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Abstract: Acute myeloid leukaemia (AML) is a haematological cancer with poor outcomes due
to a lack of efficacious targeted therapies. The Nuclear Factor of Activated T Cells (NFAT) family
of transcription factors is well characterised as a regulator of the cell cycle and differentiation in
the myeloid lineage. Recent evidence has demonstrated that NFAT family members may have
roles in regulating AML leukemogenesis and resistance to targeted therapy in myeloid leukaemia.
Furthermore, gene expression data from patient samples show that some NFATs are more highly
expressed in poorly differentiated AML and after disease relapse, implying that the NFAT family
may have roles in specific types of AML. This review outlines the evidence for the role of NFAT in
healthy myeloid tissue and explores how NFAT might regulate AML pathogenesis, highlighting the
potential to target specific NFAT proteins therapeutically in AML.
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1. Introduction

Acute myeloid leukaemia (AML) is a hematopoietic malignancy of clonal origin with
dismal survival outcomes [1]. AML results from an accumulation of mutations within cells
of the myeloid lineage, leading to the expansion of immature and dysfunctional blasts,
rapid clinical sequelae and often rapid death. Many of the genetic and epigenetic lesions
responsible for driving AML pathogenesis are well-characterised, enabling sophisticated
patient stratification into molecular subgroups and a shift towards targeted therapies for
smaller strata of patients [2,3]. However, intra- and inter-patient molecular heterogeneity
and the continuous mutational evolution of AML means that resistance to existing therapy
is not uncommon [4,5]. The persistence of minimal residual disease after treatment is also
attributed to therapy-resistant leukemic stem cells (LSCs), which exhibit distinct phenotypic
and genomic properties to the bulk of AML blasts [6–8].

In addition to (cyto)genetic status, the AML transcriptome has been described as
a tool for patient prognostication, whereby expression profiles within circulating blasts
and/or LSCs can aid in the risk stratification of patients and can reveal specific mechanisms
of oncogenesis [9–12]. Transcriptional regulators could be ideal therapeutic targets for
AML, such that the effectors of multiple signalling pathways could be targeted simultane-
ously [13]. In fact, a number of transcription factors with known roles in leukaemia are
under investigation as putative drug targets for AML, including RUNX1 and c-MYC [14].

The Nuclear Factor of Activated T Cells (NFAT) family of transcription factors has
been demonstrated to have roles in the pathology of myeloid leukaemia [15,16]. NFAT
signalling has been well-characterised in various solid and lymphoid cancers, in addition
to the mechanics of the innate immune system. Their role in pathology is often dependent
on regulation of cell type-specific cytokine signalling networks, cell cycle progression and
apoptosis [17–20]. This review outlines the functions of NFAT in myeloid tissues and
examines current evidence supporting a role for NFAT in AML pathogenesis.
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2. NFAT Proteins: Structure, Function and Regulation

The general structure and function of the NFAT family are reviewed extensively
elsewhere [18,21–23]. To summarise, the NFAT family consists of five members, in which
NFATc1–4 function downstream of calcium signalling—denoted as ‘NFATc’, although other
nomenclature is often used—while NFAT5 is responsive to osmotic stress. This review
will focus on NFATc1–4, henceforth referred to as ‘NFAT’ collectively. Additionally, each
NFAT gene can undergo alternative splicing, giving rise to a number of transcript and
protein variants per family member; these protein variants vary structurally at their N-
and C-terminals. Differential expression of NFAT splice variants has been described in
neurological tissues, but the functional significance of these is not well understood [24].
Here, each of NFATc1–4 is referred to as an NFAT ‘family member’, while each protein
arising from alternative splicing is a ‘protein variant’.

NFAT proteins have high-sequence homology in a conserved DNA-binding Rel homol-
ogy domain, which is shared with the Rel superfamily of transcription factors (including
NFκB) [25]. At the N-terminus is the NFAT homology domain (NHD), which contains
phosphorylation sites that are targeted by upstream regulatory kinases. Critically, this
region possesses docking sites for regulatory phosphatase calcineurin, which dephospho-
rylates most of these phospho-sites. The N- and C- termini are flanked by transactivation
domains (TADs), which are non-homologous between family members and are a key
interaction point with transcriptional partner proteins [24,26]. Figure 1 shows some of the
nomenclature (a), protein regions with sequence alignment between differing NFAT family
members (b) and alignment amongst protein variants of NFATc2 (c).
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relative to NFATc1 in this case, shown in green) and showed a higher mean alignment score amongst all NFATc1–4 than 
other regions (7.84 for the central homologous region; 3.58 for the N–terminal; 2.64 for the C–terminal; maximum possible 
score is 10). Highlighted are approximate locations for key functional regions as described in the literature [18,20–23,27]. 
(c) A schematic diagram showing the protein sequence alignment between protein variants of NFATc2. Sequences were 
obtained and aligned as in (b). Shown are all six variants ‘B’–‘G’ with the amino acid position given (relative to variant 
‘B’). Regions of 100% sequence homology are shown in green. 
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Activation of calcium-coupled surface receptors (e.g., receptor tyrosine kinases) triggers a 
signalling cascade via phospholipase C (PLC), which promotes calcium influx in a process 
known as store-operated calcium entry (SOCE). In response to elevated calcium, the mes-
senger calmodulin activates multiple target enzymes, which include calcineurin and cal-
modulin kinase (CAMK) isoforms. Activated calcineurin docks on NFAT at conserved 
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motifs on the NHD [22,28]. 

Figure 1. Nomenclature of NFAT and schematic diagrams of NFAT protein alignment. (a) Table highlighting alternative
nomenclature for NFATc1–4. The number of protein variants (as arises from alternative splicing) is highlighted per NFAT
family member. The protein length, given in amino acids, is shown as a range from the shortest to longest protein variant,
per NFAT family member. These data were extracted from the NCBI database, based on the GRCh38 genome. (b) Protein
alignment diagram for NFATc1–4. Protein sequences for each of NFATc1–4, for the longest protein variant per family
member, were aligned and scored for strength of alignment using the online PRALINE multiple sequence alignment tool
(via Centre for Integrative Bioinformatics VU, University of Amsterdam). Sequences were obtained as in (a). A central
region of high-sequence homology was defined at a similar position as in the literature [20] (amino acid position 400–698,
relative to NFATc1 in this case, shown in green) and showed a higher mean alignment score amongst all NFATc1–4 than
other regions (7.84 for the central homologous region; 3.58 for the N–terminal; 2.64 for the C–terminal; maximum possible
score is 10). Highlighted are approximate locations for key functional regions as described in the literature [18,20–23,27].
(c) A schematic diagram showing the protein sequence alignment between protein variants of NFATc2. Sequences were
obtained and aligned as in (b). Shown are all six variants ‘B’–‘G’ with the amino acid position given (relative to variant ‘B’).
Regions of 100% sequence homology are shown in green.

Inactive NFAT proteins reside in the cytoplasm in a heavily phosphorylated state.
Activation of calcium-coupled surface receptors (e.g., receptor tyrosine kinases) triggers a
signalling cascade via phospholipase C (PLC), which promotes calcium influx in a process
known as store-operated calcium entry (SOCE). In response to elevated calcium, the
messenger calmodulin activates multiple target enzymes, which include calcineurin and
calmodulin kinase (CAMK) isoforms. Activated calcineurin docks on NFAT at conserved
PxIxIT peptide motifs and subsequently dephosphorylates at up to 14 known serine-rich
motifs on the NHD [22,28].
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The conformational change that follows NFAT dephosphorylation exposes a ‘nuclear
localisation signal’ enabling its nuclear import. The subcellular location of NFAT is carefully
balanced by opposing calcineurin phosphatase activity and that of numerous kinases,
which mask these localisation signals to facilitate nuclear export in the absence of raised
intracellular calcium. Examples of these kinases include GSK3, CK1 and JNK. Additionally,
p38 MAPK has been found to regulate NFAT transactivation in the nucleus through
phosphorylation at a motif separate to those regulated by calcineurin [26,29,30].

Once inside the nucleus, NFAT binds DNA as a monomer, unlike other Rel super-
family members. The core NFAT DNA consensus binding sequence has been defined
as 5′-GGAA(A)-3′ in T cells, but variations have been described with differing binding
affinities [23,26,31]. Lone NFAT DNA binding is often weak and it must bind in tandem
with other factors at composite sequences to regulate transcription, as has been shown with
AP-1 proteins Fos and Jun [32]. In the case of NFκB proteins, NFAT could either compete
with them or bind cooperatively, depending on the DNA motifs [31]. One proteomics study
described hundreds of putative NFAT interaction partners in T cells [33], raising the notion
that NFAT proteins function as part of large transcriptional complexes and so are master
integrators of upstream signalling pathways. A schematic diagram of NFAT function in
the cell is shown in Figure 2.

Inhibition of NFAT activation can be achieved by targeting calcineurin, using ei-
ther of the small molecule inhibitors cyclosporine A (CsA) or tacrolimus. These are both
used clinically to prevent graft rejection after organ transplantation, primarily due to
the immunosuppressive effects on T and B cell activation secondary to inhibited NFAT-
dependent cytokine transcription. While different in structure and target, they both form
complexes with cellular immunophilins, which can inhibit calcineurin phosphatase activ-
ity [34]. Calcineurin has numerous targets in addition to NFAT [35], making this a relatively
non-specific means of inhibiting NFAT activity. Subsequently, a more selective peptide
inhibitor ‘VIVIT peptide’ was developed, which directly binds the calcineurin docking
motif PxIxIT on NFAT, thus more selectively inhibiting NFAT activity [36]. These inhibitors
are useful tool compounds to study NFAT function.
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Figure 2. Schematic diagram of calcium-NFAT signalling. 1. Engagement of a calcium-coupled
surface receptor by its ligand leads to activation of phospholipase C (PLC). 2. A cascade of signalling
events is initiated by PLC, which leads to the movement of calcium from the endoplasmic reticulum
(ER) into the cytoplasm. 3. Following the depletion of ER calcium stores, surface calcium release-
activated calcium (CRAC) channels are opened, enabling an influx of calcium to the cell. 4. Raised
calcium levels trigger activation of calmodulin, which binds calcineurin. 5. A conformational change
in calcineurin allows it to bind to NFAT at the PxIxIT docking motif and dephosphorylate NFAT at
~14 phospho-sites. 6. Dephosphorylation of NFAT—with the exception of some residues not targeted
by calcineurin—exposes a nuclear localisation signal and enables its import to the nucleus. 7. Once
in the nucleus, NFAT can bind to consensus DNA sequences—including 5′-GGAAA-3′—and activate
(or inhibit) transcription. It may do so in cooperation with various transcriptional partners, which can
include C/EBPα, RUNX1 and/or NFκB. NFAT’s position in the nucleus is balanced by the activity of
import and export kinases. Note that inhibitors cyclosporine A (CsA) and VIVIT peptide can inhibit
activation of the calmodulin–calcineurin complex or binding of calcineurin to NFAT, respectively.

3. NFAT Expression in the Myeloid Lineage

NFAT expression in differentiated myeloid cells is generally lower than in T cells
and CD34+ hematopoietic stem cells (HSCs). Kiani et al. demonstrated that NFATc1–3,
but not NFATc4, are well expressed in CD34+ blood cells and altered within myeloid
lineages. NFATc2 is downregulated in most differentiated myeloid cells, while NFATc1 is
upregulated during the course of erythroid and megakaryocyte differentiation. NFATc3 is
upregulated during erythroid but not megakaryocyte or eosinophil differentiation. Fur-
thermore, inhibition of calcineurin-NFAT signalling with CsA was found to be permissive
of CD34+ HSC differentiation into neutrophils [37,38]. These data suggest that NFATs
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are responsible for regulating differentiation in healthy cells and that the NFAT family
members are non-redundant in determining cell fate. This also suggests that specific NFAT
members could be more important in the development of some morphological subtypes
of AML.

Supporting these in vitro findings, a gene expression analysis of NFATC1–4 from
CD34+ and differentiated blood cells from healthy adults showed that mature granulocytes
and monocytes exhibit lower expression of NFATC1–3 than cells of a lymphoid origin or
more primitive CD34+ cells (GSE51984 dataset; Figure 3a–c)). NFATC2 is poorly expressed
in differentiated myeloid cells relative to NFATC1 and NFATC3, suggesting that it has a
diminished role in these mature cells. NFATC4 expression was barely detectable in any
lineage or CD34+ cells (RPKM < 1; data not shown).
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Figure 3. Differential expression patterns of NFAT family members in normal and leukemic myeloid cells. (a–c) RNA-seq
data were generated by Pabst et al. from the peripheral blood of healthy volunteers for expression of NFATC1–3 (GEO
repository ID GSE51984 [39]). Cells were sorted based on expression of the following surface markers: CD34, CD3 (T cells),
CD19 (B cells), CD14 (monocytes) and CD33 (granulocytes). Each data point represents an individual, except for CD34+,
where the data point is an average of four individuals. Normalised expression values are presented as RPKM and p-values
from a one-way ANOVA for a difference in mean (excluding CD34 data) are shown (**** p < 0.0001); (d–f). RNA-seq data
were obtained from the Cancer Genome Atlas (TCGA) AML dataset [40]. Data were extracted using the TCGAbiolinks R
package (R v4.0.0), for 173 adult patients with de novo AML for the expression of NFATC1–3 in AML tissue and annotated
by disease FAB classification. NC = ‘not classified’. Expression values are ‘normalised expected read counts’ derived from
the RSEM method [41]. Dunnett’s post hoc test (following one-way ANOVA) p-values for a difference in mean are shown
(* p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001).
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AML cells are characteristically poorly differentiated [42] and it is worth considering
whether NFAT could have a role in maintaining the stem cell-like properties of blasts, given
the observed gene expression profiles in healthy myeloid tissue. RNA-seq data for NFAT
expression were extracted from the TCGA dataset of 173 adults with de novo AML [40]
(Figure 3d–f). These were categorised according to the French–American–British (FAB)
classification based on AML blast morphology [43], which gives a broad understanding of
the differentiation status of blasts (classification described in Appendix A). These data show
that poorly differentiated myeloid leukaemia, particularly in type M0, have a significantly
higher expression of NFATC2 and NFATC3 than more differentiated forms of AML. In
contrast NFATC1 expression appears consistent regardless of FAB subtype. It could be
hypothesised that NFATC2 and/or NFATC3 negatively regulate differentiation pathways
in AML and so warrant further investigation to determine the mechanism(s).

4. The Role of NFAT in Myeloid Cells

NFAT proteins regulate genes that determine the proliferation and lineage commit-
ment in the myeloid lineage. In murine granulocyte-monocyte progenitor (GMP) cells,
NFAT was found to negatively regulate genes that determine cell cycle entry such as Cdk4
and Cdk6. This activity was dependent on the Flt3 ligand (Flt3-L) signalling and phospho-
lipase PLCγ1-dependent calcium influx [44]. Another study found that CsA inhibition
of Flt3-L-stimulated murine dendritic cells (DCs) led to the upregulation of genes that
progress the cell cycle, suggesting that targets of calcineurin block Flt3 receptor-mediated
cycling. Additionally, the blockade of the calcineurin–NFAT interaction with VIVIT also
led to the expansion of the myeloid compartment in vivo [45]. These studies suggest that
the NFAT proteins inhibit proliferative signalling in myeloid development and interact
with FLT3 receptor signalling.

In normal physiology, the growth factors known as the macrophage- and granulocyte
colony-stimulating factor (M-CSF and G-CSF) trigger HSCs to differentiate into either
macrophages/monocytes or granulocytes, respectively. Nfatc1 expression was found to
increase in murine bone marrow cultures stimulated with M-CSF, but not G-CSF. Differen-
tiation triggered by M-CSF was partially blocked by VIVIT, suggesting that it is dependent
on the calcineurin–NFAT interaction. Furthermore, distinct from the Flt3-L-stimulated
GMPs described above, stimulation with either M-CSF or G-CSF was found to induce
PLCγ2 (but not PLCγ1) activity [46]. Therefore, it appears that the regulatory function of
NFAT in myelopoiesis, in the balance of proliferation and differentiation, is dependent on
specific upstream signalling networks.

NFAT proteins are well characterised in the T cell effector function and also play a role
in the myeloid cell response to pathogens. Pattern recognition receptors (PRRs), such as
TLR4, respond to structural elements of invading microbes to trigger an immune response.
Engagement of PRRs in a number of differentiated myeloid cell types can stimulate the
calcineurin–NFAT interaction via calcium influx initiated by Syk and PLCγ [47]. NFAT can
also bind the canonical 5′-GGAAA-3′ DNA motif and regulate the expression of various
cytokines in dendritic cells and macrophages, including IL-2, IL-10 and IL-12, which
influence immune responses [48,49]. There is limited evidence suggesting that systemic
CsA treatment in transplant patients could worsen outcomes due to a greater risk of fungal
infection, secondary to the inhibition of myeloid effector cell function, specifically [47].
Some of these roles of NFATs are shown schematically in Figure 4.



Hemato 2021, 2 563Hemato 2021, 2, FOR PEER REVIEW 8 
 

 

 
Figure 4. Schematic diagram of putative roles for NFAT in myeloid lineage cells. Roles for NFAT 
inferred from aforementioned studies [44–49] are shown as putative roles in human myeloid cells, 
schematically as a myeloid cell in different ‘stages’ of differentiation. Left: in mature dendritic cells, 
pathogens trigger pattern recognition receptors (PRRs) such as TLR4, which is thought to be up-
stream of NFAT-driven cytokine transcription. Middle: in progenitor cells, NFAT is downstream of 
a FLT3-PLCγ1 axis, whereby it inhibits regulators of the cell cycle. NFAT may also act downstream 
of FLT3 in dendritic cells. Right: in granulocyte-monocyte progenitors (GMPs), NFAT activates my-
eloid differentiation in response to M-CSF receptor engagement, which also signals via PLCγ2. 

The evidence discussed highlights that NFAT activity can direct myeloid progenitors 
towards quiescence by inhibiting the cell cycle or favour differentiation, depending on the 
specific upstream pathways activated. Leukemic transformation to AML is dependent on 
deregulation of these processes in steady state myelopoiesis and these changes are often 
promoted through transcription factors [42]. As such, NFAT proteins could influence 
AML initiation or maintenance downstream of mutated signalling proteins. For example, 
the FLT3 receptor is commonly mutated in AML, leading to enhanced proliferation. Un-
derstanding the relationship between FLT3-L and NFAT activity in healthy myeloid cells 
could therefore provide insight into this relationship in leukaemia. In parallel, TLR4 par-
ticipates in HSC regulation and is overexpressed in some types of AML [50,51], so it is 
worth considering whether a TLR–NFAT axis is as important in oncogenesis as in mature 
myeloid cell function. 

Broadly speaking, NFAT proteins have a greater role in less differentiated myeloid 
cells (Figure 3) and might also be important in the differentiation status of AML. It could 
also be inferred that each family member is non-redundant, so further investigation into 
individual roles is warranted. Ultimately, given the distorted nature of the hematopoietic 
hierarchy in AML [7] these are only inferences from healthy cells and should be examined 
more closely in leukaemia tissue. 

Figure 4. Schematic diagram of putative roles for NFAT in myeloid lineage cells. Roles for NFAT
inferred from aforementioned studies [44–49] are shown as putative roles in human myeloid cells,
schematically as a myeloid cell in different ‘stages’ of differentiation. Left: in mature dendritic
cells, pathogens trigger pattern recognition receptors (PRRs) such as TLR4, which is thought to be
upstream of NFAT-driven cytokine transcription. Middle: in progenitor cells, NFAT is downstream of
a FLT3-PLCγ1 axis, whereby it inhibits regulators of the cell cycle. NFAT may also act downstream of
FLT3 in dendritic cells. Right: in granulocyte-monocyte progenitors (GMPs), NFAT activates myeloid
differentiation in response to M-CSF receptor engagement, which also signals via PLCγ2.

The evidence discussed highlights that NFAT activity can direct myeloid progenitors
towards quiescence by inhibiting the cell cycle or favour differentiation, depending on
the specific upstream pathways activated. Leukemic transformation to AML is dependent
on deregulation of these processes in steady state myelopoiesis and these changes are
often promoted through transcription factors [42]. As such, NFAT proteins could influence
AML initiation or maintenance downstream of mutated signalling proteins. For exam-
ple, the FLT3 receptor is commonly mutated in AML, leading to enhanced proliferation.
Understanding the relationship between FLT3-L and NFAT activity in healthy myeloid
cells could therefore provide insight into this relationship in leukaemia. In parallel, TLR4
participates in HSC regulation and is overexpressed in some types of AML [50,51], so it is
worth considering whether a TLR–NFAT axis is as important in oncogenesis as in mature
myeloid cell function.

Broadly speaking, NFAT proteins have a greater role in less differentiated myeloid
cells (Figure 3) and might also be important in the differentiation status of AML. It could
also be inferred that each family member is non-redundant, so further investigation into
individual roles is warranted. Ultimately, given the distorted nature of the hematopoietic
hierarchy in AML [7] these are only inferences from healthy cells and should be examined
more closely in leukaemia tissue.
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5. NFAT Signalling in AML

There is growing evidence that NFAT signalling cooperates with mutations of the Fms-
related tyrosine kinase receptor 3 (FLT3) receptor in AML. Internal tandem duplication of
the FLT3 receptor (FLT3ITD) is present in around 25% of AML cases and confers particularly
poor outcomes for patients compared to other AML subtypes [52]. This is a gain-of-function
mutation that causes ligand-independent proliferative signalling [53].

Exogenous expression of Flt3ITD/FLT3ITD in hematopoietic cells has been shown to
induce a myeloproliferative disease and it is understood to require other driver mutations
to induce overt AML [54,55]. In one of these models’ co-expression of Flt3ITD with a
constitutively active form of human NFATC1 led to the rapid development of myeloid
leukaemia and expansion of immature blasts in vivo. Interestingly, the expression of
constitutive NFATC1 alone inhibited the colony-forming capacity of sorted Lin−Sca1+c-kit+

(LSK) bone marrow cells, but Flt3ITD co-expression increased colony formation dramatically,
more than Flt3ITD alone [54].

The observed phenotypes imply that NFATc1 has an inhibitory effect on expansion
of primitive LSK cells, in parallel to the studies conducted in GMPs [44,45]. Constitu-
tively active FLT3 signalling appears to supersede this and the cooperativity with NFAT
induces a distinct transcriptional program permissive of AML development [54]. Signalling
downstream of FLT3ITD is different from that of the normal FLT3 receptor, as has been
demonstrated in murine hematopoietic cells with aberrant activation of STAT5 [56]. One
possibility is that the engagement of pathological signalling by FLT3ITD may influence the
recruitment of other factors to transcriptional complexes containing NFATc1. However,
this model is an artificial representation of AML and does not reflect on the true ontogeny
of leukaemia. Evidence from relapsed AML patients suggests that FLT3ITD often arises as a
later event and is not consistently found in the founding LSC clone [57], which should be
kept in mind when considering NFAT as an effective therapeutic target.

NFATc1 activity can also mediate resistance to tyrosine kinase inhibitors (TKIs).
FLT3ITD AML can be treated with TKIs such as sorafenib and quizartinib, but point mu-
tations and/or ‘escape’ signalling pathways often lead to resistance and relapse [58].
Metzelder et al. demonstrated that the depletion of NFATC1 by shRNA or NFATc1 func-
tional inhibition with CsA or VIVIT treatment could increase sensitivity of FLT3ITD AML
cells to sorafenib. Expression of a constitutively nuclear NFATc1 with FLT3ITD in myeloid
progenitor cells increased resistance to sorafenib and also induced morphological signs of
de-differentiation [15]. It is not clear whether NFATc1 and FLT3ITD cooperativity activate a
specific resistance mechanism, which permits FLT3ITD blasts to escape sorafenib-mediated
cell death. The reversal of cell maturation may also highlight a pathogenic role of NFATc1
in maintaining stem cell-like properties, akin to the high expression of NFATc1–3 observed
in in normal HSCs [37,38].

Resistance to TKIs in chronic myeloid leukaemia (CML) was also found to be linked to
NFAT activity. CML is characterised by the BCR/ABL fusion oncogene, which is effectively
targeted by the TKI imatinib. As with FLT3 inhibitors, resistance to imatinib can arise
through a number of mechanisms, including BCR/ABL mutations and receptor-independent
means [59]. Gregory et al. identified NFAT-stimulated autocrine IL-4 signalling as a
mechanism of imatinib resistance and the effect was modulated primarily by NFATc1 [16].
IL-4 is an established regulatory target of NFAT in the function of various immune cells [17].
Sung et al. found that AML cells can increase resistance to FLT3ITD inhibition by autocrine
stimulation with various cytokines, including IL-6 and GM-CSF, which are also targets of
NFAT in some myeloid lineage cells [17,60]. Based on the evidence available, investigation
into the role of NFAT in autocrine cytokine signalling in AML may yield further insight
into the mechanism(s) of resistance to FLT3 inhibitors.

Resistance to therapy, be it FLT3 inhibitors or otherwise, is a common cause of relapse
in AML [61], with evidence so far focusing on TKIs and FLT3ITD AML. To investigate
whether NFAT might be important in AML relapse following chemotherapy, RNA-seq data
were extracted from the GSE83533 dataset, which is derived from paired patient samples
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(n = 19) at diagnosis and at relapse. All patients were initially treated with combination
chemotherapy, in some cases followed by stem cell transplantation [62]. The expression of
NFATC2 and NFATC3 was significantly higher in relapse samples, while NFATC1 expression
was unchanged (Figure 5). As these were paired samples, this suggests there could be
outgrowth of NFATC2/3high chemo-resistant clone(s) following initial therapy, or that
NFATc2/3-driven signalling is recruited secondary to acquired resistance mechanisms.
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Figure 5. NFAT expression in AML patients at diagnosis and relapse. (a–c) RNA-seq data were generated by Li et al.
from samples derived from patients with AML (n = 19) at diagnosis and relapse, following a standard treatment protocol.
Normalised expression data for NFATC1–3 are shown as RPKM from diagnosis and relapsed samples. Wilcoxon matched-
pairs signed-rank test p-values, for a difference in medians, are shown (* p < 0.05; **** p < 0.0001).

Chemotherapy primarily targets cycling cells and so is often evaded in AML by
subclones that are more quiescent and/or plastic in their state of differentiation, like the LSC
population. However, the ability of the LSCs to persist through treatment and regenerate
AML blasts is highly multi-dimensional, depending on the interaction of epigenetic and
transcriptional regulators, the evasion of the immune response and the interaction with
the bone marrow microenvironment [61,63]. The evidence discussed shows that NFAT can
regulate cycle genes and stem cell properties in myeloid physiology and pathology, and so
could plausibly have roles in mediating chemotherapy resistance or LSC development, but
its precise role in this complex interplay is not yet clear.

The role of NFAT transcriptional partners may aid the generation of a more complete
picture of the active regulatory networks in AML. For example, RUNX1 may cooperate
with FLT3ITD in the development of AML [64] and is also known to regulate key oncogenes,
such as p53 [14]. RUNX1 somatic mutations and chromosomal translocations are well
characterised in AML [65]. Masuda et al. demonstrated that RUNX proteins regulate
NFATC2 transcription and this was inhibited by the RUNX inhibitor Chb-M’ in their
models of AML, particularly in acute promyelocytic leukaemia (APL) [66], suggesting that
NFATC2 could play a role in the mechanism of RUNX-driven oncogenesis here. NFAT
was also found to interact with the promyelocytic leukaemia (PML) protein—a tumour
suppressor frequently disrupted in APL—in fibroblasts [67,68]. Further investigation of
these transcriptional partners may also highlight a novel role for NFAT in APL pathogenesis.
Various other transcriptional partners of NFAT are known to be deregulated in AML, such
as AP-1 proteins [69,70] and C/EBPα [71], although their intrinsic involvement with NFAT
has not been demonstrated in this context. A focused investigation into their relationship
with NFAT in AML may yield novel mechanisms of action and/or means of targeting
NFAT activity.
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At present, there is a lack of evidence around whether NFAT proteins mediate
leukaemia initiation or participate in maintenance in tandem with other mutational drivers.
Existing models focus on FLT3ITD-driven signalling and are based primarily on synthetic
models of AML, which do not necessarily reflect the complex clonal architecture or molecu-
lar heterogeneity of de novo leukemogenesis. Additionally, most studies present evidence
for NFATc1 activity or are based on inhibition of all NFAT or calcineurin activity, in the
absence of more specific compounds. Evidence from solid tumours suggests that individual
members of the NFAT family have distinct and sometimes opposing roles in regulation of
the cell cycle [20]. Together with the differential expression profiles of NFATC1–3 presented
in this review, it is reasonable to postulate that each NFAT family member may contribute
differentially to AML pathogenesis, and should be investigated as such. It should also
be noted that functional variants of NFAT genes are not commonly found, although not
absent, as shown by mutational profiling of large AML patient datasets [5,40]. In light of
the evidence available, there are some considerations for future therapeutic strategies to
target NFAT signalling in AML.

6. Therapeutic Targeting of NFAT Proteins

Cyclosporine A, tacrolimus and VIVIT peptides have served as key inhibitors for exper-
imental research into NFAT, but their clinical application is quite limited. Calcineurin, the
target of CsA, has a number of targets other than NFAT that are less well characterised [35].
The clinical use of CsA in organ transplant patients is associated with significant nephro-
toxicity and neurotoxicity, due to some of these other targets and the role of NFAT proteins
in the nervous and cardiovascular systems [72]. Tacrolimus has an even higher toxicity, but
some evidence suggests that lower doses could be well-tolerated by patients [73,74], though
this would still carry the issue of non-specificity towards NFAT. CsA is also known to
inhibit P-glycoprotein (Pgp), which can increase cellular efflux of some chemotherapeutics
and reduce their efficacy. One randomised controlled trial of patients with poor risk AML
(n = 226) found that intravenous CsA treatment improved overall survival, although this
was linked with inhibition of Pgp and thus potentially not connected to NFAT activity [75].
However, highly toxic chemotherapy regimens are not well tolerated by cohorts of older
AML patients, so more targeted drugs would be advantageous.

VIVIT has the advantage of targeting the calcineurin–NFAT interaction specifically.
It has been developed to be cell permeable, stable in the circulation (half-life = 30 h) and
is capable of inhibiting T cell function in mice [76]. There is currently no clinical data
regarding VIVIT; however, some in vivo data in cardiovascular disease models suggest
that its pharmacological properties are undesirable for application to patients [77]. There
are various experimental compounds that target other elements of NFAT function. The
salicylic acid derivative UR-1505 specifically blocks NFAT binding to DNA and was found
to be an effective immunosuppressant [78], but its efficacy translated poorly to the clinic as
a dermatitis therapy, particularly when compared with tacrolimus [79]. Based on extremely
limited clinical information, there is clearly a need to develop NFAT-targeted therapy
further in order to progress research into its viability.

Additionally, recent research has identified novel means of targeting specific NFAT
family members. A novel calcineurin-binding region (CNBR) is present in the N-terminus
of some NFATs, while other binding regions have variable binding affinities for calcineurin
between NFATc1–4, meaning that it could be possible to preferentially target some of the
NFAT family members therapeutically. For example, it may be possible to specifically
inhibit the interaction of calcineurin with either NFATc1 and NFATc4 by targeting CNBR3,
but no such inhibitor exists presently [27]. More broadly, therapeutic targeting of tran-
scription factors has been shown to be challenging, although inhibitors of the related Rel
protein NF-κB are in early clinical trials for the treatment of AML and other cancers [80].
Some of these inhibitors target nuclear shuttling, DNA binding and downstream targets
of NF-κB, which could be applied similarly for inhibition of NFAT in a clinical setting. It
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may therefore be possible to target nuclear import/export kinases, targets of NFAT and/or
transcriptional partners of NFAT, but further evidence is needed.

Given that NFAT has roles in a number of immune cells, the effect(s) of NFAT in-
hibition on the wider AML microenvironment must also be considered. T cell-driven
immune surveillance is a major defence against the development of cancers, including
leukaemia. Often, the interface between AML blasts and T cells within the bone marrow
microenvironment is distorted in such a way that allows the AML cells to escape immune
recognition [81]. In vitro studies have demonstrated that either the AML cell supernatant or
direct AML cell contact suppresses T cell activation, via NFAT signalling specifically [82,83].
If suppressed NFAT signalling in T cells is permissive of AML immune evasion, then
significant caution should be taken when developing global NFAT inhibition as a means
of therapy. This further stresses the need to elucidate the contribution of differing NFAT
family members to each of the biological processes relevant in AML development, to allow
for more targeted therapies to be developed.

7. Conclusions

At present, there is intriguing evidence to implicate NFAT proteins in AML. By looking
at their roles in normal myeloid physiology and in other types of cancer, it is conceivable
that NFAT regulates the transcription of key cell cycle and/or differentiation programs
in leukemogenesis. Furthermore, NFAT has been observed to play a role in resistance to
TKIs in myeloid leukaemia and may mediate patient relapse. However, it is still to be
ascertained whether NFAT is important in the context of some mutational profiles—as with
FLT3ITD—or if its oncogenic properties are applicable across numerous AML subtypes.
Further characterisation of individual NFATs is essential to understanding these roles
and may elucidate more specific targets. If NFAT inhibitors continue to be developed for
more clinical applications, the NFAT family of transcription factors may become a viable
treatment target in AML.
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Appendix A. FAB Classification of AML

FAB Classification Description
M0 Minimally differentiated AML
M1 Myeloid leukaemia (without maturation)
M2 Myeloid leukaemia (with maturation)
M3 Acute progranulocytic leukaemia
M4 Myelomonocytic leukaemia
M5 Monocytic leukaemia
M6 Erythroid leukaemia
M7 Megakaryocytic leukaemia

Table showing the description of each FAB category [43].

Abbreviations

APL Acute Promyelocytic Leukaemia
AML Acute Myeloid Leukaemia
CAMK Calmodulin Kinase
CML Chronic Myeloid Leukaemia
CNBR Calcineurin-Binding Region
CsA Cyclosporine A
DC Dendritic Cell
FAB Classification French–American–British Classification
FLT3 Fms-related tyrosine kinase receptor 3
FLT3ITD FLT3 Internal Tandem Duplication
FLT3-L FLT3 Ligand
G-CSF Granulocyte Colony-Stimulating Factor
GMP Granulocyte-Monocyte Progenitor
HSC Hematopoietic Stem Cell
LSC Leukemic Stem Cell
M-CSF Macrophage Colony-Stimulating Factor
NFAT Nuclear Factor of Activated T Cells
NHD NFAT Homology Domain
Pgp P-glycoprotein
PLC Phospholipase C
PML Promyelocytic Leukaemia
PRR Pattern Recognition Receptor
SOCE Store-Operated Calcium Entry
TAD Transactivation Domain
TKI Tyrosine Kinase Inhibitor

References
1. Network, H.M.R. Survival: Acute Myeloid Leukaemia. Available online: https://www.hmrn.org/statistics/survival (accessed

on 16 January 2021).
2. De Kouchkovsky, I.; Abdul-Hay, M. ‘Acute myeloid leukemia: A comprehensive review and 2016 update’. Blood Cancer J. 2016,

6, e441. [CrossRef]
3. Kantarjian, H.; Kadia, T.; DiNardo, C.; Daver, N.; Borthakur, G.; Jabbour, E.; Garcia-Manero, G.; Konopleva, M.; Ravandi, F. Acute

myeloid leukemia: Current progress and future directions. Blood Cancer J. 2021, 11, 41. [CrossRef] [PubMed]
4. Morita, K.; Wang, F.; Jahn, K.; Hu, T.; Tanaka, T.; Sasaki, Y.; Kuipers, J.; Loghavi, S.; Wang, S.A.; Yan, Y.; et al. Clonal evolution of

acute myeloid leukemia revealed by high-throughput single-cell genomics. Nat. Commun. 2020, 11, 5327. [CrossRef]
5. Tyner, J.W.; Tognon, C.E.; Bottomly, D.; Wilmot, B.; Kurtz, S.E.; Savage, S.L.; Long, N.; Schultz, A.R.; Traer, E.; Abel, M.; et al.

Functional genomic landscape of acute myeloid leukaemia. Nature 2018, 562, 526–531. [CrossRef]
6. Ishikawa, F.; Yoshida, S.; Saito, Y.; Hijikata, A.; Kitamura, H.; Tanaka, S.; Nakamura, R.; Tanaka, T.; Tomiyama, H.; Saito, N.; et al.

Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nat. Biotechnol.
2007, 25, 1315–1321. [CrossRef] [PubMed]

7. Pollyea, D.A.; Jordan, C.T. Therapeutic targeting of acute myeloid leukemia stem cells. Blood 2017, 129, 1627. [CrossRef]
8. Jordan, C.T. The leukemic stem cell. Best Prac. Res. Clin. Haematol. 2007, 20, 13–18. [CrossRef]

https://www.hmrn.org/statistics/survival
http://doi.org/10.1038/bcj.2016.50
http://doi.org/10.1038/s41408-021-00425-3
http://www.ncbi.nlm.nih.gov/pubmed/33619261
http://doi.org/10.1038/s41467-020-19119-8
http://doi.org/10.1038/s41586-018-0623-z
http://doi.org/10.1038/nbt1350
http://www.ncbi.nlm.nih.gov/pubmed/17952057
http://doi.org/10.1182/blood-2016-10-696039
http://doi.org/10.1016/j.beha.2006.10.005


Hemato 2021, 2 569

9. Docking, T.R.; Parker, J.D.K.; Jädersten, M.; Duns, G.; Chang, L.; Jiang, J.; Pilsworth, J.A.; Swanson, L.A.; Chan, S.K.; Chiu, R.;
et al. A clinical transcriptome approach to patient stratification and therapy selection in acute myeloid leukemia. Nat. Commun.
2021, 12, 2474. [CrossRef]

10. Ng, S.W.K.; Mitchell, A.; Kennedy, J.A.; Chen, W.C.; McLeod, J.; Ibrahimova, N.; Arruda, A.; Popescu, A.; Gupta, V.; Schimmer,
A.D.; et al. A 17-gene stemness score for rapid determination of risk in acute leukaemia. Nature 2016, 540, 433–437. [CrossRef]
[PubMed]

11. Massett, M.E.; Monaghan, L.; Patterson, S.; Mannion, N.; Bunschoten, R.P.; Hoose, A.; Marmiroli, S.; Liskamp, R.M.J.; Jørgensen,
H.G.; Vetrie, D.; et al. A KDM4A-PAF1-mediated epigenomic network is essential for acute myeloid leukemia cell self-renewal
and survival. Cell Death Dis. 2021, 12, 573. [CrossRef]

12. Gentles, A.J.; Plevritis, S.K.; Majeti, R.; Alizadeh, A.A. Association of a leukemic stem cell gene expression signature with clinical
outcomes in acute myeloid leukemia. JAMA 2010, 304, 2706–2715. [CrossRef]

13. Darnell, J.E. Transcription factors as targets for cancer therapy. Nat. Rev. Cancer 2002, 2, 740–749. [CrossRef]
14. Takei, H.; Kobayashi, S.S. Targeting transcription factors in acute myeloid leukemia. Int. J. Hematol. 2019, 109, 28–34. [CrossRef]

[PubMed]
15. Metzelder, S.K.; Michel, C.; von Bonin, M.; Rehberger, M.; Hessmann, E.; Inselmann, S.; Solovey, M.; Wang, Y.; Sohlbach, K.;

Brendel, C.; et al. NFATc1 as a therapeutic target in FLT3-ITD-positive AML. Leukemia 2015, 29, 1470. [CrossRef] [PubMed]
16. Gregory, M.A.; Phang, T.L.; Neviani, P.; Alvarez-Calderon, F.; Eide, C.A.; O’Hare, T.; Zaberezhnyy, V.; Williams, R.T.; Druker, B.J.;

Perrotti, D.; et al. Wnt/Ca2+/NFAT signaling maintains survival of Ph+ leukemia cells upon inhibition of Bcr-Abl. Cancer Cell
2010, 18, 74–87. [CrossRef] [PubMed]

17. Fric, J.; Zelante, T.; Wong, A.Y.W.; Mertes, A.; Yu, H.-B.; Ricciardi-Castagnoli, P. NFAT control of innate immunity. Blood 2012,
120, 1380. [CrossRef]

18. Qin, J.-J.; Nag, S.; Wang, W.; Zhou, J.; Zhang, W.-D.; Wang, H.; Zhang, R. NFAT as cancer target: Mission possible? Biochim. Et
Biophys. Acta 2014, 1846, 297–311. [CrossRef]

19. Mancini, M.; Toker, A. NFAT Proteins: Emerging Roles in Cancer Progression. Nat. Rev. Cancer 2009, 9, 810–820. [CrossRef]
20. Mognol, G.P.; Carneiro, F.R.G.; Robbs, B.K.; Faget, D.V.; Viola, J.P.B. Cell cycle and apoptosis regulation by NFAT transcription

factors: New roles for an old player. Cell Death Dis. 2016, 7, e2199. [CrossRef]
21. Macián, F.; López-Rodríguez, C.; Rao, A. Partners in transcription: NFAT and AP-1. Oncogene 2001, 20, 2476–2489. [CrossRef]
22. Macian, F. NFAT proteins: Key regulators of T-cell development and function. Nat. Rev. Immunol. 2005, 5, 472. [CrossRef]

[PubMed]
23. Rao, A.; Luo, C.; Hogan, P.G. TRANSCRIPTION FACTORS OF THE NFAT FAMILY: Regulation and Function. Annu. Rev.

Immunol. 1997, 15, 707–747. [CrossRef] [PubMed]
24. Vihma, H.; Pruunsild, P.; Timmusk, T. Alternative splicing and expression of human and mouse NFAT genes. Genomics 2008, 92,

279–291. [CrossRef]
25. Graef, I.A.; Gastier, J.M.; Francke, U.; Crabtree, G.R. Evolutionary relationships among Rel domains indicate functional diversifi-

cation by recombination. Proc. Natl. Acad. Sci. USA 2001, 98, 5740. [CrossRef] [PubMed]
26. Hogan, P.G.; Chen, L.; Nardone, J.; Rao, A. Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev. 2003, 17,

2205–2232. [CrossRef] [PubMed]
27. Kitamura, N.; Kaminuma, O. Isoform-Selective NFAT Inhibitor: Potential Usefulness and Development. Int. J. Mol. Sci. 2021,

22, 2725. [CrossRef] [PubMed]
28. Gwack, Y.; Feske, S.; Srikanth, S.; Hogan, P.G.; Rao, A. Signalling to transcription: Store-operated Ca2+ entry and NFAT activation

in lymphocytes. Cell Calcium 2007, 42, 145–156. [CrossRef] [PubMed]
29. Villar, M.; Ortega-Pérez, I.; Were, F.; Cano, E.; Redondo, J.M.; Vázquez, J. Systematic characterization of phosphorylation sites in

NFATc2 by linear ion trap mass spectrometry. Proteomics 2006, 6 (Suppl. 1), S16–S27. [CrossRef]
30. Leung-Theung-Long, S.; Mondor, I.; Guiraud, M.; Lamare, C.; Nageleekar, V.; Paulet, P.-E.; Rincon, M.; Guerder, S. Impaired

NFAT Transcriptional Activity in Antigen-Stimulated CD8 T Cells Linked to Defective Phosphorylation of NFAT Transactivation
Domain. J. Immunol. 2009, 182, 6807. [CrossRef]

31. Badran, B.M.; Wolinsky, S.M.; Burny, A.; Willard-Gallo, K.E. Identification of Three NFAT Binding Motifs in the 5′-Upstream
Region of the Human CD3γ Gene That Differentially Bind NFATc1, NFATc2, and NF-κB p50. J. Biol. Chem. 2002, 277, 47136–47148.
[CrossRef]

32. Chen, L.; Glover, J.N.M.; Hogan, P.G.; Rao, A.; Harrison, S.C. Structure of the DNA-binding domains from NFAT, Fos and Jun
bound specifically to DNA. Nature 1998, 392, 42–48. [CrossRef]

33. Gabriel, C.H.; Gross, F.; Karl, M.; Stephanowitz, H.; Hennig, A.F.; Weber, M.; Gryzik, S.; Bachmann, I.; Hecklau, K.; Wienands, J.;
et al. Identification of Novel Nuclear Factor of Activated T Cell (NFAT)-associated Proteins in T Cells. J. Biol. Chem. 2016, 291,
24172–24187. [CrossRef]

34. Bierer, B.E.; Holländer, G.; Fruman, D.; Burakoff, S.J. Cyclosporin A and FK506: Molecular mechanisms of immunosuppression
and probes for transplantation biology. Curr. Opin. Immunol. 1993, 5, 763–773. [CrossRef]

35. Li, H.; Rao, A.; Hogan, P.G. Interaction of calcineurin with substrates and targeting proteins. Trends Cell Biol. 2011, 21, 91–103.
[CrossRef]

http://doi.org/10.1038/s41467-021-22625-y
http://doi.org/10.1038/nature20598
http://www.ncbi.nlm.nih.gov/pubmed/27926740
http://doi.org/10.1038/s41419-021-03738-0
http://doi.org/10.1001/jama.2010.1862
http://doi.org/10.1038/nrc906
http://doi.org/10.1007/s12185-018-2488-1
http://www.ncbi.nlm.nih.gov/pubmed/29956082
http://doi.org/10.1038/leu.2015.95
http://www.ncbi.nlm.nih.gov/pubmed/25976987
http://doi.org/10.1016/j.ccr.2010.04.025
http://www.ncbi.nlm.nih.gov/pubmed/20609354
http://doi.org/10.1182/blood-2012-02-404475
http://doi.org/10.1016/j.bbcan.2014.07.009
http://doi.org/10.1038/nrc2735
http://doi.org/10.1038/cddis.2016.97
http://doi.org/10.1038/sj.onc.1204386
http://doi.org/10.1038/nri1632
http://www.ncbi.nlm.nih.gov/pubmed/15928679
http://doi.org/10.1146/annurev.immunol.15.1.707
http://www.ncbi.nlm.nih.gov/pubmed/9143705
http://doi.org/10.1016/j.ygeno.2008.06.011
http://doi.org/10.1073/pnas.101602398
http://www.ncbi.nlm.nih.gov/pubmed/11344309
http://doi.org/10.1101/gad.1102703
http://www.ncbi.nlm.nih.gov/pubmed/12975316
http://doi.org/10.3390/ijms22052725
http://www.ncbi.nlm.nih.gov/pubmed/33800389
http://doi.org/10.1016/j.ceca.2007.03.007
http://www.ncbi.nlm.nih.gov/pubmed/17572487
http://doi.org/10.1002/pmic.200500407
http://doi.org/10.4049/jimmunol.0803539
http://doi.org/10.1074/jbc.M206330200
http://doi.org/10.1038/32100
http://doi.org/10.1074/jbc.M116.739326
http://doi.org/10.1016/0952-7915(93)90135-F
http://doi.org/10.1016/j.tcb.2010.09.011


Hemato 2021, 2 570

36. Aramburu, J.; Yaffe, M.B.; López-Rodrıíguez, C.; Cantley, L.C.; Hogan, P.G.; Rao, A. Affinity-Driven Peptide Selection of an NFAT
Inhibitor More Selective Than Cyclosporin A. Science 1999, 285, 2129. [CrossRef]

37. Kiani, A.; Habermann, I.; Haase, M.; Feldmann, S.; Boxberger, S.; Sanchez-Fernandez, M.A.; Thiede, C.; Bornhäuser, M.; Ehninger,
G. Expression and regulation of NFAT (nuclear factors of activated T cells) in human CD34+ cells: Down-regulation upon myeloid
differentiation. J. Leukoc. Biol. 2004, 76, 1057–1065. [CrossRef] [PubMed]

38. Kiani, A.; Kuithan, H.; Kuithan, F.; Kyttälä, S.; Habermann, I.; Temme, A.; Bornhäuser, M.; Ehninger, G. Expression analysis of
nuclear factor of activated T cells (NFAT) during myeloid differentiation of CD34+ cells: Regulation of Fas ligand gene expression
in megakaryocytes. Exp. Hematol. 2007, 35, 757–770. [CrossRef] [PubMed]

39. Pabst, C.; Bergeron, A.; Lavallée, V.-P.; Yeh, J.; Gendron, P.; Norddahl, G.L.; Krosl, J.; Boivin, I.; Deneault, E.; Simard, J.; et al. GPR56
identifies primary human acute myeloid leukemia cells with high repopulating potential in vivo. Blood 2016, 127, 2018–2027.
[CrossRef]

40. Ley, T.J.; Miller, C.; Ding, L.; Raphael, B.J.; Mungall, A.J.; Robertson, A.; Hoadley, K.; Triche, T.J., Jr.; Laird, P.W.; Baty, J.D.; et al.
Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N. Engl. J. Med. 2013, 368, 2059–2074. [CrossRef]
[PubMed]

41. Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC
Bioinform. 2011, 12, 323. [CrossRef]

42. Olsson, I.; Bergh, G.; Ehinger, M.; Gullberg, U. Cell differentiation in acute myeloid leukemia. Eur. J. Haematol. 1996, 57, 1–16.
[CrossRef]

43. Schiffer, C.A.; Stone, R.M. Morphologic Classification and Clinical and Laboratory Correlates. In Holland-Frei Cancer Medicine,
6th ed.; Kufe, D.W., Pollock, P.E., Weichselbaum, R.R., Bast, R.C., Jr., Gansler, T.S., Holland, J.F., Frei, E., III, Eds.; BC Decker:
Hamilton, ON, USA, 2003.

44. Fric, J.; Lim, C.X.F.; Mertes, A.; Lee, B.T.K.; Viganò, E.; Chen, J.; Zolezzi, F.; Poidinger, M.; Larbi, A.; Strobl, H.; et al. Calcium
and calcineurin-NFAT signaling regulate granulocyte-monocyte progenitor cell cycle via Flt3-L. Stem Cells 2014, 32, 3232–3244.
[CrossRef] [PubMed]

45. Fric, J.; Lim, C.X.F.; Koh, E.G.L.; Hofmann, B.; Chen, J.; Tay, H.S.; Mohammad Isa, S.A.B.; Mortellaro, A.; Ruedl, C.; Ricciardi-
Castagnoli, P. Calcineurin/NFAT signalling inhibits myeloid haematopoiesis. EMBO Mol. Med. 2012, 4, 269–282. [CrossRef]
[PubMed]

46. Barbosa, C.M.; Bincoletto, C.; Barros, C.C.; Ferreira, A.T.; Paredes-Gamero, E.J. PLCγ2 and PKC are important to myeloid lineage
commitment triggered by M-SCF and G-CSF. J. Cell Biochem. 2014, 115, 42–51. [CrossRef]

47. Bendickova, K.; Tidu, F.; Fric, J. Calcineurin-NFAT signalling in myeloid leucocytes: New prospects and pitfalls in immunosup-
pressive therapy. EMBO Mol. Med. 2017, 9, 990–999. [CrossRef] [PubMed]

48. Elloumi, H.Z.; Maharshak, N.; Rao, K.N.; Kobayashi, T.; Ryu, H.S.; Mühlbauer, M.; Li, F.; Jobin, C.; Plevy, S.E. A cell permeable
peptide inhibitor of NFAT inhibits macrophage cytokine expression and ameliorates experimental colitis. PLoS ONE 2012,
7, e34172. [CrossRef]

49. Yu, H.-B.; Yurieva, M.; Balachander, A.; Foo, I.; Leong, X.; Zelante, T.; Zolezzi, F.; Poidinger, M.; Ricciardi-Castagnoli, P. NFATc2
mediates epigenetic modification of dendritic cell cytokine and chemokine responses to dectin-1 stimulation. Nucleic Acids Res.
2014, 43, 836–847. [CrossRef]

50. Monlish, D.A.; Bhatt, S.T.; Schuettpelz, L.G. The Role of Toll-Like Receptors in Hematopoietic Malignancies. Front. Immunol. 2016,
7, 390. [CrossRef]
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