Antigen Receptors Gene Analysis for Minimal Residual Disease Detection in Acute Lymphoblastic Leukemia: The Role of High Throughput Sequencing
Abstract
:1. Introduction
2. Minimal Residual Disease Monitoring by PCR
2.1. Antigen Receptor Gene Rearrangements
2.2. Fusion-Gene Transcripts
3. Minimal Residual Disease Monitoring by Flow Cytometry
4. The Future: Next Generation Sequencing
5. Clinical Impact of MRD in Adult ALL
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Borowitz, M.; Chan, J. B lymphoblastic leukaemia/lymphoma with recurrent genetic abnormalities. In WHO Classification of Tumors of the Hematopoietic and Lymphoid Tissue; Swerdlow, S., Campo, E., Harris, N.L., Jaffe, E.S., Pileri, S.A., Stein, H., Pileri, S.A., Stein, H., Eds.; Thiele J IARC: Lyon, France, 2017; pp. 171–175. [Google Scholar]
- Bassan, R.; Hoelzer, D. Modern therapy of acute lymphoblastic leukemia. J. Clin. Oncol. 2011, 29, 532–543. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Campana, D. Minimal residual disease studies in acute leukemia. Am. J. Clin. Pathol. 2004, 122, S47–S57. [Google Scholar] [CrossRef] [PubMed]
- Bassan, R.; Spinelli, O.; Oldani, E.; Intermesoli, T.; Tosi, M.; Peruta, B.; Rossi, G.; Borlenghi, E.; Pogliani, E.M.; Terruzzi, E.; et al. Improved risk classification for risk-specific therapy based on the molecular study of minimal residual disease (MRD) in adult acute lymphoblastic leukemia (ALL). Blood 2009, 113, 4153–4162. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kikuchi, M.; Tanaka, J.; Kondo, T.; Hashino, S.; Kasai, M.; Kurosawa, M.; Iwasaki, H.; Morioka, M.; Kawamura, T.; Masauzi, N.; et al. Clinical significance of minimal residual disease in adult acute lymphoblastic leukemia. Int. J. Hematol. 2010, 92, 481–489. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Campana, D. Role of minimal residual disease monitoring in adult and pediatric acute lymphoblastic leukemia. Hematol. Oncol. Clin. N. Am. 2009, 23, 1083–1098. [Google Scholar] [CrossRef][Green Version]
- Gökbuget, N.; Hoelzer, D. Treatment of Adult Acute Lymphoblastic Leukemia. Semin. Hematol. 2009, 46, 64–75. [Google Scholar] [CrossRef][Green Version]
- Campana, D.; Coustan-Smith, E. Minimal residual disease studies by flow cytometry in acute leukemia. Acta Haematol. 2004, 112, 8–15. [Google Scholar] [CrossRef]
- Coustan-Smith, E.; Song, G.; Clark, C.; Key, L.; Liu, P.; Mehrpooya, M.; Stow, P.; Su, X.; Shurtleff, S.; Pui, C.H.; et al. New markers for minimal residual disease detection in acute lymphoblastic leukemia. Blood 2011, 117, 6267–6276. [Google Scholar] [CrossRef]
- Krampera, M.; Vitale, A.; Vincenzi, C.; Perbellini, O.; Guarini, A.; Annino, L.; Todeschini, G.; Camera, A.; Fabbiano, F.; Fioritoni, G.; et al. Outcome prediction by immunophenotypic minimal residual disease detection in adult T-cell acute lymphoblastic leukaemia. Br. J. Haematol. 2003, 120, 74–79. [Google Scholar] [CrossRef]
- Raff, T.; Gokbuget, N.; Luschen, S.; Reutzel, R.; Ritgen, M.; Irmer, S.; Bottcher, S.; Horst, H.A.; Kneba, M.; Hoelzer, D.; et al. Molecular relapse in adult standard-risk ALL patients detected by prospective MRD monitoring during and after maintenance treatment: Data from the GMALL 06/99 and 07/03 trials. Blood 2007, 109, 910–915. [Google Scholar] [CrossRef]
- Lankester, A.C.; Bierings, M.B.; van Wering, E.R.; Wijkhuijs, A.J.; De Weger, R.A.; Wijnen, J.A.; Vossen, J.M.; Versluys, B.; Egeler, R.M.; Van Tol, M.J.; et al. Preemptive alloimmune intervention in high-risk pediatric acute lymphoblastic leukemia patients guided by minimal residual disease level before stem cell transplantation. Leukemia 2010, 24, 1462–1469. [Google Scholar] [CrossRef][Green Version]
- Bader, P.; Kreyenberg, H.; Henze, G.H.; Eckert, C.; Reising, M.; Willasch, A.; Barth, A.; Borkhardt, A.; Peters, C.; Handgretinger, R.; et al. Prognostic value of minimal residual disease quantification before allogeneic stem-cell transplantation in relapsed childhood acute lymphoblastic leukemia: The ALL-REZ BFM Study Group. J. Clin. Oncol. 2009, 27, 377–384. [Google Scholar] [CrossRef]
- Szczepariski, T.; Orfão, A.; van der Valden, V.H.; Miguel, J.F.S.; van Dongen, J.J. Minimal residual disease in leukaemia patients. Lancet Oncol. 2001, 2, 409. [Google Scholar] [CrossRef]
- Wu, D.; Sherwood, A.; Fromm, J.R.; Winter, S.S.; Dunsmore, K.P.; Loh, M.L.; Greisman, H.A.; Sabath, D.E.; Wood, B.L.; Robins, H. High-throughput sequencing detects minimal residual disease in acute T lymphoblastic leukemia. Sci. Transl. Med. 2012, 4, 134ra63. [Google Scholar] [CrossRef]
- Piccaluga, P.; Rapezzi, D.; Gazzola, A.; Malagola, M.; Visani, G.; Gallamini, A. Resolving the diagnostic dilemma of T-cell clonal expansion after hematopoietic stem cell transplantation in T-cell lymphoma patients by TCR-gamma next generation sequencing. Bone Marrow Transplant. 2019, 54, 159–163. [Google Scholar] [CrossRef]
- Van der Velden, V.H.; Hochhaus, A.; Cazzaniga, G.; Szczepanski, T.; Gabert, J.; van Dongen, J.J.M. Detection of minimal residual disease in hematologic malignancies by real-time quantitative PCR: Principles, approaches, and laboratory aspects. Leukemia 2003, 17, 1013–1034. [Google Scholar] [CrossRef][Green Version]
- Campana, D. Minimal residual disease in acute lymphoblastic leukemia. Hematol. Am. Soc. Hematol. Educ. Program 2010, 2010, 7–12. [Google Scholar] [CrossRef][Green Version]
- Davis, M.M.; Bjorkman, P.J. T-cell antigen receptor genes and T-cell recognition. Nature 1988, 334, 395–402. [Google Scholar] [CrossRef]
- Tonegawa, S. Somatic generation of antibody diversity. Nature 1983, 302, 575–581. [Google Scholar] [CrossRef]
- Van Dongen, J.J.; Wolvers-Tettero, I.L. Analysis of immunoglobulin and T cell receptor genes. Part II: Possibilities and limitations in the diagnosis and management of lymphoproliferative diseases and related disorders. Clin. Chim. Acta 1991, 198, 93–174. [Google Scholar] [CrossRef]
- Gazzola, A.; Mannu, C.; Rossi, M.; Laginestra, M.A.; Sapienza, M.R.; Fuligni, F.; Etebari, M.; Melle, F.; Sabattini, E. The evolution of clonality testing in the diagnosis and monitoring of hematological malignancies. Ther. Adv. Hematol. 2014, 5, 35–47. [Google Scholar] [CrossRef] [PubMed]
- Beishuizen, A.; Verhoeven, M.A.; Mol, E.J.; Breit, T.M.; Wolvers-Tettero, I.L.; van Dongen, J.J. Detection of immunoglobulin heavy-chain gene rearrangements by Southern blot analysis: Recommendations for optimal results. Leukemia 1993, 7, 2045–2053. [Google Scholar] [PubMed]
- Szczepanski, T.; Langerak, A.W.; Willemse, M.J.; Wolvers-Tettero, I.; van Wering, E.; van Dongen, J. T cell receptor gamma (TCRG) gene rearrangements in T cell acute lymphoblastic leukemia refelct ‘end-stage’ recombinations: Implications for minimal residual disease monitoring. Leukemia 2000, 14, 1208–1214. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Breit, T.M.; Wolvers-Tettero, I.L.; Beishuizen, A.; Verhoeven, M.A.; van Wering, E.R.; van Dongen, J.J. Southern blot patterns, frequencies, and junctional diversity of T-cell receptor-delta gene rearrangements in acute lymphoblastic leukemia. Blood 1993, 82, 3063–3074. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kneba, M.; Bolz, I.; Linke, B. Analysis of rearranged T-cell receptor beta-chain genes by polymerase chain reaction (PCR) DNA sequencing and automated high resolution PCR fragment analysis. Blood 1995, 86, 3930–3937. [Google Scholar] [CrossRef][Green Version]
- Van der Velden, V.H.; Cazzaniga, G.; Schrauder, A.; Hancock, J.; Bader, P.; Panzer-Grumayer, E.R.; Flohr, T.; Sutton, R.; Cavé, H.; Madsen, H.O.; et al. Analysis of minimal residual disease by Ig/TCR gene rearrangements: Guidelines for interpretation of real-time quantitative PCR data. Leukemia 2007, 21, 604–611. [Google Scholar] [CrossRef][Green Version]
- Bruggemann, M.; Raff, T.; Flohr, T.; Gokbuget, N.; Nakao, M.; Droese, J.; Luschen, S.; Pott, C.; Ritgen, M.; Scheuring, U.; et al. Clinical significance of minimal residual disease quantification in adult patients with standard-risk acute lymphoblastic leukemia. Blood 2006, 107, 1116–1123. [Google Scholar] [CrossRef][Green Version]
- Van der Velden, V.H.; Wijkhuijs, J.M.; Jacobs, D.C.; van Wering, E.; van Dongen, J. T cell receptor gamma gene rearrangements as targets for detection of minimal residual disease in acute lymphoblastic leukemia by real-time quantitative PCR analysis. Leukemia 2002, 16, 1372–1380. [Google Scholar] [CrossRef][Green Version]
- Szczepanski, T.; Pongers-Willemse, M.J.; Langerak, A.W.; van Dongen, J.J.M. Unusual immunoglobulin and T-cell receptor gene rearrangement patterns in acute lymphoblastic leukemias. Curr. Top. Microbiol. Immunol. 1999, 246, 205–213; discussion 214–215. [Google Scholar]
- Szczepanski, T.; Flohr, T.; van der Velden, V.H.; Bartram, C.R.; van Dongen, J.J.M. Molecular monitoring of residual disease using antigen receptor genes in childhood acute lymphoblastic leukaemia. Best Pract. Res. Clin. Haematol. 2002, 15, 37–57. [Google Scholar] [CrossRef]
- Szczepanski, T.; Willemse, M.J.; Brinkhof, B.; van Wering, E.R.; van der Burg, M.; van Dongen, J.J.M. Comparative analysis of Ig and TCR gene rearrangements at diagnosis and at relapse of childhood precursor-B-ALL provides improved strategies for selection of stable PCR targets for monitoring of minimal residual disease. Blood 2002, 99, 2315–2323. [Google Scholar] [CrossRef]
- Van der Velden, V.H.; Bruggemann, M.; Hoogeveen, P.G.; de Bie, M.; Hart, P.G.; Raff, T.; Pfeifer, H.; Lüschen, S.; Szczepański, T.; Van Wering, E.R.; et al. TCRB gene rearrangements in childhood and adult precursor-B-ALL: Frequency, applicability as MRD-PCR target, and stability between diagnosis and relapse. Leukemia 2004, 18, 1971–1980. [Google Scholar] [CrossRef]
- Deane, M.; Pappas, H.; Norton, J.D. Immunoglobulin heavy chain gene fingerprinting reveals widespread oligoclonality in B-lineage acute lymphoblastic leukaemia. Leukemia 1991, 5, 832–838. [Google Scholar]
- Bird, J.; Galili, N.; Link, M.; Stites, D.; Sklar., J. Continuing rearrangement but absence of somatic hypermutation in immunoglobulin genes of human B cell precursor leukemia. J. Exp. Med. 1988, 168, 229–245. [Google Scholar] [CrossRef][Green Version]
- Marshall, G.M.; Kwan, E.; Haber, M.; Brisco, M.J.; Sykes, P.J.; Morley, A.A.; Toogood, I.; Waters, K.; Tauro, G.; Ekert, H. Characterization of clonal immunoglobulin heavy chain and I cell receptor gamma gene rearrangements during progression of childhood acute lymphoblastic leukemia. Leukemia 1995, 9, 1847–1850. [Google Scholar]
- Bruggemann, M.; Schrauder, A.; Raff, T.; Pfeifer, H.; Dworzak, M.; Ottmann, O.G.; Asnafi, V.; Baruchel, A.; Bassan, R.; Benoit, Y.; et al. Standardized MRD quantification in European ALL trials: Proceedings of the Second International Symposium on MRD assessment in Kiel, Germany, 18–20 September 2008. Leukemia 2010, 24, 521–535. [Google Scholar] [CrossRef][Green Version]
- Gabert, J.; Beillard, E.; van der Velden, V.H.; Bi, W.; Grimwade, D.; Pallisgaard, N.; Barbany, G.; Cazzaniga, G.; Cayuela, J.M.; Cave, H.; et al. Standardization and quality control studies of ‘real-time’ quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia—A Europe against Cancer program. Leukemia 2003, 17, 2318–2357. [Google Scholar] [CrossRef][Green Version]
- Breit, T.M.; Beishuizen, A.; Ludwig, W.D.; Mol, E.J.; Adriaansen, H.J.; Van Wering, E.R.; Van Dongen, J.J. Tal-1 deletions in T-cell acute lymphoblastic leukemia as PCR target for detection of minimal residual disease. Leukemia 1993, 7, 2004–2011. [Google Scholar]
- Akasaka, T.; Muramatsu, M.; Ohno, H.; Miura, I.; Tatsumi, E.; Fukuhara, S.; Mori, T.; Okuma, M. Application of long-distance polymerase chain reaction to detection of junctional sequences created by chromosomal translocation in mature B-cell neoplasms. Blood 1996, 88, 985–994. [Google Scholar] [CrossRef][Green Version]
- Farahat, N.; Morilla, A.; Owusu-Ankomah, K.; Morilla, R.; Pinkerton, C.R.; Treleaven, J.G.; Matutes, E.; Powles, R.L.; Catovsky, D. Detection of minimal residual disease in B-lineage acute lymphoblastic leukaemia by quantitative flow cytometry. Br. J. Haematol. 1998, 101, 158–164. [Google Scholar] [CrossRef]
- Vidriales, M.B.; San-Miguel, J.F.; Orfao, A.; Coustan-Smith, E.; Campana, D. Minimal residual disease monitoring by flow cytometry. Best Pract. Res. Clin. Haematol. 2003, 16, 599–612. [Google Scholar] [CrossRef] [PubMed]
- Oelschlagel, U.; Nowak, R.; Schaub, A.; Köppel, C.; Herbst, R.; Mohr, B.; Löffler, C.; Range, U.; Günther, H.; Aßmann, M.; et al. Shift of aberrant antigen expression at relapse or at treatment failure in acute leukemia. Cytometry 2000, 42, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Guglielmi, C.; Cordone, I.; Boecklin, F.; Masi, S.; Valentini, T.; Vegna, M.L.; Ferrari, A.; Testi, A.M.; Foa, R. Immunophenotype of adult and childhood acute lymphoblastic leukemia: Changes at first relapse and clinico-prognostic implications. Leukemia 1997, 11, 1501–1507. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Tomova, A.; Babusikova, O. Shifts in expression of immunological cell markers in relapsed acute leukemia. Neoplasma 2001, 48, 164–168. [Google Scholar] [PubMed]
- Gaipa, G.; Basso, G.; Maglia, O.; Leoni, V.; Faini, A.; Cazzaniga, G.; Bugarin, C.; Veltroni, M.; Michelotto, B.; Ratei, R.; et al. Drug-induced immunophenotypic modulation in childhood ALL: Implications for minimal residual disease detection. Leukemia 2005, 19, 49–56. [Google Scholar] [CrossRef][Green Version]
- Bradstock, K.F.; Janossy, G.; Tidman, N.; Papageorgiou, E.S.; Prentice, H.G.; Willoughby, M.; Hoffbrand, A.V. Immunological monitoring of residual disease in treated thymic acute lymphoblastic leukaemia. Leuk. Res. 1981, 5, 301–309. [Google Scholar] [CrossRef]
- Hurwitz, C.A.; Loken, M.R.; Graham, M.L.; Karp, J.E.; Borowitz, M.J.; Pullen, D.J.; Civin, C.I. Asynchronous antigen expression in B lineage acute lymphoblastic leukemia. Blood 1988, 72, 299–307. [Google Scholar] [CrossRef][Green Version]
- Lucio, P.; Parreira, A.; van den Beemd, M.W.; Van Lochem, E.G.; Van Wering, E.R.; Baars, E.; Porwit-MacDonald, A.; Bjorklund, E.; Gaipa, G.; Biondi, A.; et al. Flow cytometric analysis of normal B cell differentiation: A frame of reference for the detection of minimal residual disease in precursor-B-ALL. Leukemia 1999, 13, 419–427. [Google Scholar] [CrossRef][Green Version]
- Campana, D.; Coustan-Smith, E. Detection of minimal residual disease in acute leukemia by flow cytometry. Cytometry 1999, 38, 139–152. [Google Scholar] [CrossRef]
- Ciudad, J.; San Miguel, J.F.; Lopez-Berges, M.C.; Vidriales, B.; Valverde, B.; Ocqueteau, M.; Mateos, G.; Caballero, M.D.; Hernandez, J.; Moro, M.J.; et al. Prognostic value of immunophenotypic detection of minimal residual disease in acute lymphoblastic leukemia. J. Clin. Oncol. 1998, 16, 3774–3781. [Google Scholar] [CrossRef]
- Weerkamp, F.; Dekking, E.; Ng, Y.Y.; Van der Velden, V.H.; Wai, H.; Böttcher, S.; Brüggemann, M.; Van der Sluijs, A.J.; Koning, A.; Boeckx, N.; et al. Flow cytometric immunobead assay for the detection of BCR-ABL fusion proteins in leukemia patients. Leukemia 2009, 23, 1106–1117. [Google Scholar] [CrossRef]
- Chen, J.S.; Coustan-Smith, E.; Suzuki, T.; Neale, G.A.; Mihara, K.; Pui, C.H.; Campana, D. Identification of novel markers for monitoring minimal residual disease in acute lymphoblastic leukemia. Blood 2001, 97, 2115–2120. [Google Scholar] [CrossRef][Green Version]
- Kohlmann, A.; Grossmann, V.; Haferlach, T. Integration of next-generation sequencing into clinical practice: Are we there yet? Semin. Oncol. 2012, 39, 126–136. [Google Scholar] [CrossRef]
- Radich, J.P.; Zelenetz, A.D.; Chan, W.C.; Croce, C.M.; Czuczman, M.S.; Erba, H.P.; Horning, S.J.; Houldsworth, J.; Smith, B.D.; Snyder, D.S.; et al. NCCN task force report: Molecular markers in leukemias and lymphomas. J. Natl. Compr. Cancer Netw. 2009, 7, S1–S34; quiz S35–S36. [Google Scholar] [CrossRef]
- Allan, A.L.; Keeney, M. Circulating tumor cell analysis: Technical and statistical considerations for application to the clinic. J. Oncol. 2010, 2010, 426218. [Google Scholar] [CrossRef][Green Version]
- Leary, R.J.; Kinde, I.; Diehl, F.; Schmidt, K.; Clouser, C.; Duncan, C.; Antipova, A.; Lee, C.; McKernan, K.; De La Vega, F.M.; et al. Development of personalized tumor biomarkers using massively parallel sequencing. Sci. Transl. Med. 2010, 2, 20ra14. [Google Scholar] [CrossRef][Green Version]
- Boyd, S.D.; Marshall, E.L.; Merker, J.D.; Maniar, J.M.; Zhang, L.N.; Sahaf, B.; Jones, C.D.; Simen, B.B.; Hanczaruk, B.; Nguyen, K.D.; et al. Measurement and clinical monitoring of human lymphocyte clonality by massively parallel VDJ pyrosequencing. Sci. Transl. Med. 2009, 1, 12ra23. [Google Scholar] [CrossRef][Green Version]
- Robins, H. Detecting and monitoring lymphoma with high-throughput sequencing. Oncotarget 2011, 2, 287–288. [Google Scholar] [CrossRef][Green Version]
- Alamyar, E.; Duroux, P.; Lefranc, M.; Giudicelli, V. IMGT(®) tools for the nucleotide analysis of immunoglobulin (IG) and T cell receptor (TR) V-(D)-J repertoires, polymorphisms, and IG mutations: IMGT/V-QUEST and IMGT/HighV-QUEST for NGS. Methods Mol. Biol. 2012, 882, 569–604. [Google Scholar]
- Nayyar, A.; Ahmed, S. Immunoglobulin gene rearrangement in detection of minimal residual disease in acute lymphoblastic leukaemia. J. Ayub Med. Coll. Abbottabad 2013, 25, 159–161. [Google Scholar]
- Pulsipher, M.; Carlson, C.; Langholz, B.; Wall, D.A.; Schultz, K.R.; Bunin, N.; Kirsch, I.; Gastier-Foster, J.M.; Borowitz, M.; Desmarais, C.; et al. IgH-V(D)J NGS-MRD measurement pre- and early post-allotransplant defines very low- and very high-risk ALL patients. Blood 2015, 125, 3501–3508. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Beccuti, M.; Genuardi, E.; Romano, G.; Monitillo, L.; Barbero, D.; Boccadoro, M.; Ladetto, M.; Calogero, R.; Ferrero, S.; Cordero, F. HashClone: A new tool to quantify the minimal residual disease in B-cell lymphoma from deep sequencing data. BMC Bioinform. 2017, 18, 516. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.; Hwang, I.; Kim, J.; Lee, K.A.; Lee, S.T.; Choi, J.R. Detection of Immunoglobulin Heavy Chain Gene Clonality by Next-Generation Sequencing for Minimal Residual Disease Monitoring in B-Lymphoblastic Leukemia. Ann. Lab. Med. 2017, 37, 331–335. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Holowiecki, J.; Krawczyk-Kulis, M.; Giebel, S.; Jagoda, K.; Stella-Holowiecka, B.; Piatkowska-Jakubas, B.; Paluszewska, M.; Seferynska, I.; Lewandowski, K.; Kielbinski, M.; et al. Status of minimal residual disease after induction predicts outcome in both standard and high-risk Ph-negative adult acute lymphoblastic leukaemia. The Polish Adult Leukemia Group ALL 4-2002 MRD Study. Br. J. Haematol. 2008, 142, 227–237. [Google Scholar] [CrossRef]
- Mortuza, F.Y.; Papaioannou, M.; Moreira, I.M.; Coyle, L.A.; Gameiro, P.; Gandini, D.; Prentice, H.G.; Goldstone, A.; Hoffbrand, A.V.; Foroni, L. Minimal residual disease tests provide an independent predictor of clinical outcome in adult acute lymphoblastic leukemia. J. Clin. Oncol. 2002, 20, 1094–1104. [Google Scholar] [CrossRef]
- Bene, M.C.; Kaeda, J.S. How and why minimal residual disease studies are necessary in leukemia: A review from WP10 and WP12 of the European LeukaemiaNet. Haematologica 2009, 94, 1135–1150. [Google Scholar] [CrossRef]
- Gameiro, P.; Mortuza, F.Y.; Hoffbrand, A.V.; Foroni, L. Minimal residual disease monitoring in adult T-cell acute lymphoblastic leukemia: A molecular based approach using T-cell receptor G and D gene rearrangements. Haematologica 2002, 87, 1126–1134. [Google Scholar]
- Vidriales, M.B.; Perez, J.J.; Lopez-Berges, M.C.; Gutiérrez, N.; Ciudad, J.; Lucio, P.; Vazquez, L.; García-Sanz, R.; del Cañizo, M.C.; Fernández-Calvo, J.; et al. Minimal residual disease in adolescent (older than 14 years) and adult acute lymphoblastic leukemias: Early immunophenotypic evaluation has high clinical value. Blood 2003, 101, 4695–4700. [Google Scholar] [CrossRef][Green Version]
- Piccaluga, P.P.; Malagola, M.; Amabile, M.; Rondoni, M.; Paolini, S.; Pane, F.; Russo, D.; Visani, G.; Baccarani, M.; Martinelli, G. The achievement of molecular complete remission during treatment with imatinib mesylate correlates with relapse-free survival in bcr/abl-positive acute lymphoid leukemia patients. Haematologica 2004, 89, 1269–1271. [Google Scholar]
- Gokbuget, N.; Hoelzer, D.; Arnold, R.; Böhme, A.; Bartram, C.R.; Freund, M.; Ganser, A.; Kneba, M.; Langer, W.; Lipp, T.; et al. Treatment of Adult ALL according to protocols of the German Multicenter Study Group for Adult ALL (GMALL). Hematol. Oncol. Clin. N. Am. 2000, 14, 1307–1325. [Google Scholar] [CrossRef]
- Gaynor, J.J.; Moon, J.I.; Kato, T.; Nishida, S.; Selvaggi, G.; Levi, D.M.; Island, E.R.; Pyrsopoulos, N.; Weppler, D.; Ganz, S.; et al. A cause-specific hazard rate analysis of prognostic factors among 199 adults with acute lymphoblastic leukemia: The Memorial Hospital experience since 1969. J. Clin. Oncol. 1988, 6, 1014–1030. [Google Scholar] [CrossRef]
- Hoelzer, D.; Thiel, E.; Loffler, H.; Buchner, T.; Ganser, A.; Heil, G.; Koch, P.; Freund, M.; Diedrich, H.; Ruhl, H. Prognostic factors in a multicenter study for treatment of acute lymphoblastic leukemia in adults. Blood 1988, 71, 123–131. [Google Scholar] [CrossRef][Green Version]
- Brisco, J.; Hughes, E.; Neoh, S.H.; Sykes, P.J.; Bradstock, K.; Enno, A.; Szer, J.; McCaul, K.; Morley, A.A. Relationship between minimal residual disease and outcome in adult acute lymphoblastic leukemia. Blood 1996, 87, 5251–5256. [Google Scholar] [CrossRef][Green Version]
- Radich, J.; Gehly, G.; Lee, A.; Avery, R.; Bryant, E.; Edmands, S.; Gooley, T.; Kessler, P.; Kirk, J.; Ladne, P.; et al. Detection of bcr-abl transcripts in Philadelphia chromosome-positive acute lymphoblastic leukemia after marrow transplantation. Blood 1997, 89, 2602–2609. [Google Scholar] [CrossRef]
- Wassmann, B.; Pfeifer, H.; Stadler, M.; Bornhauser, M.; Bug, G.; Scheuring, U.J.; Bruck, P.; Stelljes, M.; Schwerdtfeger, R.; Basara, N.; et al. Early molecular response to posttransplantation imatinib determines outcome in MRD+ Philadelphia-positive acute lymphoblastic leukemia (Ph+ ALL). Blood 2005, 106, 458–463. [Google Scholar] [CrossRef][Green Version]
- Pane, F.; Cimino, G.; Izzo, B.; Camera, A.; Vitale, A.; Quintarelli, C.; Picardi, M.; Specchia, G.; Mancini, M.; Cuneo, A.; et al. Significant reduction of the hybrid BCR/ABL transcripts after induction and consolidation therapy is a powerful predictor of treatment response in adult Philadelphia-positive acute lymphoblastic leukemia. Leukemia 2005, 19, 628–635. [Google Scholar] [CrossRef][Green Version]
- Sanchez, J.; Serrano, J.; Gomez, P.; Martínez, F.; Martín, C.; Madero, L.; Herrera, C.; García, J.M.; Casaño, J.; Torres, A. Clinical value of immunological monitoring of minimal residual disease in acute lymphoblastic leukaemia after allogeneic transplantation. Br. J. Haematol. 2002, 116, 686–694. [Google Scholar] [CrossRef]
- Spinelli, O.; Peruta, B.; Tosi, M.; Guerini, V.; Salvi, A.; Zanotti, M.C.; Oldani, E.; Grassi, A. Clearance of minimal residual disease after allogeneic stem cell transplantation and the prediction of the clinical outcome of adult patients with high-risk acute lymphoblastic leukemia. Haematologica 2007, 92, 612–618. [Google Scholar] [CrossRef]
- Short, N.J.; Kantarjian, H.; Ravandi, F.; Konopleva, M.; Jain, N.; Kanagal-Shamanna, R.; Patel, K.P.; Macaron, W.; Kadia, T.M.; Wang, S.; et al. High-sensitivity next-generation sequencing MRD assessment in ALL identifies patients at very low risk of relapse. Blood Adv. 2022, 6, 4006–4014. [Google Scholar] [CrossRef]
- Bassan, R.; Brüggemann, M.; Radcliffe, H.S.; Hartfield, E.; Kreuzbauer, G.; Wetten, S. A systematic literature review and meta-analysis of minimal residual disease as a prognostic indicator in adult B-cell acute lymphoblastic leukemia. Haematologica 2019, 104, 2028. [Google Scholar] [CrossRef][Green Version]
- Cario, G.; Stanulla, M.; Fine, B.M.; Teuffel, O.; Neuhoff, N.V.; Schrauder, A.; Flohr, T.; Schafer, B.W.; Bartram, C.R.; Welte, K. Distinct gene expression profiles determine molecular treatment response in childhood acute lymphoblastic leukemia. Blood 2005, 105, 821–826. [Google Scholar] [CrossRef] [PubMed]
- Flotho, C.; Coustan-Smith, E.; Pei, D.; Iwamoto, S.; Song, G.; Cheng, C.; Pui, C.H.; Downing, J.R.; Campana, D. Genes contributing to minimal residual disease in childhood acute lymphoblastic leukemia: Prognostic significance of CASP8AP2. Blood 2006, 108, 1050–1057. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Reyes-Barron, C.; Burack, W.R.; Rothberg, P.G.; Ding, Y. Next-Generation Sequencing for Minimal Residual Disease Surveillance in Acute Lymphoblastic Leukemia: An Update. Crit. Rev. Oncog. 2017, 22, 559–567. [Google Scholar] [CrossRef] [PubMed]
Aberration | Target | Frequency (%) |
---|---|---|
B-ALL | ||
t(9;22)(q34;p11) | BCR::ABL1 | 30–35 |
t(1;19)(q23;p13,3) | TCF3::PBX1 | 3–5 |
t(4;11)(q21;q23) | KMT2A::AFF1 | 3–5 |
t(8;14)(q24;q32) | MYC-IGH | 2–8 |
t(12;21)(p13;q22) | ETV6::RUNX1 | 1–3 |
t(17;19)(q22;p13) | TCF3::HLF | 1–3 |
T-ALL | ||
TAL1 deletion | TAL/SIL::TAL | 15–25 |
t(7;9)(q34;q34) | NOTCH1 | <1 |
HOX rearrangements | HOX | <1 |
t(7;19)(q34;p13) | TRB::LYL1 | <1 |
t(11 ;14)(p15;q11) | LMO1::TRA | <1 |
t(10;11)(p13;q14–21) | KMT2A::MLLT10 | <1 |
Subtype | Marker | Frequency/ST (%) |
---|---|---|
B-ALL | ||
CD10/CD19/CD20/CD22/CD34/CD38/CD45 | 80 | |
CD10/CD20/CD19/CD34 | 60–75 | |
CD10/CD13/CD19/CD34 | 20–30 | |
CD10/CD33/CD19/CD34 | 20–30 | |
TdT/CD10/CD19/CD45 | 70–80 | |
CD15/CD10/CD19/CD45 | 05–10 | |
CD10/Anti-NG2/CD19/CD45 | 3–5 | |
T-ALL | ||
CD7/CD5/CD3/CD34 | 70–80 | |
CD7/CD2/CD3/CD34 | 70–80 | |
CD7/CD4/CD8/CD34 | 60–70 | |
CD7/CD13/CD3/CD34 | 15–20 | |
CD7/CD33/CD3/CD34 | 15–20 | |
TdT/CD5/CD3/CD7 | 90 |
Technique | Target Population | Cost Per Patient | Advantages | Disadvantages | Sensitivity Range |
---|---|---|---|---|---|
Flow cytometry | Virtually all patients | Medium | Feasible in virtually all patients | Higher sensitivity related to multi-color (n = 8) panels | 10−3–10−5 |
qPCR of fusion genes | Limited | Low | Easy and relatively cheap | Available in limited cases | 10−3–10−5 |
qPCR of IGH/TCR rearrangements | >90% of patients | High | Feasible in most patients Extremely sensitive and specific | Technically more complicated Costs | 10−3–10−5 |
NGS of IGH/TCR | Virtually all patients | Very high * | Theoretically the most sensitive Monitoring and distinction of multiple clones | Elevated costs Technology availability Time consuming | 10−4–10−6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piccaluga, P.P.; Paolini, S.; Visani, G. Antigen Receptors Gene Analysis for Minimal Residual Disease Detection in Acute Lymphoblastic Leukemia: The Role of High Throughput Sequencing. Hemato 2023, 4, 42-55. https://doi.org/10.3390/hemato4010004
Piccaluga PP, Paolini S, Visani G. Antigen Receptors Gene Analysis for Minimal Residual Disease Detection in Acute Lymphoblastic Leukemia: The Role of High Throughput Sequencing. Hemato. 2023; 4(1):42-55. https://doi.org/10.3390/hemato4010004
Chicago/Turabian StylePiccaluga, Pier Paolo, Stefania Paolini, and Giuseppe Visani. 2023. "Antigen Receptors Gene Analysis for Minimal Residual Disease Detection in Acute Lymphoblastic Leukemia: The Role of High Throughput Sequencing" Hemato 4, no. 1: 42-55. https://doi.org/10.3390/hemato4010004