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Abstract: The effective and sensitive monitoring of Minimal Residual Disease or Measurable Residual
Disease (MRD) is a very important aspect in the management of patients affected by hematologic
malignancies. The recent availability of new technologies has opened to the improvement of MRD
monitoring. It is particularly relevant in patients affected by Chronic Myeloid Leukemia (CML).
MRD monitoring is key in the management of CML patients thanks to the efficacy of TKIs therapy.
Moreover, the policies of TKIs discontinuation aimed at treatment free remission are strongly based on
the good selection of patients eligible for stopping TKIs therapy. The recently described application
of digital PCR in CML patients monitoring seems to improve the accuracy and precision in the
identification of optimal responders. The present review reports an overview on the application of
digital PCR in the monitoring of MRD in CML and its impact on TKIs discontinuation trials and,
consequently, on TFR success.

Keywords: digital PCR; minimal residual disease (MRD); chronic myeloid leukemia (CML); monitoring;
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1. Introduction

Hematologic malignancies are a neoplastic disease mainly affecting the hematopoietic
stem cells. Recently, due to the success of some new therapeutic strategies, such as targeted
monoclonal antibodies and intensive treatments, a very effective and sensitive monitoring
of Minimal Residual Disease or Measurable Residual Disease (MRD) has become of pivotal
importance [1,2]. MRD is defined as residual malignant cells in the patient after treatment
and potentially detectable by sensitive approaches. At the same time, MRD refers also
to the lowest levels of disease hypothetically compatible with the concept of “cure” and
may be present, even if undetectable, at the moment of complete remission [3]. Different
technologies have been set up and routinely applied for the detection of different markers
characterizing different hematologic malignancies [4]. Cytomorphologic evaluation of the
BM and PB cells allows the identification of altered cells. It is very cost-effective, but it
presents a very low sensitivity and is operator dependent. On the other hand, cytogenetic
investigations and the multi-parametric flow cytometry test are able to increase MRD
monitoring efficacy and sensitivity [5]. Flow cytometry analysis results are effective but
require different antibodies panels and a high level of user expertise. Nevertheless, some
diseases are characterized by molecular markers needing molecular biology tests in order
to be detected and quantified [6]. The standardized and routinely applied assessments
are commonly based on quantitative polymerase chain reaction (PCR)-based molecular
methods tests [7]: nested PCR and Real Time-quantitative PCR (RT-qPCR) [8]. These
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tools are widely available, but present poor sensitivity and precision at low levels of
target, a frequent condition in patients affected by Chronic Myeloid Leukemia after the
introduction of Tyrosine Kinase Inhibitors (TKIs). In fact, RT-qPCR shows a decreased
accuracy in quantifying the rare BCR-ABL1 transcripts molecules circulating in CML
patients presenting optimal response to TKIs. This fact is not so evident at a higher level of
MRD. Moreover, RT-qPCR is also limited by a poor robustness. The rate of sensitivity of
the different MRD techniques is graphically represented in Figure 1.
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been developed to go over some of the main limitations of conventional amplification 
technologies. In particular, digital PCR improves the detection of small amounts of target 
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panels resequencing); PCR = polymerase chain reaction; RT-qPCR = Real Time quantitative PCR;
MRD = Minimal Residual Disease.

In the last years, the evolution of the knowledge and the advent of new technologies
has opened the opportunity to increase the capability of MRD monitoring to detect resident
malignant cells, overcoming the intrinsic limits of “gold-standard” techniques [9–11].

In this context, digital PCR (dPCR) seems one of the most promising new biomolecular
techniques [12,13]. Indeed, dPCR is the latter generation of end-point PCR and it has been
developed to go over some of the main limitations of conventional amplification technologies.
In particular, digital PCR improves the detection of small amounts of target nucleic acids [14].
Quantification by dPCR is based on the random distribution of molecules in many partitions.
Poisson’s distribution regulates this distribution. The number of partitions and the partitioning
strategy vary based on the platforms. The first models of dPCR platforms were microfluidics-
based dPCR and allowed a moderate number of partitions (lower than 200) based on a
physical separation supported by chips with micro-channels. On the other hand, the second
generation dPCR platforms presented an increased number of micro-reactions (up to 20,000)
and improved the partitioning strategies: with a physical separation of the different partitions
based on chips presenting micro-wells (chip-based dPCR) and with automated separation
based on creating a “water-in-oil” emulsion (droplet-based dPCR). Recently, a third generation
dPCR platform was developed and the most important innovation is the increased number
of partitions: up to 106 [15]. Each partition results in a single PCR micro-reaction. Partitions
containing the amplified target are then identified by fluorescence detection. The PCR-positive
partitions absolute quantification determines the absolute quantity of target without a need
for external calibration or standard curve [16]. Figure 2 represents a general workflow of the
dPCR analysis.
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dPCR has been reported to be sensitive as well as or sometimes more than that RT-
qPCR or nested PCR [17,18]. For example, dPCR was able to recover about one quarter of
cases that had been scored as “positive-not quantifiable” (borderline positive/negative sam-
ples) by conventional RT-qPCR in hematological malignancies such as acute lymphoblastic
leukemia and non-Hodgkin’s lymphoma [19,20].

In this literature review, some of the novel applications of dPCR technology for Chronic
Myeloid Leukemia (CML) are described [21]. These innovative approaches are going to
impact the way we measure the response to therapy, the achievement of a “real” complete
remission, and the application of personalized approaches to patients to critically review
the results of the studies that have already been performed to evaluate dPCR in CML.

2. Chronic Myeloid Leukemia

Chronic Myeloid Leukemia (CML) is characterized by a specific genomic abnormality,
the BCR-ABL1 gene, coding for a tyrosine kinase protein and causing the leukemic trans-
formation of hemopoietic stem cells [22]. This fusion gene is the product of the balanced
translocation between chromosome 9 and 22 [t(9;22)(q34;q11)], leading to the generation of
the Philadelphia chromosome.

The advent of Tyrosine Kinase Inhibitors (TKIs), namely imatinib, nilotinib, dasatinib,
bosutinib, and ponatinib, starting from 2000, changed the natural history of CML: from
a fatal disease curable with allogeneic stem cell transplantation in a minority of patients
only, to a very well controlled disease for the great majority of the cases [23]. Thanks to
their success, TKIs became the therapy of choice for adult CML patients. The latter in
complete cytogenetic response (CCyR) could aspire to the same life expectations as their
non-leukemic peers [24–26]. Encouraged by those results, clinical practice has focused on
the main objective: the efficacy of therapy improvement, with the possibility of stopping
TKIs treatment after achieving a stable deep molecular response (DMR), without molecular
relapse. The capability to sustain a response is commonly referred as “treatment free
remission” (TFR) [27,28].

Another option could be to identify the minimal effective dose of TKI, able to maintain
the major molecular response (MR3.0) which is a surrogate marker of long-term OS. This
strategy has been explored in two trials: a phase II single arm, multicentric trial in which
elderly patients (>60 years) in sustained CcyR with imatinib were addressed to an intermit-
tent TKI schedule (1 month “on” and 1 month “off”). This study showed that this approach
is feasible and successful, in the long term. After 6 years of follow up, neither progression to
blastic phase nor CML related deaths were recorded, the patients who had lost the complete
cytogenetic response (CCyR) re-gained the CCyR after resuming imatinib continuously, and
60% are on intermittent treatment in CCyR and MR3.0 or MR4,0. Furthermore, grade I–II
side effects disappeared in more than 50% of the patients on intermittent treatment [29,30].
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This trial was followed by a multicentric phase III trial, in which elderly patients in
MR3,0 with any TKI were randomly assigned to the same intermittent schedule (“fixed”) or
to a “progressive” intermittent schedule (1 month “on” and 1 month “off” for the first year;
1 month “on” and 2 months “off” for the second year; 1 month “on” and 3 months “off” for
the third year). Data on the first year after randomization showed that the probability of
maintaining the MR3.0 is 81% [31]. Table 1 reports a summary of clinical trials exploring
the discontinuation of TKIs and the TFR.

Table 1. Clinical trials investigating TFR in Ph+-CML patients.

Reference Study Acronim Inclusion
Criteria Pts (n◦) TKI Line of

Therapy
Long-Term

(≥2 yrs) TFR

Imagawa J, Lancet Hematol
2015 [32] DADI DMR ≥ 1 yr 88 DAS First 49% (6 months)

Etienne G, JCO 2017 [33] STIM DMR ≥ 2 yrs 100 IMA First 38%

Campiotti L, Eur J Cancer
2017 [34] Meta-analysis Undetectable 509 IMA First 59% (6 months)

Rea D, Blood 2017 [35] STOP 2G-TKI DMR ≥ 2 yrs 60 DAS/NIL First/Second 54%

Hochhaus A, Leukemia
2017 [36]

ENEST-
freddom DMR ≥ 2 yrs 190 NIL First 52% (12 months)

Ross DM, Leukemia
2018 [37] TWISTER DMR ≥ 2 yrs 40 IMA First 45%

Lee SE, Haematologica
2016 [38] KID DMR ≥ 2 yrs 90 IMA First 59%

Ross DM, J Cancer Res
Clin Oncol 2018 [39]

ENEST-
freedom DMR = 1 yr 190 NIL First 49%

Mahon FX, Ann Int Med
2018 [40] ENEStop DMR = 1 yr 126 NIL Second 53%

Okada M, Clin Lymph
Myeloma Leuk 2018 [41] DADI DMR = 1 yr 63 DAS Second 44%

Saussele S, Lancet Oncol
2018 [42] EUROSKI DMR = 1 yr 758 Any First 50%

Shah NP, Leuk Lymph
2020 [43] DASFREE DMR = 1 yr 84 DAS First/Second 46%

Kimura S, Lancet Hematol
2020 [44] DADI DMR ≥ 2 yrs 68 DAS First 55% (6 months)

List of abbreviations: DMR = Deep Molecular Remission; TKI = Tyrosin Kinase Inhibitor; IMA = Imatinib; NIL =
Nilotinib; DAS = Dasatinib; TFR = Treatment Free Remission MRD in CML.

Although cytogenetics still represents an important marker of response to TKIs, the
molecular monitoring with RT-qPCR assessed according to the International Scale (IS) as
the ratio of BCR-ABL1 transcripts to ABL1 transcripts is nowadays considered the gold
standard [45,46]. Molecular response must be expressed and reported as BCR-ABL1 %
on a log scale, where 1%, 0.1%, 0.01%, 0.0032%, and 0.001% correspond to a decrease
of 2, 3, 4, 4.5, and 5 logs, respectively, below the standardized baseline that was used
in the IRIS study [47]. BCR-ABL1 ≤ 1% corresponds to complete cytogenetic remission
(CcyR). The minimum sum of ABL1 reference gene transcripts, irrespective of whether
BCR-ABL1 was detected or not, should be 10,000, 32,000, and 100,000 for MR4.0, MR4.5, and
MR5.0, respectively. In fact, DMR classes may be assessed even in the case of undetectable
BCR-ABL1 transcript levels. In this case, the MR classes determination is driven by the
ABL1 transcript copy number: 10,000, 32,000, and 100,000 for MR4.0, MR4.5, and MR5.0,
respectively [48].
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The current treatment strategy with TKIs aims to prevent CML progression to ac-
celerated/blastic phase (AP/BP) and to access drug discontinuation and treatment-free
remission (TFR). Major molecular response (MR3.0) is achieved in 80–90% of patients and
30–50% of them obtain deep molecular response (DMR) (≥MR4.0). Patients in stable DMR
have access to TFR, but, invariably, half of them lose molecular response with need of
restarting treatment. Although several clinical and biological factors have been shown
to be correlated with the risk to lose DMR after treatment discontinuation, no conclusive
data are available and, currently, it is not possible to identify patients who should continue
TKIs life-long [49]. The published ELN guidelines suggest that TKIs discontinuation can be
safely tempted following a continuous treatment with TKI for 5 years, with a DMR lasting
at least 2 (if MR4.5) or 3 (if MR4.0) years [50].

3. dPCR in CML MRD Monitoring and TFR Assessment

Recently, different groups tested BCR-ABL1 transcript quantification by dPCR in CML
patients. In the ISAV study, CML subjects under first generation TKI therapy for more than
2 years and with undetectable BCR-ABL1 by RT-qPCR for at least 18 months were enrolled.
In this setting of patients, Mori et al. demonstrated the improvement of successful selection
of patient candidates to TKIs discontinuation given by the application of a first generation
dPCR platform: the Fluidigm dPCR. It is based on a relatively small number of multiple
parallel micro-reactions, as above mentioned. Overall, most of the cases that remained in stable
undetectable MRD by the gold standard RT-qPCR [48] were dPCR-negative at the moment of
TKIs suspension. Moreover, the majority of patients not able to sustain the TKIs discontinuation
and who presented a molecular relapse resulted in the dPCR-positive than in the dPCR-negative
group (68% vs. 43%) [51]. The capability of dPCR in supporting CML patient selection for TKI
discontinuation was recently demonstrated also in a meta-analysis study.

Other groups experienced the application of first generation dPCR platforms and
confirmed the good accuracy and sensitivity of dPCR in the setting of BCR-ABL1 transcript
measurement [52].

Goh and colleagues evaluated the capability of nanofluidic dPCR to monitor the
continuous reduction in BCR-ABL1 transcript quantity even after it became undetectable
by conventional RT-qPCR. Indeed, dPCR presented a 2-3 log improvement of sensitivity in
samples screened by RT-qPCR, with 75% of samples resulted undetectable by RT-qPCR,
presenting positivity to BCR-ABL1 transcripts by dPCR [53]. The improvement in terms
of sensitivity has been confirmed in next studies. In another interesting study comparing
RT-qPCR to dPCR, the correlation between the two methods reached 99%, but only dPCR
was able to successfully predict a logarithmic increase of MRD. In particular, dPCR has
detected the increment of BCR-ABL1 transcripts up to 3 months earlier than RT-qPCR [54].

The application of dPCR for BCR-ABL1 quantification was explored also in pediatric
CML cases. In those cases, dPCR improved MRD by monitoring the BCR-ABL1 fusion
gene on genomic DNA [55]. In fact, in pediatric patients, the ABL1 and BCR breakpoint
cluster regions are positioned in the region affecting the primers’ and probe’s match onthe
BCR-ABL1 transcript [56]. These evidences were confirmed by another study demonstrating
that MRD monitoring by the combination of the detection on both cDNA and gDNA is the
most sensitive approach for pediatric CML patients [57].

The possibility of detecting BCR-ABL1 on gDNA instead of cDNA is attainable also in
adults, because patients presenting a long history of undetectable MRD by conventional
RT-qPCR (based on RNA analysis) could be positive for gDNA, because the fusion gene
may be not transcribed [57]. A gDNA-based dPCR approach reliably measures the ma-
jor breakpoint region and the presence of the fusion BCR-ABL1 gene and increases the
sensitivity when compared to fluorescence in situ hybridization [58,59].

The application of a second generation chip-based dPCR platform for the detection of
BCR-ABL1 transcripts was set up in the last years. Bernardi and colleagues underlined the
capability of dPCR to offer a precise, sensitive, and accurate quantification of BCR-ABL1
transcripts in different biological matrixes: the gold standard peripheral blood cells and the
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circulating extracellular vesicles (EVs) [60,61]. Indeed, it has been previously demonstrated
that CML cells may release EVs that affect both in vitro and in vivo tumor progression [62].
While the biological significance of BCR-ABL1 positive EVs has not yet been elucidated,
the total number of circulating EVs in CML patients presents a similar profile to what
was observed in patients affected by solid tumors. The number is significantly higher
in CML patients at diagnosis as compared to patients in early phases of treatment or in
“deep” MRD, and as compared to healthy individuals. Moreover, the presence of BCR-ABL1
transcript detected by RT-qPCR was described only in the cargo of exosomes isolated in
CML patients at the first disease phases. Thanks to the application of dPCR, the BCR-ABL1
transcript has been detected for the first time also in patients presenting an undetectable
MRD level, conventionally assessed [60]. In this way, the authors presented the possibility
to detect active leukemic cells applying dPCR to a new biological substrate (circulating
exosomes), avoiding invasive clinical procedures [63,64].

In addition, it was showed how to improve the selection of CML patients eligible for
a safe suspension of TKIs therapy by using second generation dPCR platforms. Both the
Italian [65–67] and the French cooperative groups explored the application of dPCR in this
setting of patients and BCR-ABL1 values measured by dPCR resulted in a significantly
predictive factor of molecular recurrence [68]. This evidence has been confirmed by a meta-
analysis study on five different trials [69]. Moreover, dPCR is reported as more reliable than
RT-qPCR in the amplification of all the transcript variants present in CML patients [70,71].

The third generation dPCR chip-based platforms were also applied for MRD quan-
tification in adult CML patients. The novel microfluidic array partitioning consumable
devices have precisely quantified BCR-ABL1 transcripts down to a 0.01% allele frequency,
with high reproducibility across many replicates [72]. This is an additional confirmation of
the capability of dPCR in overcoming RT-qPCR limits.

Considering these encouraging results, it is not surprising that new commercial assays
certified for diagnostic use (e.g., CE-IVD certification) have become available for BCR-
ABL1 transcript detection by dPCR [73]. In addition, some panels of experts have recently
suggested that coordinated international efforts should be made for the conduction of inter-
and intra-laboratories tests aiming at the standardization [74,75] of MRD monitoring by
dPCR in adult CML patients [75–77]. This push will support the introduction of dPCR as a
new MRD tool routinely used in parallel with RT-qPCR in some settings of CML patients.
Some of the potential application of dPCR in CML has been reported in Figure 3. The
routine application of dPCR is also preferred to other technologies because of the analysis
costs. In fact, dPCR prices range from EUR 4 to 12 per sample and make the analysis
sustainable because they are comparable to RT-qPCR costs.
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4. Conclusions and Future Prospective

All the results reported and revised in this review clearly support the use of dPCR for
MRD monitoring of hematological malignancies. dPCR has been described as promising
and effective in the detection of a variety of molecular targets, presenting advantages both
from the technical and clinical point of view.

Nowadays, even if Minimum Information for Publication of Digital PCR Experiments
(dMIQE) guidelines have been recently revised and published [78], guidelines for analysis
and interpretation of dPCR-based MRD data are not defined and standardized. It limits the
applicability of this technology and the definition of its possible superiority compared to
RT-qPCR or other strategies in MRD evaluation of hematological malignancies. In this context,
in patients affected by CML, MRD monitoring is key for personalized management and the
need for a more precise and sensitive MRD strategy is widely recognized. Indeed, in the era
of the so-called “4 P” medicine [79,80], onco-hematological patients need to take advantages
not only from a target and precise therapy, but also from a sensitive and precise monitoring
of the residual leukemic cells and of their response to treatment. The availability of new
technologies and their forward development is expected to move from research to diagnostic
after mandatory standardization processes, and to better drive the decision-making process
either by themselves or combined with the standard conventional approaches.
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