
Citation: Piñana, J.L.; Guerreiro, M.;

Solano, C. SARS-CoV-2 Immunity in

Hematopoietic Stem Cell Transplant

and Cell Therapy Recipients: What

Do We Know, and What Remains to

Be Determined? Hemato 2023, 4,

170–183. https://doi.org/10.3390/

hemato4020014

Academic Editor: Francesco Onida

Received: 30 March 2023

Revised: 7 May 2023

Accepted: 24 May 2023

Published: 26 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Review

SARS-CoV-2 Immunity in Hematopoietic Stem Cell Transplant
and Cell Therapy Recipients: What Do We Know, and What
Remains to Be Determined?
José Luis Piñana 1,2,*, Manuel Guerreiro 3 and Carlos Solano 1,2

1 Hematology Department, Hospital Clínico Universitario de Valencia, 46017 Valencia, Spain
2 Fundación INCLIVA, Instituto de Investigación Sanitaria, Hospital Clínico Universitario de Valencia,

46017 Valencia, Spain
3 Hematology Department, Hospital Universitario y Politécnico La Fe, 46011 Valencia, Spain
* Correspondence: jlpinana@gmail.com; Tel.: +34-963-862-625; Fax: +34-963-987-820

Abstract: Hematopoietic stem cell transplantation (HSCT) results in profound immunosuppression
for the first few months after the procedure, requiring patients to be revaccinated against childhood
vaccine-preventable infectious diseases. Patients who undergo allo-HSCT are at high risk of bacterial,
fungal, and viral infections, with infectious complications responsible for at least one third of deaths.
Even before the COVID-19 pandemic, respiratory virus infections were known to be more severe in
HSCT recipients. The pandemic has highlighted the vulnerability of HSCT recipients, who experience
an increased risk of morbidity and mortality after COVID-19 compared with healthy populations
due to their severe immunodeficiency status. However, the current pandemic has also provided an
exceptional scenario to better understand the immune response to SARS-CoV-2 cases and mRNA
vaccines in HSCT recipients, including those receiving CD19-directed chimeric antigen receptor T
cell (CAR-T) therapy. Researchers have focused on the role of the immune system in protecting
against severe SARS-CoV-2 in patients with hematologic malignancies, including HSCT recipients.
Insights gained during the pandemic will likely soon be used to improve preventive strategies in this
population against viral infections in the near future. This narrative review summarizes the current
knowledge on SARS-CoV-2 immunity in HSCT and cell therapy recipients following SARS-CoV-2
cases or vaccination.

Keywords: mRNA vaccine; SARS-CoV-2 vaccines; allogeneic stem cell transplantation; autologous stem
cell transplantation; CAR-T cell; COVID-19; GvHD; Moderna mRNA-1273; Pfizer-BioNTech BNT162b2

1. Introduction

Recipients of hematopoietic stem cell transplantation (HSCT) experience profound
cellular and humoral immunosuppression during the first few months after the procedure
due to a reset of their immune systems caused by administrating a conditioning regimen,
naïve hematopoietic stem cell infusion, and immunosuppressant drugs. For this reason,
these patients need to be revaccinated against most childhood vaccine-preventable infec-
tious diseases, usually starting three months after autologous stem cell transplantation
(ASCT), six months after allogeneic stem cell transplantation (allo-HSCT) [1], and even later
in the case of moderate-to-severe graft-versus-host disease (GvHD). Allo-HSCT is consid-
ered one of the most immunosuppressive procedures in modern medicine, with bacterial,
fungal, and viral infectious complications responsible for at least one third of deaths [2].
Indeed, even before the ongoing pandemic, we knew that community-acquired respiratory
virus infections are more severe in these patients, particularly in older patients, those who
recently underwent a transplant, those with hypogammaglobulinemia or lymphopenia, or
those taking immunosuppressant drugs to prevent or treat moderate-to-severe GvHD [3,4].
The outbreak of the severe acute respiratory syndrome coronavirus (SARS-CoV-2) disease
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(COVID-19) pandemic has confirmed the vulnerability of these patients in terms of in-
creased morbidity and mortality compared with patients with solid tumors or healthy
populations, which is obviously linked to their severe immunodeficiency status [5,6]. How-
ever, the enduring COVID-19 pandemic has provided an exceptional opportunity to better
understand the humoral and cellular immune response in HSCT recipients. Researchers
have focused on investigating the effectiveness of the immune system in protecting against
SARS-CoV-2 in patients with hematologic malignancies, including those receiving allo-
HSCT, ASCT, and CD19-directed chimeric antigen receptor T cell (CAR-T) therapy. These
patients are particularly vulnerable due to their profound immune dysfunction and pro-
longed timeline for immune reconstitution. The insights gained during the pandemic are
likely soon to be used to improve preventive strategies in this population. In this review,
we outline the state of the art (summarized in Table 1) on SARS-CoV-2 immunity in HSCT
recipients following contraction of the virus and vaccination.

Table 1. Summary of immunosuppressive conditions influencing seroconversion, antibody waning,
specific T-cell response, and breakthrough SARS-CoV-2 cases.

Clinical
Context

Low Antibody
Production Antibody Decline Lower Celullar

Immunity Lower Severity Breakthrough Infection

N
at

ur
al

In
fe

ct
io

n - HM patients [7–9]
- Chemotherapy [10,11]
- Anti-CD20 [10,11]
- CAR-T recipients

[10,11]
- HSCT recipients [10,11]
- - Low ALC [12]

- No data
available

- HM patients
[13]

- Low CD4 [13]
- Low NK cell

count [13]

- No data
available - No data available

Fu
ll

m
R

N
A

V
ac

ci
na

ti
on

- HM patients [14,15]
- HSCT recipients [14]
- Older age [16,17]
- Lymphopenia < 1 ×

109/mL [16,17]
- Active GvHD [16,17]
- Corticosteroids [16,17]
- HSCT < 1 year [16–18]
- Alternative donors

[16,19]
- NHL after ASCT [16]
- Corticosteroids after

ASCT [16]
- No prior COVID-19

[20,21]

- 3 mos after full
vaccination
[22]

- Non-hybrid
immunity [22]

- Low ALC [23]
-

Immunosuppressive
drugs [23]

- No
seroconvertion
[24]

- No booster
[19,25]

-
Immunosuppressive
drugs [26]

- Low CD3 [26]
- Low CD4+ [26]
- Active GvHD

[26]

- Higher CD8+
counts [27]

- Full
vaccination
[21,28]

- Omicron VOC
[29]

- Higher Ab
titers [22,29]

- Corticosteroids [22]
-

Immunosuppressive
drugs [22]

- Myeloablative
conditioning [22]

- Lower Ab titers
[22,29]

- Non-hybrid
Immunity [20,29]

Abbreviations: HM = hematological malignancy; CAR-T = chimeric antigen receptor T cell ther-
apy; HSCT = hematopoietic stem cell transplantation; ALC = absolute lymphocyte count; mL = mililiter;
GvHD = graft-versus-host disease; NHL = non-Hodgkin’s lymphoma; ASCT = autologous stem cell transplan-
tation; mos = months.

2. Methods

For this narrative review, the PubMed, WHO COVID-19 repository, and Google Scholar
databases were searched for publications available through 15 January 2022. The search
terms included the following: “allogeneic stem cell transplantation* or autologous stem
cell transplantation*”, “COVID-19 or SARS-CoV-2”, “Specific T cell response*”, “SARS-
CoV-2 immunity”, “Breakthrough COVID-19” “humoral immunity”, “vaccine*”, “cellular
immunity”, and “mRNA vaccine”. Additional studies were identified through review of
the reference lists of the included studies. Both authors participated in study identification,
screening, and data extraction, and all included studies were reviewed by the three authors.
Studies reporting exclusively on children were excluded.
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3. Cellular and Humoral Immune Response after COVID-19
3.1. Humoral Response

Immunocompromised patients, particularly HSCT recipients, have been well docu-
mented to experience higher mortality after COVID-19, ranging from 18% to 33% [6,30–32].
The crucial role of innate and adaptive immunity in controlling and clearing SARS-CoV-2
cases and determining disease severity was acknowledged early. It was observed that
hematological patients at a higher risk of mortality had a lower rate of seroconversion
of anti-SARS-CoV-2 reactive antibodies (SARS-CoV-2-RA) after contracting COVID-19,
with seroconversion rates ranging from 50% to 80%. This contrasted with solid tumor
patients and healthy individuals, who had a seroconversion rate exceeding 90% [7–9]. The
seroconversion rate was even lower in those receiving chemoimmunotherapy, anti-CD-20
therapy, chimeric antigen receptor (CAR)-T cell therapy, or HSCT [10,11]. Another key
observation was the antibody level waning after COVID-19, which could have hindered
antibody-mediated protection against SARS-CoV-2 re-infection [8], despite instances of an-
tibody responses lasting more than 6 months after COVID-19 [13]. Although a considerable
proportion of HSCT recipients can mount an immune response after infection, the absolute
lymphocyte count (ALC) at the time of infection was negatively correlated with antibody
production [12].

3.2. Cellular Response
3.2.1. Lymphocytopenia

Lymphopenia during COVID-19 was a common phenomenon in the general popula-
tion. This indicates that SARS-CoV-2 infection impairs lymphocyte proliferation, increases
apoptosis, and causes lymphocyte migration into tissues [33]. Lymphopenia has been
linked to a more severe disease course and higher mortality rates in multiple studies [34,35],
and it was also observed in HSCT recipients [30]. Given the immunocompromised state
of HSCT recipients and the significant impact of viral infections on post-transplantation
immune reconstitution, it is crucial to understand how the adaptive immune response
works in COVID-19 patients who have undergone HSCT [36–40]. SARS-CoV-2 infection
does not specifically target an immune lymphocyte subset; rather, it leads to a marked re-
duction across lymphocyte populations [41–44]. In healthy populations, cellular immunity
during COVID-19 starts from the NK cells through cytokine production (mainly IL-6) and
the direct lysis of infected cells, followed by CD8+ T cell destruction of infected cells and
CD4+ T cells stimulating B cells to produce antibodies [45]. However, subtle differences are
present in baseline lymphocytopenia HSCT recipients. Phenotypic evaluation of 20 patients
without HSCT who recovered from COVID-19 revealed a slight increase in the CD3 T cell
percentage, with a reduction in CD19 B cells compared with the controls with no COVID-19
cases [46]. Lymphocytopenia is a prevalent condition among HSCT recipients, particularly
during the early transplant phase. However, the 25 HSCT recipients testing positive for
SARS-CoV-2 exhibited a further reduction in the absolute lymphocyte count (ALC) com-
pared with their pre-COVID-19 baseline within a week of diagnosis [47]. This lymphocyte
reduction involved all subsets, particularly a trend in the CD4/CD8 ratio toward a relative
increase in CD4+ T cells (predominantly effector memory cells), while the CD8+ T cells
showed a T-cell effector memory (CCR7–CD45RA+) phenotype. This data may reflect that
the more severe lymphopenia observed in HSCT patients after primoinfection could be
driven by higher senescence of the terminally differentiated CD8+ T cells in the context of
lower baseline lymphopoiesis and maturation after transplantation.

3.2.2. Virus-Specific T Cell Response

Despite lymphopenia, long-lasting SARS-CoV-2-specific T cell responses were ob-
served early on in immunocompromised patients after primary infection, albeit at a lower
rate than in the healthy controls [13]. The magnitude of long-lived SARS-CoV-2-specific
T-cell responses correlated significantly with the number of CD4+ T cells and natural killer
(NK) cells [13]. The importance of developing a specific T-cell response, particularly in
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the setting of impaired humoral immunity, was demonstrated in two cohorts of adults
with hematologic malignancy, where higher CD8+ T cell counts were associated with
improved overall survival, even when some patients did not develop SARS-CoV-2-RA.
These facts suggest that specific CD8+ T cells likely compensate for a deficient humoral
response and may influence clinical recovery after COVID-19 [27]. Although a specific
T cell response could be generated in most patients, it would not develop in all HSCT
recipients. In the HSCT population, prolonged SARS-CoV-2 shedding has been well docu-
mented [6,48]. The primary factors contributing to prolonged viral shedding are closely
associated with compromised B or T cell function, resulting from chemotherapeutic agents
used before transplantation or the conditioning regimen, in addition to immunosuppres-
sive medications prescribed to prevent or treat graft-vs-host disease (GvHD). Among
immunochemotherapy agents, CD-20 monoclonal antibodies (i.e., rituximab) have been
associated with prolonged (more than 3 weeks) asymptomatic shedding [49]. While pro-
longed fragment RNA shedding is often from non-viable viruses in healthy patients, HSCT
recipients could shed viable SARS-CoV-2 for several months after initial infection [50] and
even develop clinical relapse with the same or evolved strain types, as reported in other
immunocompromised patients [51,52]. This issue is of the utmost importance as it raises
concerns related to the risk of community and health care facility transmissibility, delaying
both regular clinical monitoring and the initiation of other immunosuppressive treatments.

In conclusion, most unvaccinated cell therapy recipients demonstrated both humoral
and cellular responses after SARS-CoV-2 primoinfection, but these responses were less
robust than in the healthy population, due to immunosuppression-related impaired baseline
immune function. This lower level of immunity translated into more severe and recurrent
disease, as well as longer viral shedding, highlighting the importance of prioritizing
research on prophylactic and therapeutic strategies in this vulnerable population in future
pandemics (see Figure 1).
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Figure 1. Graphical representation of viral load, absolute lymphocyte count and antibody response
in hematopoietic transplant recipients compared to healthy population.

4. Serological Response to Full (Two-Dose) mRNA SARS-CoV-2 Vaccination

The availability of different SARS-CoV-2 vaccines by late 2020 highly impacted the
course of the pandemic in terms of reduced severity and mortality. New mRNA-based
vaccines demonstrated higher immunogenicity than adenoviral vector-based vaccines
in the general population [53], providing the rationale for offering these compounds
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to immunosuppressed patients worldwide. In fact, more than 80% of hematological
malignancy patients received mRNA vaccines in most series [14]. Therefore, this review
focuses only on available data on mRNA compounds.

Numerous immunoassays allowing quantitative assessment of SARS-CoV-2-S binding
antibodies have been marketed, with potential differences in analytical design, performance
characteristics, the immunoglobulin class measured, and the type of SARS-CoV-2 antigen
to which the target antibodies are directed (i.e., receptor-binding domain (RBD), with the S
protein in its trimeric conformation, or the S1 or S2 subunits). Although immunoassays
may return discordant qualitative or quantitative results (the latter occurring despite
calibration to the first WHO SARS-CoV-2 antibody international standard), many tests tend
to correlate in terms of antibody levels measured. Taking this limitation into consideration,
several early studies (employing different immunoassays) confirmed the initial hypothesis
of lower SARS-CoV-2-RA seroconversion rates after full vaccination in hematological
malignancy patients (including HSCT recipients) compared with the healthy controls [14]
or even solid tumor patients [15]. Note that the seroconversion rate (>70%) in HSCT
recipients [16,17,54–56] largely exceeds prior experiences with common antigen-based
vaccines (i.e., the conjugate pneumococcal vaccine, influenza vaccine, or hepatitis B virus
vaccines), which showed at most 50% immunogenicity [57,58]. This fact highlights an
improved immunogenicity with mRNA-based compounds in this population, which should
pave the way for future research on mRNA-based vaccines against other relevant pathogens
that increase morbidity and mortality in these immunocompromised patients.

Identifying conditions associated with impaired immunogenicity is crucial to improve
antibody response by customizing the current vaccine schedules in this population. In allo-
HSCT recipients, older age, lymphopenia < 1 × 109/L, active GvHD, corticosteroids use,
ongoing immunosuppressant drugs, or vaccination within the first year of a transplant were
associated with lower seroconversion rates [16,17]. In addition, recipients allografted from
alternative donors (unrelated donor or human leukocyte antigen (HLA) haploidentical
donors) showed lower antibody levels after full vaccination, emphasizing the role of
HLA matching in antigen recognition and efficient antibody production [16,19]. In the
ASCT setting, non-Hodgkin’s lymphoma (NHL) and active corticosteroid therapy were
associated with lower seroconversion rates [16]. It is likely that recipients harboring these
conditions may require early booster or different vaccination schedules with higher or
additional doses.

An important factor in the serological response to vaccination in the allo-HSCT setting
includes a potential clinical benefit through adoptive transfer of specific SARS-CoV-2 im-
mune memory function from a vaccinated stem cell donor to a recipient [59]. However, the
limited data preclude the possibility of recommending an extra vaccine dose administration
to volunteer donors before HSC donation. Nonetheless, the time from transplant to vacci-
nation is likely more important than the donor’s vaccination status. Immune recovery after
transplantation has been demonstrated to correlate with the humoral immune response
to vaccination [18]. Although ASTCT and EBMT guidelines suggest delaying COVID-19
vaccination until at least three months after allogeneic or autologous HSCT [60,61], the
optimal timing and schedule of COVID-19 vaccination after these types of transplantation
remain to be redefined and should be tailored according to the conditions influencing
vaccine responses.

In summary, mRNA compounds have been proven to be highly immunogenic, even
in the early phase of HSCT. The factors influencing humoral immunogenicity should be
identified to further recommend boosters or monoclonal anti-SARS-CoV-2 antibodies with
neutralizing activity against the circulant strain to prevent severe COVID-19.

5. Antibody Waning after Full Vaccination and the Booster Effect

Although both natural infections and mRNA-based vaccinations produce a satisfactory
humoral immunogenicity, current thinking is that antibody titers will invariably wane over
time, which in turn could be associated with a significant loss of protection and increased
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probability of future infections [62]. This has been analyzed in the HSCT setting, and as
in the general population [63,64], antibody waning was detected as early as three months
after full vaccination [22,65], which formed the basis for booster vaccine guidance in these
patients. Antibody waning was common in all cell therapy procedures, although subtle dif-
ferences should be taken into account according to post-transplant treatment requirements,
donor type, HLA matching, and immunosuppression factors [22]. In this regard, antibody
waning is more pronounced in allo-HSCT recipients under immunosuppressive drugs
and with low lymphocyte counts in the peripheral blood at the time of vaccination [23].
Identifying the factors associated with faster antibody decay is of the utmost importance to
tailor booster dose administration. An additional issue concerns SARS-CoV-2′s evolution
through different variants of concern (VOCs) able to evade the neutralization activity of
vaccine-induced SARS-CoV-2-RA, even when the higher antibody levels after a booster
vaccine still remain [66]. As with influenza virus vaccines, mRNA vaccines should be
updated yearly, in line with current circulating VOCs.

Diverse studies have analyzed the effect of a booster vaccine dose in cell therapy
procedures. A booster dose was able to increase the antibody levels in all cell therapy
scenarios, reaching antibody levels even higher than those observed at 3–6 weeks after
full vaccination [22]. Boosters were able to achieve comparable antibody titers in allo-
HSCT recipients with different donor types [22]. In addition, a significant proportion
(>50%) of poor responders after a two-dose mRNA vaccination achieved adequate antibody
levels after the booster [17,19,22,59,67]. However, this rate was clearly inferior in the
poorly responding CAR T cell therapy recipients experiencing long-lasting B cell aplasia
(from 0% to 24%) [22,68]. A heterologous vaccination regimen combining mRNA and an
adenoviral-vectored vaccine led to a serological response in 31% of hemato-oncological
patients who failed to respond after a previous double dose of an mRNA vaccine [69].
The effect and durability of the SARS-CoV-2-RA titers through a natural booster delivered
by a breakthrough SARS-CoV-2 infection remain to be determined in HSCT. A graphical
representation of serological response in pre-vaccination COVID-19 and non-infected and
booster effect in antibody titers in HSCT recipients and healthy population is provided in
Figure 2.
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Antibody decline was observed in the first three months after full vaccination.
Poorly responding HSCT recipients could benefit from a booster dose, yet the booster
benefit is debatable in poorly responding CAR T therapy recipients and may require a
different approach.

6. SARS-CoV-2-Specific T Cell Response after Full Vaccination and a Booster

Regarding specific T cell response rates, HSCT recipients showed a specific T cell
response in 19–82.3% of cases [26,54,70,71]. The conditions associated with a lower specific
T cell response included active GvHD, the need for immunosuppressant drugs, and low
CD3+ and CD4+ counts [26]. In a cohort of 46 allo-HSCT patients, a strong response of
specific anti-SARS-CoV-2-CD4+ T cells was observed after a two-dose mRNA vaccine in 89%
of the serological responders and 40% of non-responders, associated with a predominant
IFN or TNF + cytokine profile assessed by intracellular staining of stimulated T cells and in
85% through the detection of IFN-secreting cells upon stimulation with SARS-CoV-2 spike
peptides [24]. A study evaluating T cell responses in 17 allo-HSCT patients found a CD4+ T
cell response in 29.4% of patients after one dose and 70.6% after two doses, whereas a CD8+
T cell response was seen in 17.6% after one dose and 52.3% after two doses [71]. These
rates increased up to 80% in 20 allo-HSCT recipients after one booster dose. Although the
proportion of patients with specific T cells did not vary significantly between the second
and third doses, an increase in antigen-specific, cell-mediated immunity was observed after
the third dose, notably in IL-2 monofunctional and polyfunctional CD4+ T cells [19]. With
two boosters (four vaccine doses), specific T cell frequencies became comparable between
HSCT recipients and one boosted healthy control cohort, suggesting a potential benefit of a
second booster [25]. Specific T cells against SARS-CoV-2 persisted more than six months
after the booster and were similar to those of the healthy controls [72,73]. Specific CD4+ T
cells predominated late after vaccination, whereas specific CD8+ T cells were more evident
earlier after the booster. This is consistent with the activation of cytotoxic effector cells, with
a shorter persistence and recall for the CD4+ memory T cells in subjects further away from
the last challenge. A positive CD4+ T cell response was observed in 55–80% of allo-HSCT
recipients, while the frequencies of CD4+ polyfunctional T cells increased significantly after
the third dose [19].

Specific T cell responses after SARS-CoV-2 vaccination were frequently observed in cell
therapy recipients, even in those who did not seroconvert after full vaccination. Preliminary
data suggest that a CD8+ T cell response was observed early after vaccination, whereas a
CD4+ T cell response was more evident later on. The relationship between the levels of
T cell subset responses (CD4+ and CD8+), viral clearance kinetics, and asymptomatic or
symptomatic SARS-CoV-2 infection remain to be analyzed. Likewise, the HLA hierarchy
determining which SARS-CoV-2 epitopes efficiently trigger specific CD8+ and CD4+ T cell
responses is still unclear [74]. Furthermore, potential SARS-CoV-2 T cell cross-reactivity
(likely related to a prior seasonal coronavirus) might confound analysis of the simple
relationship between vaccine response and protection. Another critical aspect is the applica-
bility and reliability of novel methods providing rapid estimation of the quantity, diversity,
and function of SARS-CoV-2-specific T cells [75,76].

7. Clinical Efficacy and Immune Determination of Breakthrough
SARS-CoV-2 Infections

Encouraging preliminary data suggest that SARS-CoV-2 vaccination has played a
major role in reducing the severity of breakthrough COVID-19 in these immunocompro-
mised patients, with mortality dropping to 12% in retrospective case-registry series during
the alpha VOC [77] or to less than 5% before the Omicron period [20,78] and notably to
<2% during Omicron [29]. Similarly, the rate of asymptomatic SARS-CoV-2 infection has
increased from 8% during the ancestral SARS-CoV-2 strain waves [30] to nearly 50% after
mass vaccination [20,29]. Although the first generation of SARS-CoV-2 vaccines failed
to prevent SARS-CoV-2 community transmission, protection against severe disease still
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remained high [28]. In fact, the estimated one-year cumulative incidence of breakthrough
SARS-CoV-2 infections after full vaccination was 18% in a Spanish prospective cohort
including more than 1500 patients with different hematological disorders prospectively
followed for development of breakthrough infections [29]. This series included more than
500 HSCT recipients, whose one-year cumulative incidence of breakthrough infections
was 15%, with no reported deaths among these 72 breakthrough cases [22,29]. These epi-
demiological data suggest that despite vaccination and boosters, HSCT recipients are likely
contract COVID-19 several times over the following years. In fact, administrating booster
doses did not result in a reduction in breakthrough infections [29]. The risk factors for a
higher breakthrough infection incidence included the use of corticosteroids or immunosup-
pressive drugs without corticosteroids and myeloablative intensity conditioning [22]. It is
of note that the antibody titers were positively correlated with the risk of a breakthrough
infection and its severity, a finding not limited to the early (3–6 weeks after full vaccination)
period [20] but also present when the antibodies were determined at later timepoints [29].
In this large series, a cutoff of 250 binding antibody units (BAUs)/mL of SARS-CoV-2-RA
was predictive of severe COVID-19 and mortality. No patients died when the antibody
levels were above this threshold [20,29], supporting current worldwide health authority
policies focused on boosters in immunocompromised patients.

The mortality rate in hematological malignancy patients has declined due to mass
vaccination, viral evolution with less virulent VOCs, and advances in detection, supportive
care, and treatment. Nonetheless, immunosuppressed patients have a higher incidence of
breakthrough infections after vaccination. Although not routine, serological monitoring
should guide booster doses and prophylactic strategies. The effect of a specific T cell
response on the risk of breakthrough SARS-CoV-2 infections in this population remains to
be determined.

8. Hybrid Immunity (Vaccines and Natural Infections)

In healthy patients, hybrid immunity (conferred from both natural infections and
vaccination) induces serum-binding and neutralizing antibody responses that are markedly
more potent, durable, and resilient to the spike mutations observed in different SARS-CoV-2
variants than those of subjects who received only two vaccine doses [28,79–81]. Indirect
data suggest that this could also be the case in hematological malignancy patients. In
fact, hematological patients (including HSCT recipients) fully vaccinated after COVID-19
showed higher seroconversion rates in multivariate analysis [16] and higher antibody titers
compared with SARS-CoV-2-naïve fully vaccinated patients [20], irrespective of current
or past treatments, disease type and status, or the ALC at the time of vaccination, as
well as better serological response after having COVID-19 [21]. Additionally, those with
pre-vaccination COVID-19 showed a trend to a lower incidence of breakthrough cases [29].

As in the general population, the duration of hybrid humoral immunity indicates
longer stability in the antibody titers (at least for six months after complete vaccination),
suggesting that this group may not require an additional vaccine dose or at least not as
early as those vaccinated without a prior SARS-CoV-2 case [22]. There are no available data
on SARS-CoV-2-RA waning when a SARS-CoV-2 case occurs after vaccination, although
similar behavior could be expected.

9. Adoptive Transfer of Specific T Cells against SARS-CoV-2

Adaptive and innate immune responses are essential for SARS-CoV-2 control and
clearance. The viral phase of COVID-19 is higher and longer in immunocompromised pa-
tients than in the general population [82], emphasizing the central role of cellular immunity.
Interestingly, the counts of all T cell subsets recovered dramatically in most patients who
cleared the virus, in contrast to those with persistent SARS-CoV-2 shedding [83,84].

Consistent with the increasing use of cell therapy, several research groups have focused
their efforts on restoring virus-specific T cell immunity through the transfer of adoptive
immune cell therapy [85,86]. Clinical-grade SARS-CoV-2-specific T cells may be generated
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by stimulation with SARS-CoV-e peptides (MACS GMP PepTivator SARS-CoV-2) and
fast selection using CliniMACS Prodigy and the CliniMACS Cytokine Capture System
(IFN-gamma) [87,88]. Specific T cells can also be expanded in vitro from recovered healthy
donors [89]. In order to reduce the alloreactivity, central memory, and effector memory,
T cell subsets containing SARS-CoV-2-specific T cells may be the preferred option. More
sophisticated approaches have been explored, such as CRISPR-Cas9 gene editing of cyto-
toxic T lymphocytes (CTLs) to obtain tacrolimus-resistant SARS-CoV-2-specific T cells and
glucocorticoid resistance in SARS-CoV-2 CTLs [90,91]. Recent data have shown that the
large-scale clinical cell isolation, production, and biobank of CD45RA- T cell-containing
SARS-CoV-2 IFN-g+ T cells using a CliniMACS Plus device was feasible, cheap, and safe,
with a balanced immune response, accelerated lymphocyte cell recovery, and decreased
proinflammatory parameters [85,86,92].

10. Future Directions

One of the most critical lessons learned from this pandemic is the urgent need to
prioritize prophylactic and therapeutic research at early stages of the pandemic to protect
these vulnerable populations. Moving forward, there is an urgent need to examine the
epidemiology and consequences of contracting SARS-CoV-2 in HSCT recipients in the
Omicron era. This requires exploring methods to evaluate specific T cell immunity and
its role in protecting HSCT recipients. In addition, efforts should focus on enhancing
vaccine-induced humoral responses, developing monoclonal antibody prophylaxis for
poor responders, and advancing T cell therapy research. Addressing these critical areas
of research could prove instrumental in mitigating the impact of future pandemics and
safeguarding the health of at-risk populations.
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