 and 4). The
pretreatment with TAPI-2 markedly suppressed the isopanduratin A-induced inhibition of
the nuclear translocation of RelA (Figure 5A, Lanes 4 and 6). TAPI-2 also restored TNF-
α-induced IκBα degradation in isopanduratin A-treated A549 cells (Figure 5B, Lanes 4
and 6). These results indicated that isopanduratin A inhibited the TNF-α-induced the
NF-κB signaling pathway by inducing the ectodomain shedding of TNF-R1.

3.5. Isopanduratin A Induced the Ectodomain Shedding of TNF-R1 by ERK Activation

The catalytic activity of TACE was previously shown to be activated by the phospho-
rylation of the Thr 735 residue in its cytoplasmic tail by ERK and p38 MAP kinase [10–13].
To elucidate the involvement of ERK and/or p38 MAP kinase, A549 cells were pretreated
with these kinase inhibitors, followed by isopanduratin A. The MAP kinase/ERK kinase
(MEK) inhibitor U0126 diminished the amount of soluble TNF-R1 in the culture medium
of isopanduratin A-treated A549 cells (Figure 6, Lane 3). In contrast, the p38 MAP kinase
inhibitor SB203580 and the JNK inhibitor SP600125 did not markedly affect the augmenta-
tion of soluble TNF-R1 in isopanduratin A-treated A549 cells (Figure 6, Lanes 4 and 5). The
decrease observed in membrane-bound TNF-R1 in the cell lysate by isopanduratin A was
not markedly reversed by U0126 (Figure 6, Lane 3). These results clearly indicated that
isopanduratin A induced the ERK-dependent ectodomain shedding of TNF-R1.
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Figure 5. TAPI-2 reversed the inhibition of the TNF-α-induced NF-κB signaling pathway by isopan-
duratin A. (A,B) A549 cells were treated with (+) or without (−) TAPI-2 for 1 h, then incubated with
(+) or without (−) isopanduratin A for 1 h, followed by a stimulation with (+) or without (−) TNF-α
(2.5 ng/mL) for 15 min (B) and 30 min (A) in the presence or absence of isopanduratin A (50 µM) and
TAPI-2 (25 µM). Cytoplasmic and nuclear fractions were prepared and analyzed by Western blotting.
The amounts of RelA in the nucleus of TNF-α-stimulated A549 cells and RelA in the cytoplasm of
control A549 cells are set to 100%. RelA (%) in the nucleus and RelA (%) in the cytoplasm are shown
as the mean ± S.E. of three independent experiments. The amount of IκBα was normalized to that of
γ1-actin. The amount of IκBα in control A549 cells was set to 100%. IκBα (%) is shown as the mean
± S.E. of three independent experiments. *** p < 0.001.
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kinase, and JNK. Deoxynivalenol, a translation inhibitor, was used as a positive control 
because it was previously shown to promote the phosphorylation of ERK, p38 MAP ki-
nase, and JNK in A549 cells [19,21]. Consistent with these findings, phosphorylated bands 
of ERK, p38 MAP kinase, and JNK were clearly detectable in deoxynivalenol-treated A549 
cells (Figure 7B). In contrast, the phosphorylation of ERK was augmented by isopandu-
ratin A within 20 min and maintained for up to 120 min, while it induced the phosphory-
lation of p38 MAP kinase and JNK and at later time points (Figure 7A). These results in-
dicate that isopanduratin A induced the rapid phosphorylation of ERK. 

Figure 6. U0126 inhibited the ectodomain shedding of TNF-R1 induced by isopanduratin A. A549
cells were treated with or without U0126, SB203580, SP600125, or U0126 plus SB203580 for 1 h, and
incubated with (+) or without (−) isopanduratin A (50 µM) for 1 h in the presence or absence of
U0126, SB203580, SP600125, or U0126 plus SB203580 (each 10 µM). Cell lysates and culture medium
were analyzed by Western blotting. The amount of TNF-R1 in cell lysates was normalized to that
of γ1-actin. The amounts of soluble TNF-R1 in isopanduratin A-treated A549 cells and membrane
TNF-R1 in control A549 cells were set to 100%. Soluble TNF-R1 (%) in medium and membrane
TNF-R1 (%) in cell lysates are shown as the mean ± S.E. of three independent experiments. * p < 0.05
and ** p < 0.01.

3.6. Isopanduratin A Induced the Rapid Phosphorylation of ERK, but Not p38 MAP Kinase or JNK

We investigated whether isopanduratin A induced the activation of ERK, p38 MAP
kinase, and JNK. Deoxynivalenol, a translation inhibitor, was used as a positive control
because it was previously shown to promote the phosphorylation of ERK, p38 MAP kinase,
and JNK in A549 cells [19,21]. Consistent with these findings, phosphorylated bands of
ERK, p38 MAP kinase, and JNK were clearly detectable in deoxynivalenol-treated A549
cells (Figure 7B). In contrast, the phosphorylation of ERK was augmented by isopanduratin
A within 20 min and maintained for up to 120 min, while it induced the phosphorylation
of p38 MAP kinase and JNK and at later time points (Figure 7A). These results indicate
that isopanduratin A induced the rapid phosphorylation of ERK.
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Figure 7. Isopanduratin A induced the rapid phosphorylation of ERK. (A,B) A549 cells were incubated with isopanduratin
A (50 µM) (A) or deoxynivalenol (10 µM) (B) for the indicated times. Cell lysates were analyzed by Western blotting. The
amounts of phospho-ERK, total ERK, phospho-p38 MAP kinase, total p38 MAP kinase, phospho-JNK, and total JNK were
normalized to that of β-actin. The amounts of phospho-ERK, phospho-p38 MAP kinase, and phospho-JNK in control A549
cells are set to 1-fold. The amounts of total ERK, total p38 MAP kinase, and total JNK in control A549 cells are set to 100%.
Phospho-ERK (fold), phospho-p38 MAP kinase (fold) phospho-JNK (fold), total ERK (%), total p38 MAP kinase (%), and
total JNK (%) are shown as the mean ± S.E. of three independent experiments. * p < 0.05, ** p < 0.01, and *** p < 0.001.
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We also investigated the selectivity of protein kinase inhibitors on ERK phosphoryla-
tion. The isopanduratin A-induced phosphorylation of ERK in A549 cells was markedly
reduced by U0126 or U0126 plus SB203580 (Figure 8, Lanes 3 and 6), while it was barely
affected by SB203580 or SP600125 (Figure 8, Lanes 4 and 5). These results confirmed that
U0126 inhibited the isopanduratin A-induced activation of ERK.
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with or without U0126, SB203580, SP600125, or U0126 plus SB203580 for 1 h, and incubated with
(+) or without (−) isopanduratin A (50 µM) for 1 h in the presence or absence of U0126, SB203580,
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phospho-ERK in isopanduratin A-treated A549 cells and total ERK in control A549 cells were set
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experiments. * p < 0.05, ** p < 0.01, and *** p < 0.001.

3.7. Isopanduratin A Promoted eIF2α Phosphorylation

The inhibition of the ectodomain shedding of TNF-R1 by TAPI-2 or U0126 efficiently
rescued the TNF-α-induced NF-κB signaling pathway, while it did not reverse the decrease
in TNF-R1 in isopanduratin A-treated A549 cells (Figures 3B and 6). These data suggested
that TNF-R1 is down-regulated in a manner independent of ectodomain shedding in
isopanduratin A-treated A549 cells. eIF2 plays an essential role in the transport and entry
of Met-tRNAi

Met to the ribosome small subunit during the initiation of translation [45,46].
The initiation step of translation is inhibited by Ser51 phosphorylation of the α subunit
of eIF2 [45,46]. We found that isopanduratin A augmented the phosphorylation of eIF2α
in a dose-dependent manner (Figure 9). In contrast, isopanduratin A did not affect the
cellular level of eIF2α under the same conditions (Figure 9). These results indicated that
isopanduratin A promoted eIF2α phosphorylation.
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Figure 9. Isopanduratin A promoted eIF2α phosphorylation. A549 cells were treated with the
indicated concentrations of isopanduratin A for 1 h. Cell lysates were analyzed by Western blotting.
The amounts of phospho-elF2α and total elF2α were normalized to that of γ1-actin. The amounts of
phospho-eIF2α and total eIF2α are set to 1-fold and 100%, respectively. Phospho-elF2α (fold) and
total eIF2α (%) are shown as the mean ± S.E. of three independent experiments. * p < 0.05, ** p < 0.01,
and *** p < 0.001.

4. Discussion

Panduratin derivatives have been shown to exhibit anti-cancer activity through the
induction of apoptosis and cell cycle arrest [36,47,48]. Panduratin derivatives have also
been reported to exert anti-inflammatory effects [35–38]. Consistent with these findings, we
previously showed that isopanduratin A inhibited TNF-α-induced IκBα phosphorylation
and subsequent degradation at the early NF-κB signaling pathway in A549 cells [34]. The
present results demonstrated that isopanduratin A selectively induced the ectodomain
shedding of TNF-R1 via the ERK-dependent activation of TACE, thereby decreasing the
cell surface expression of TNF-R1. Moreover, we showed that isopanduratin A did not
affect IL-1α-induced IκBα degradation in A549 cells. These results clearly indicated that
the inhibition of the TNF-α-induced NF-κB signaling pathway by isopanduratin A was due
to a decrease in cell surface TNF-R1 expression and subsequent TNF-α unresponsiveness.
Isopanduratin A also reduced the cellular amount of TNF-R1 by preventing translation
via the phosphorylation of eIF2α. A schematic model for the biological activity of isopan-
duratin A on the ectodomain shedding of TNF-R1 and TNF-α-induced NF-κB activation is
shown in Figure 10.

Panduratin A has been reported to inhibit the TNF-α-induced nuclear translocation of
NF-κB subunits (i.e., RelA and p50) in A549 cells [36,37]. Panduratin A and isopanduratin
A were also reported to inhibit TNF-α-induced cytotoxicity in L929 cells [29]. L929 cells
undergo necroptosis in response to TNF-α [49]. In addition, panduratin A suppressed
TNF-α-dependent muscle atrophy in rat skeletal muscle L6 cells [50]. Collectively, these
findings indicated that panduratin A and isopanduratin A inhibited TNF-α-dependent
cellular processes in different cell lines. This is consistent with our present result showing
that isopanduratin A reduced TNF-α responsiveness by promoting the ectodomain shed-
ding of TNF-R1 via TACE activity in A549 cells. TNF-R1 is mostly expressed in normal
and transformed cells [51]. TACE is broadly expressed in various somatic tissues [8,52].
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Therefore, it is conceivable that the cell surface expression of TNF-R1 is broadly regulated
via TACE-dependent ectodomain shedding in various cell types.
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Figure 10. A schematic model for the biological activity of isopanduratin A. TACE plays a critical
role in the ectodomain shedding of TNF-R1, and cleaves cell surface TNF-R1 into its soluble form.
TACE is activated by the phosphorylation of its C-terminal cytoplasmic tail. Isopanduratin A induces
the phosphorylation of ERK and eIF2α. Phosphorylated ERK mediates the phosphorylation and
activation of TACE, which down-regulates cell surface TNF-R1 expression. In contrast, phospho-
rylated eIF2α blocks translation, thereby down-regulating cellular TNF-R1 expression. The NF-κB
heterodimer composed of RelA and p50 is associated with IκBα in the cytosol. Upon engaging with
TNF-α, IκBα is phosphorylated and undergoes ubiquitination and proteasomal degradation, leading
to the liberation and subsequent nuclear translocation of RelA and p50. Isopanduratin A inhibits
TNF-α-induced NF-κB activation by down-regulating cell surface TNF-R1 expression.

We showed that isopanduratin A promoted the ectodomain shedding of cell surface
TNF-R1. Nevertheless, isopanduratin A still decreased the cellular amount of TNF-R1, even
when A549 cells were treated together with TAPI-2 to block the cleavage and subsequent
release of membrane-bound TNF-R1. These results suggested that isopanduratin A reduced
the de novo protein synthesis of TNF-R1. The phosphorylation of eIF2α at Ser51 is well
known to prevent a step in the initiation of translation and thereby block global protein
synthesis [45,46]. eIF2α was phosphorylated in response to various cellular stresses [53,54].
We found that isopanduratin A up-regulated the level of phospho-eIF2α (Ser 51) within 1 h.
Consistent with this, panduratin A has also been reported to up-regulate phospho-eIF2α
(Ser51) in human malignant melanoma A375 cells for 24 h [55]. Therefore, panduratin
derivatives appear to up-regulate eIF2α phosphorylation at least in different cell lines;
however, their kinetics may differ between their structures and the cell types used.

Several translation inhibitors have the ability to induce the activation of MAP kinase
superfamily members via a ribotoxic stress response mediated by ribosomes [14,15,56,57].
Among MAP kinase superfamily members, ERK and p38 MAP kinase phosphorylate the
Thr 735 residue of TACE and activate its catalytic activity [10–13]. We previously showed
that the ectodomain shedding of TNF-R1 was induced by acetoxycycloheximide, cytotrienin
A, deoxynivalenol, and irciniastatin A [16–21]. We previously reported that the ectodomain
shedding of TNF-R1 induced by three translation inhibitors (i.e., acetoxycycloheximide,
cytotrienin A, or deoxynivalenol) was decreased to some extent by a single treatment with
U0126 or SB203580, but was completely inhibited by a combined treatment of U0126 and
SB203580 in A549 cells [17–19]. These studies reveal that ERK and p38 MAP kinase both
play essential roles in the TACE-dependent TNF-R1 ectodomain shedding induced by
those translation inhibitors in A549 cells. In contrast, the ectodomain shedding of TNF-R1
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induced by irciniastatin A was inhibited by U0126, but not by SB203580, largely due to
the fact that irciniastatin A induced activation of ERK, but not p38 MAP kinase in A549
cells [21]. These findings indicate that irciniastatin A uniquely induces TNF-R1 ectodomain
shedding in a manner that is solely dependent on ERK. In this study, we showed that
isopanduratin A promoted the ectodomain shedding of TNF-R1, which was sensitive to
U0126, but not SB203580. Isopanduratin A induced the rapid activation of ERK, but not
p38 MAP kinase. Thus, our present study reveals that isopanduratin A promotes the
ERK-dependent ectodomain shedding of TNF-R1 and thereby inhibits the TNF-α-induced
signaling pathway in A549 cells.

5. Conclusions

In conclusion, we revealed that isopanduratin A promoted the ectodomain shedding
of TNF-R1 via the ERK-dependent activation of TACE. Moreover, isopanduratin A rapidly
up-regulated the phosphorylation of eIF2α (Ser51). To date, panduratin derivatives have
been shown to exert various biological effects, such as anti-cancer and anti-inflammatory
activities. The present results showing that isopanduratin A is linked to ERK and eIF2α
kinase provide insights into the mechanisms of actions of panduratin derivatives on various
cellular activities.
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