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Abstract: Despite recent advances in diagnosis and therapy, arterial and venous thrombosis remain
a major cause of morbidity and mortality in Philadelphia-negative myeloproliferative neoplasms
(MPNs). Preventing and treating arterial and venous thrombosis represent one of the major goals
in MPNs. The prothrombotic phenotype of MPNs is the result of a complex interplay between
several components. Neutrophils, platelets, red blood cells (RBCs) and endothelial cells assume an
activated phenotype in MPNs and undergo morphologic and metabolic changes that render these
cells prothrombotic. These changes are in part the result of alterations induced by MPN initiating,
driving mutations as well as the effect of extrinsic factors that stem from cell interactions as well as
the inflammatory environment and rheological properties that characterize MPNs. In this review,
we address current management issues in MPNs and provide an update on recent understanding of
the pathogenesis of thrombosis in MPNs. We also address how lessons learned from other thrombo-
inflammatory conditions can further inform and improve management of thrombosis in MPNs.
Based on the above data and recent discoveries and developments, we discuss potential novel targets
and therapeutic approaches to tackle the challenge of thrombosis in MPNs.
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1. Introduction

Myeloproliferative neoplasms (MPNs) are stem-cell, clonal hematopoietic disorders
characterized by proliferation of one or more myeloid cell lineages in the bone marrow and
increased blood cells in the peripheral blood. The classical Philadelphia (Ph) negative MPNs
include polycythemia vera (PV), essential thrombocythemia (ET) and primary myelofibrosis
(MF). In most cases, clonal proliferation is driven by one of 3 mutually exclusive driver
somatic mutations resulting in dysregulation of the Janus kinase-signal transducers and
activators of transcription (JAK-STAT) pathway and subsequent activation of downstream
signaling pathways [1]. JAK2V617F is the most common driver mutation, found in 96%
of patients with PV and in 55% and 65% of patients with ET and MF respectively, while
JAK2 exon 12 mutations can be found in about 3% of patients with PV [2]. Calreticulin
gene (CALR) and TPO receptor (MPL) gene mutations are found in up to 25% and 4% of
patients with ET and up to 35% and 8% of patients with MF, respectively. In about 10–15%
of patients with ET and MF no driver mutation can be identified, and these are considered
triple negative MPNs [3].

PV, ET and MF are characterized (to different degrees) by a chronic course with a
shorter overall survival [4]. They share clinical characteristics such as vasomotor symp-
toms, extramedullary hematopoiesis with splenomegaly, constitutional symptoms, pruritus,
and all carry an increased risk for thrombosis (arterial and venous) and for disease pro-
gression/transformation. Although similarities exist in the molecular signatures across the
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different disease subtypes, disease phenotype, prognosis and therapeutic approaches may
significantly differ [4].

Thrombotic and hemorrhagic complications (especially in PV and ET) are central to
the clinical phenotype of MPNs and contribute to the inferior quality of life and survival in
these patients.

Although arterial and venous thromboses are both increased in MPNs, different
pathogenetic pathways are involved [5]. In general, venous thrombosis is associated with
hypercoagulability and stasis which leads to endothelial hypoxia and a pro-inflammatory
phenotype, characterized by the expression of adhesion molecules, accumulation and
activation of leukocytes and platelets. For example, increased formation of neutrophil
extracellular traps (NETs) is associated with expression of tissue factor (TF) on platelets,
activation of factor XII and subsequently of the intrinsic coagulation pathway [6], and in-
activation of anticoagulant molecules such as tissue factor pathway inhibitor (TFPI) [7].
Arterial thrombosis is typically initiated by an atherosclerotic plaque. Expression of ad-
hesion molecules by endothelial cells that cover the atherosclerotic plaque contributes to
platelet adhesion, attachment, and migration of monocytes into the vascular wall, increas-
ing plaque growth. Furthermore, increased NET formation is also part of the pathogenesis
of arterial thrombosis [7]. Arterial thrombosis is rarely triggered by arterial vasospasm.

Despite the apparent divergent pathways that characterize venous and arterial throm-
bosis, there is often an overlap in the pathogenic changes induced in MPNs that may affect
both pathologies.

In recent years, several genetic and metabolic insights led to better understanding of
the pathogenetic processes leading to arterial and venous thrombosis and hemorrhage in
MPNs. Some of these insights expose potential targets for prevention and treatment of
these complications. In this review, we address current management issues, provide an
update on recent understanding of the pathogenesis of thrombosis in MPNs and based on
these developments, discuss potential novel targets and therapeutic approaches to tackle
the challenge of thrombosis in MPNs.

2. The Scope of the Problem: Thrombosis in MPNs

Thrombosis, and to a lesser extent bleeding are leading causes of morbidity and
mortality in MPNs, especially in PV and ET [8,9]. Thrombosis can present in early stages
or later during the course of disease [10]. The prevalence of thrombotic events at diagnosis
ranges from 12–39% in PV and 11–25% in ET [11] compared to 3–7% in myelofibrosis.
The rates of thrombosis in patients with MPNs are increased when compared to the general
population, with an estimated 3-fold increased rate of arterial thrombotic events and 10-fold
increased rate of venous thrombotic events [10].

Arterial events comprise two-thirds of cases while venous thrombotic events (VTEs)
account for a third of total MPN related thrombotic events [10]. VTEs may typically occur
in unusual sites including splanchnic (portal, splenic, hepatic and mesenteric) veins and
cerebral sinus veins [10,12]. Of note, splanchnic vein thrombosis is exceptionally enriched
for in MPNs with high recurrence rates of between 15% and 20% over 10 years [13].

Although primary and secondary prophylaxis reduce the risk for first or recurrent
thrombotic events, respectively [14], patients still face high rates of thrombosis in the
presence of bleeding complications [15]. Better understanding of the potential mechanisms
and risk factors for thrombosis may improve the current treatment approach and encour-
age the development of new targeted therapies to reduce MPN-associated thrombotic
complications, hence improve quality of life and overall survival of these patients.

3. Current Risk Assessment for Thrombosis in MPNs: Established and Suggested Models

Studies of PV and ET have previously used various definitions for the thrombotic risk
in PV and ET. In PV, age and history of thrombosis remain the most consistent risk factors [9].
Hence patients are stratified into low risk (age ≤60 years and no history of thrombosis)
and high risk (age >60 years old or a history of thrombosis) [16]. In ET, stratification
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based on the revised international prognostic score for thrombosis in ET (revised IPSET
thrombosis) includes age, a history of thrombosis and the status of JAK2V617F mutation.
Accordingly, 4 risk groups have been identified: (i) very low risk (age ≤60 years, no history
of thrombosis and JAK2 wild type), (ii) low risk (age≤60 years and no history of thrombosis
and JAK2V617F mutated), (iii) intermediate risk (age >60 years old, no history of thrombosis
and JAK2 wild type) and (iv) high risk (age >60 years old or a history of thrombosis and
JAK2V617F mutated) [17].

Other risk factors which may also contribute to thrombosis propensity such as cardio-
vascular (CV) risk factors, leukocytosis, JAK2 allele burden and high hematocrit, have not
yet been consistently validated. For example, among 891 patients with ET enrolled in an
international study, in addition to age >60 years and history of prior thrombosis, other risk
factors for arterial thrombosis were identified including CV risk factors (tobacco use, hy-
pertension, or diabetes mellitus), leukocytosis >11 × 109/L, and the presence of JAK2V617F

mutation; only male gender predicted venous thrombosis [18]. While CV risk factors were
also identified as prothrombotic according to the initial analysis of the International Prog-
nostic Score for Thrombosis in ET (IPSET-thrombosis) [17], a further analysis by Barbui et al.
observed a low impact of the CV risk factors on the IPSET thrombosis in patients with
ET [19]. Accordingly, CV risk factors are not included in the current risk stratification,
nevertheless, they should be managed and be well controlled [16].

The JAK2V617F mutation, and especially a high variant allele burden, increase the
risk for thrombotic events compared to the CALR mutations or no mutations (“triple-
negative”) in patients with ET [20,21]. Additionally, patients with clonal hematopoiesis
of indeterminate significance (CHIP), who harbor the JAK2 mutation without overt MPN
have an increased risk for venous thrombosis [22]. Accordingly, a lower risk of thrombosis
was reported in MF with CALR mutations compared to JAK2 and MPL [23]. Nonetheless,
CALR mutation status did not have a significant impact on the IPSET thrombosis prognostic
score [24].

Blood counts were previously studied as possible markers for thrombotic risk. Ac-
cording to the PT 1 trail [25] and the IPSET data set [19,26], thrombocytosis is not as-
sociated with increased risk for thrombosis. On the contrary, extreme thrombocytosis
(>1000–1500 × 109/L) is associated with a lower risk of thrombosis [18] and increased risk
of bleeding complications due to an acquired von Willebrand syndrome [16]. Current
guidelines suggest a target reduction of <400 × 109/L platelets although there is con-
flicting evidence to suggest that specific platelet values are protective against thrombotic
events [27–29]. It seems that the prothrombotic state is driven by qualitative rather than
quantitative changes in platelets [30]. Hyper-viscosity due to erythrocytosis [31] and high
hematocrit levels increase the risk for thrombotic events in patients with PV [32]. Reduc-
tion of hematocrit levels <45% decreases the risk for thrombotic events in comparison to
hematocrit of 45–50% as shown in the phase III CYTOreductive Therapy in Polycythemia
Vera (CYTO PV) study [33]. Studies assessing leukocytosis as a risk factor for thrombosis in
ET and PV are mostly retrospective in design and demonstrated inconclusive results [34].
In patients with ET, initial reports showed that increased leukocyte counts correlated with
both arterial and venous thrombosis [35,36] but these were not consistent in follow-up
analyses [37]. Analysis of patients with PV enrolled in the European Collaboration on
Low-Dose Aspirin in Polycythemia Vera (ECLAP) study showed an association between
leukocytosis (WBC > 17 × 109/L) and an increased risk for thrombosis [38,39]. Similar
results were also shown in the CYTO PV study with leukocytosis (WBC > 12 × 109/L)
and increased risk for thrombosis [40]. In addition, according to a recent metanalysis of
more than 30,000 patients with PV and ET, leukocytosis increased the thrombotic risk,
mainly in patients with ET and mainly of arterial events [41]. A more recent multi-center
American analysis showed that increased leukocyte counts predict disease progression,
but not thrombosis [42]. In fact, it is still debatable whether leukocytosis is a trigger or only
a marker of thrombosis [43]. Hence, leukocyte count is not currently incorporated in the
current risk stratification for thrombosis.
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Additional insights into the pathogenesis of thrombosis in MPNs may identify novel
biomarkers and risk factors for thrombosis and refine thrombosis risk models.

4. Pathogenetic Pathways Promoting Thrombosis in MPNs

The prothrombotic phenotype of MPN’s is the result of a complex interplay between
several components (Figure 1). Neutrophils, platelets and red blood cells (RBCs) assume an
activated phenotype in MPNs and undergo morphologic and metabolic changes that render
these cells prothrombotic. These changes are in part the result of changes induced by MPN
initiating driving mutations (JAK2, CALR and MPL) as well as the effect of extrinsic factors
that stem from cell interactions as well as the inflammatory environment and rheological
properties that characterize MPNs. Recent insights also implicate endothelial cells as key
players in promoting thrombosis in MPN via cell intrinsic and extrinsic changes.

4.1. RBC’s and Hematocrit

The first and perhaps most intuitive clinical observation was that of the associa-
tion between elevated hematocrit levels and thrombotic events in patients with PV [32].
This association was validated in several subsequent clinical trials as already indicated
and reduction of hematocrit levels is still regarded as an actionable clinical endpoint that
reduces thromboses rates in PV [33]. Santisakultarm et al. studied cerebral blood flow in
transgenic MPN mouse models by two-photon excited fluorescence microscopy imaging
and demonstrated that PV and ET phenotypes are associated with an increase in ‘stalled’
blood flow in an elevated fraction of brain capillaries. In the PV model, a hematocrit over
55% was specifically associated with an increase in capillary flow obstruction [44].

More recently it became clear that the prothrombotic effects of elevated hematocrit
result from the distinct biophysical effect of an increased RBC mass as well as from in-
teractions between RBCs with platelets, leukocytes and endothelial cells. Walton et al.
showed that elevated hematocrit is associated with an increase in arterial events in an
RBC-transfusion model in healthy mice. Additional ex vivo modeling of thrombus prop-
agation highlighted the role of platelets in thrombus growth [45]. The authors propose
a model by which elevated hematocrit alters the biophysical dynamics of blood flow in
a way that narrows the near-wall RBC depleted zone around a propagating thrombus
allowing increased exposure and incorporation of trapped platelets into the growing throm-
bus [45–47]. Additional mechanistic insight into pro-thrombotic RBC platelet interactions
was provided by Klatt et al. The activation of platelets in the presence of RBCs prompted
FAS ligand/FAS receptor interaction between platelets and RBCs, respectively, that result
in the externalization of RBC phosphatidylserine (PS), ultimately promoting thrombin
generation and thrombus formation [48].

An increase in RBC adhesion to endothelial cells was suggested by Wautier et al.
RBC’s from patients with PV were associated with increased expression and phosphory-
lation of Lutheran blood group/basal cell adhesion molecule (Lu/BCAM) and adhesion
(via Laminin) in an ex-vivo human umbilical vein endothelial cells (HUVECs) model [49].
The increase in Lu/BCAM was later suggested to be a cell-intrinsic property driven by
JAK2 mutations [50]. Poisson et al. described the contribution of erythrocyte-derived
microvesicles (MV’s) to arterial constriction and thrombosis in a murine model. These
effects were mediated via oxidative stress and disruption of the nitric oxide (NO pathway
by the myeloperoxidase (MPO)-loaded MV’s [51].

Zhao et al. recently identified Pleckstrin-2 (Plek2) to be involved in the prothrombotic
phenotype of MPNs. Plek2 is widely expressed protein that binds to phosphoinositide and
was previously shown to play an important role in erythroblast survival and enucleation
during erythropoiesis [52]. Pleck2 was shown to be a downstream target of the JAK2/STAT5
pathway in erythroid and myeloid cells and was significantly upregulated in a JAK2V617F

MPN mouse model and in patients with MPNs. Loss of Plek2 reverted MPN phenotype in
these mice including a reduction in the occurrence of widespread vascular occlusions that
was attributed to a decrease in RBC mass in these mice [53].
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4.2. Platelets

Platelets are regarded as central contributors to the prothrombotic phenotype in MPN.
While thrombocytosis by itself does not directly correlate with vascular events [19,25,26],
markers of platelet activation are increased in patients with ET, PV and MF. For example,
previous trials demonstrated an increase in plasma levels in patients with MPNs of P-
selectin (surface and soluble), CD40L, Platelet factor 4 (PF4), β-thromboglobulin, thrombo-
modulin and platelet derived growth factor (PDGF) as well as thromboxane B2 in the urine
of patients [54–61]. Increased platelet turnover with a higher fraction of immature platelets
prone for activation contributes to the activated phenotype of platelets [57,62]. Platelet de-
rived microparticles may have a role in thrombosis in MPNs. In one study, patients with ET
had a higher number of circulating microparticles baring platelet and endothelial markers,
that were associated with increased endothelial activation and thrombin generation [63];
additional studies implicated platelet derived microparticles in phospholipid-dependent
procoagulant activity and acquired “thrombomodulin-resistant” phenotype [12,64–66].
Elevated plasma levels of microparticles were shown to be associated with thrombotic
events in MPNs in single center observational studies [67,68].

Activated platelets were previously shown to enhance procoagulant effects by an
increase in the expression on their membrane of PS and of tissue factor (TF), both initiators
of coagulation cascades [62,69]. Platelet-mediated proteolytic down regulation of the
activity of protein S may be responsible in part to the activated protein C resistance
phenotype in patients with ET and PV [70–72].

Despite enhanced platelet activation in MPNs, a paradox of impaired platelet function
is evident. Aggregations studies are characterized by an absent second-wave adrenaline
aggregation, an increased adenosine diphosphate (ADP) aggregation threshold with nor-
mal arachidonic acid or collagen-induced aggregation that fits the phenotype of exhausted
defective platelets with secondary storage pool defect [73,74]. These observations were
confirmed in a recent systematic review that identified 21 studies assessing platelet aggre-
gation of which 20 demonstrated impaired platelet aggregation in patients with ET [59].
Modeling of platelet-mediated hemostatic defects is challenging, and different studies yield
apparent contradicting results. While some studies report defective platelet aggregation
and function [75,76], others show no apparent platelet defect [77,78] or a hyper-reactive
platelet phenotype [79]. Further complicating the picture is the fact that several of these
models result in bleeding-diathesis secondary to an acquired von Willebrand factor (vWF)
deficiency-like phenotype [75,77,78].

Moore et al. demonstrated that the PI3 kinase/Rap1 pathway is intrinsically im-
paired in platelets from JAK2V617F ET patients, resulting in diminished thrombin and
thrombopoietin-mediated integrin αIIbβ3 activation that explains the ex-vivo aggregation
defect in platelets from patients with ET [80]. On the other hand, Matsuura et al. had shown
that Lysyl oxidase (LOX), an enzyme that catalyzes the conversion of specific lysines to
aldehydes and that is overexpressed in MPNs [81,82], is associated with platelet activation
and thrombosis in murine models, perhaps by affecting platelet adhesion to collagen [83].

This suggests that activation patterns may be related in part to changes induced by
somatic driver mutations in MPN as well as increased activation that is the result of cell-cell
interaction, inflammation, and microenvironment.

4.3. Leukocytes

The role of leukocytes in thrombosis has recently come under the spotlight.
Leukocytes from patients with MPNs have an activated phenotype. In patients with

MPNs, neutrophils express higher levels of CD11b and have increased reactive oxygen
species (ROS) production [84] and higher levels of neutrophil activation products such as
elastase, catepsin G and myeloperoxidase (MPO) in the plasma [12,85–87]. Interestingly,
different driver mutations may be associated with differential activation patterns. Torre-
grosa et al. demonstrated in samples from patients with ET, that CALR-driven disease
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is associated with reduced leukocyte activation that may account in part for the lower
thrombosis rate in this patient subgroup [88].

Recently, neutrophil extracellular traps (NETs) were implicated in the thrombotic
tendency in MPNs.

In 2004, Brinkmann and colleagues describe the occurrence of NETs [89]. In response
to various stimuli, neutrophils can expel extracellular strands of decondensed DNA in
complex with histones and other neutrophil granular proteins. These structures can kill mi-
crobes but are also implicated in the pathogenesis of autoimmunity and thrombosis [90,91].
Increased NET formation was also implicated in the pathogenesis of thrombosis in can-
cer [92]. Neutrophils from patients with MPN were previously shown to be prone for NET
formation with increased NET formation following stimulation with ionomycin [76] but
not with phorbol 12-myristate 13-acetate (PMA) or inflammatory cytokines [93]. Guy et al.
demonstrated that patients with MPNs have increased plasma levels of MPO-DNA com-
plexes, a proposed marker of NET production, with patients with a history of thrombosis
demonstrating the highest MPO-DNA levels [94].

In JAK2V617F murine models, neutrophils have also been shown to be primed for NET
formation with increased ex-vivo ionomycin-induced NET formation. In-vivo, JAK2 V617F

mice had increased rates of venous thrombosis (in a partial inferior vena cava (IVC) ligation
model) and thrombus from JAK2 V617F mice had increased expression citrullinated histone
3, a biochemical surrogate for NET formation. Thrombus formation in-vivo and NET
formation ex-vivo were both PAD4-dependant in the murine model suggesting that PAD4
is a driver for NETosis and thrombosis in this model [76]. A recent abstract publication
validated that JAK V617F neutrophils are characterized by an increase in NET formation in
both MPN hematopoietic specific (PF4-iCre) and neutrophil specific (MRP8-iCre) murine
models [95].

Activated neutrophils interact with both platelets and the endothelium to pro-
mote thrombosis.

Platelet-neutrophil complexes were shown to be abundant in PV, ET and MF [54,55,57].
Adhesion molecules on platelets such as P-selectin and GPIBα or GPIIbIIIa interact with
PSGL-1 and CD11b/CD18 (mac-1), respectively and promote activation one upon the
other: platelet-derived CCL (RANTES) and PF4 activate leukocytes whereas elastase and
cathepsin G that originate in neutrophils promote platelet activation [96].

Monocytes are also primed for activation in MPNs. P-selectin was shown to induce
expression of TF on monocytes [97]. Platelets were also shown to induce an increase in
cytokine production, specifically in monocytes from patients with MF [98,99].

Interactions between neutrophils and the vascular endothelium are also impacted in
MPNs to produce a prothrombotic phenotype. Neutrophils from patients with Jak2V617F

MPNs were shown to have hyperactivated β1 (α4β1; VLA-4) integrin-mediated adhesion
to vascular cell adhesion molecule 1 (VCAM-1) [100]. Later the same group demonstrated
in a vav/cre Jak2V617F MPN murine model that JAK2V617F mutation is associated with
increased affinity of β1 and β2 (αLβ2; LFA-1) integrins to their respective receptors, VCAM-
1 and intercellular adhesion molecule 1 (ICAM-1). At least for the β1 integrin, a RAP1
mediated conformational change was observed. Venous thrombosis in these mice was
reduced by blocking VCAM -1 and ICAM-1 receptors [101].

4.4. Endothelium

Markers of endothelial activation are elevated in the plasma of patients with MPNs
and increased levels of vWF, soluble thrombomodulin and soluble P-selectin, E-selectin
and L-selectin were previously demonstrated in the plasma of patients with ET and
PV [69,102,103]. Markers of angiogenic activity such as vascular endothelial growth factor
(VEGF) were found to be increased in patients with MPNs [104–106] as were higher levels
of circulating endothelial cells (ECs).

The activated endothelium interacts with platelets via vWF-mediated platelet expres-
sion of platelet membrane CD40 ligand with endothelial CD40 as well as crosstalk with
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RBC’s (via expression of Lu/BCAM) and leukocytes (via expression of β1 and β2 integrins),
as described above.

Sozer et al. reported a fascinating observation that ECs from terminal hepatic venules
obtained from paraffin-embedded sections of liver biopsy specimens in 2 patients with
PV and Budd-Chiari syndrome were homozygous for the JAK2V617F [107]. Rosti et al.
later validated these findings and demonstrated that ECs carrying the JAK2V617F muta-
tion can be found both in the splenic capillaries and in the splenic vein of patients with
MF [108]. ECs bearing the JAK2V617F have a hyperactivated phenotype. In one study,
investigators used a pluripotent stem cells strategy to compare JAK2 mutant and wild-
type EC’s. JAK2V617F EC’s expressed a pro-inflammatory transcriptome with increased
expression of vWF and P-selectin and increased adhesiveness of leukocytes to EC’s [109].
Etheridge et al. elegantly showed in a series of transplant experiments with transgenic
Tie2-Cre/FF1 mice, that both hematopoietic and EC expression of JAK2V617F is needed for
the full MPN phenotype to be displayed but that mutated EC’s are critical for recapitu-
lating the hemostatic defect in this model (an acquired vWF-like bleeding diathesis) [78].
Similarly, Castiglione et al. demonstrated that the MPN phenotype in Tie2-Cre/FF1 mice,
that express JAK2V617F in both hematopoietic and ECs is associated with thrombosis, vas-
culopathy, and cardiomyopathy but that this phenotype is lost if JAK2V617F expression
is restricted only to hematopoietic cells without mutated ECs, suggesting a critical role
for mutated ECs in the pro-thrombotic phenotype. Indeed, JAK2V617F expressing ECs
displayed a pro-adhesive, pro-inflammatory, and vasculopathic phenotype [110]. Guy et al.
showed that EC-specific JAK2V617F expressing mice models (Pdgfb-iCreERT2) are charac-
terized by a pro-thrombotic phenotype due to increased endothelial P-selectin exposure,
secondary to degranulation of Weibel–Palade bodies. Blocking P-selectin reverted the
increased propensity for thrombosis phenotype [94].

4.5. Thrombo-Inflammation and Clonal Hematopoiesis

MPN’s are accompanied by a systemic inflammatory response that drives disease
phenotype and is associated with fibrosis and disease progression [86,111]. Several pro-
inflammatory cytokines were shown to be elevated in patients with MPNs including
interleukin (IL)-1β, IL-6, IL-8 and tissue necrosis factor (TNF)-α [112,113]. Additionally,
increased levels of inflammatory markers such as C-reactive protein (CRP) and pentraxin-3
were described in patients with MPNs [114,115]. Gangaraju et al. conducted unbiased
RNA sequencing and found differential expression of several thrombotic, inflammatory,
and HIF-regulated genes in granulocytes and platelets of PV patients, especially in patients
with a history of thrombosis [116]. Marín Oyarzún et al. recently highlighted an additional
inflammation/hypercoagulation cycle by demonstrating that hyperactive toll-like receptor
(TLR) responses on platelet are characteristic in patients with ET and promote platelet
activation, platelet interaction with leukocytes and the endothelium and secretion of
inflammatory mediators [117]. In recent years the concept of ‘thrombo-inflammation’
was conceptualized to express the intimate cross-talk and mutual perpetuating effects of
inflammation and thrombosis one upon the other [118]. An increased thrombotic risk is
inherent to several pathologies that are characterized by acute or chronic inflammation and
this holds true also for MPNs [119]. The term ‘immuno-thrombosis’ was recently coined to
characterize the processes by which activated blood cells both trigger and participate in an
inflammatory response that results in promotion of intravascular thrombosis [120].

The contribution of the clonal hematopoiesis (CH) to disease phenotype, inflamma-
tion, and thrombotic tendency in MPNs is increasingly recognized. Evidence for possible
intrinsic prothrombotic effects induced by driver mutations in MPNs and other myeloid
neoplasms are emerging and are supported by observations in patients with CHIP. CHIP is
an age-dependent process that denotes the presence of pathological clones in the blood of
healthy persons without overt hematological disorders or abnormal blood counts [121–124].
In fact, recent evidence suggests that JAK2V617F mutations may occur in single hematopoi-
etic stem cells decades before the occurrence of overt disease [125]. JAK2-driven CHIP
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was shown to be associated with increased risk for venous thrombosis [22,76]. In one
study, this prothrombotic tendency was attributed to increased NETosis in JAK2 mu-
tated neutrophils (as discussed above) [76]. JAK2-positive CHIP was also shown to be
independently associated with coronary heart disease (along with TET2, DNMT3A and
ASXL1 mutations) [126]. Wang et al. provided additional mechanistic insight into the
atherogenic phenotype induced by JAK2 mutations. They showed that Jak2V617F mice
developed neutrophil-rich atheroma that have larger lipid cores with increased iron depo-
sition [127,128].

4.6. COVID-19, MPNs and Thrombosis-(Mechanistic) Lessons Learned from the Pandemic

The Coronavirus 19 disease (COVID-19) pandemic, caused by severe acute respiratory
syndrome coronavirus 2 (SARS COV 2) immensely impacted the lives of patients, commu-
nities, health systems, economies and basically altered every aspect of our lives [129].

The clinical spectrum of the SARS COV 2 infection is wide [130] and an excessive
thrombo-inflammatory response (‘cytokine storm‘) is the hallmark of severe COVID-19,
associated with an acute respiratory distress syndrome (ARDS) and in some patients,
with widespread thrombotic microangiopathy evolving to a multiorgan failure [131,132].

Venous and arterial thrombosis are commonly seen in patients with COVID-19 disease
and are associated with increased morbidity and mortality. A variable incidence of throm-
bosis, ranging from 7.9% in hospitalized patients in general wards to 22.7% in patients
transferred to ICU has been reported [133]. The reason for prothrombotic tendency in
patients with COVID-19 infection is not completely understood and seems to be multi-
factorial, including increased levels of procoagulant factors (e.g., fibrinogen), endothelial
damage, and excessive NET formation [99,134–136].

Several of these pathological pathways are relevant for thrombosis in MPNs and
intriguingly MPN-directed therapies such as JAK inhibitors are currently studied in severe
COVID-19. Understanding similarities and disparities between the coagulopathy in MPNs
and COVID-19 may inform therapies and therapeutic approaches.

Data regarding COVID-19 infection in patients with MPNs is scarce [137,138]. A recent
analysis conducted by Barbui et al. showed a higher risk of mortality in 175 patients with
MPNs and COVID-19 infection, enrolled in the MPN-COVID-19 study, in comparison to
the general population [139]. Results were more striking in those with MF and in those
who discontinued ruxolitinib at the time of COVID-19 diagnosis [140]. Another analysis
of 162 patients from the MPN-COVID-19 study reported a high cumulative incidence
of thrombosis (8.6%) mostly venous (7.4%) during the acute phase of infection and after
60 days of follow-up [141]. Events were more frequent in patients with ET and in patients
transferred to the ICU. Major bleeding events were reported in 7 patients (a cumulative
incidence of 5%) [141]. Increased rates of thrombosis and mortality in this population may
reflect an impaired cellular immune response (dysregulation of T and natural killer (NK)
cells) and augmentation of the already hyperinflammatory and hypercoagulable states
associated with MPNs.

Several drugs used to blunt the inflammatory response in COVID-19 are studied,
including those frequently used to manage MPNs such as ruxolitinib and interferon alfa
(INFa) [142]. Although ruxolitinib may potentially aggravate the course of the viral disease
by suppressing T cells and NK cells, it has the potential to decrease the ‘cytokine storm’
effect owing to its extensive anti-inflammatory effect by inhibiting the JAK-STAT pathway.
Positive results with ruxolitinib use were reported in patients with COVID-19 infection [143]
although its’ role in patients with MPNs and COVID 19 is still unknown.

Recommendations for the management of patients with MPNs and COVID-19 in-
fection are derived from a consensus among experts in the MPN field. Currently, it is
not recommended to change MPN specific therapy in patients with MPN and COVID-19
infection, including the use of cytoreduction, JAK inhibitors and anticoagulation. The use
of VTE prophylaxis in patients hospitalized with COVID 19 infection and those with MPNs
is still undetermined [144].
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Figure 1. Pathogenetic pathways promoting thrombosis in MPNs. The prothrombotic phenotype of MPNs is the result
of a complex interplay between several components. Despite the apparent divergent pathways that characterize venous
and arterial thrombosis, there is often an overlap in the pathogenic process induced in MPNs that may affect both
pathologies. RBC’s-The RBC and platelets interact via FAS ligand/FAS receptor that result in the externalization of
RBC phosphatidylserine (PS), promoting thrombin generation and thrombus formation [48]. Increased expression and
phosphorylation of Lutheran blood group/basal cell adhesion molecule (Lu/BCAM) driven by JAK2 mutations [50]
and adhesion (via Laminin) [49], mediate adhesion of RBC to endothelial cells. Erythrocyte-derived microvesicles (MV)
contribute to arterial constriction and thrombosis mediated via oxidative stress and disruption of the nitric oxide (NO)
pathway by the myeloperoxidase (MPO)-loaded MV’s [51]. In addition, pleckstrin-2 (Plek2) protein, a downstream
target of the JAK2/STAT5 pathway in erythroid and myeloid cells, is upregulated in JAK2V617F cells [53] and promotes
prothrombotic phenotype. Platelets-Markers of platelet activation are increased in plasma of patients with MPNs [54–61].
Increased platelets derived circulating microparticles (MP) are associated with increased endothelial activation and thrombin
generation [63,67,68]. Increased expression of PS and tissue factor (TF) on platelet membrane may initiate coagulation
cascades [62,69]. Leukocytes-Markers of neutrophils activation are increased in plasma of patients with MPNs including
CD11b [54], reactive oxygen species (ROS) [84] and neutrophil extracellular traps (NETs) [12,85–87]. Activated neutrophils
interact with both platelets and the endothelium to promote thrombosis. Adhesion molecules on platelets such as P-selectin
and GPIBα or GPIIbIIIa interact with PSGL-1 and CD11b/CD18 (mac-1), respectively [61]. Increased affinity of β1 (α4β1;
VLA-4) and β2 (αLβ2; LFA-1) integrins to their respective receptors, vascular cell adhesion molecule 1 (VCAM-1) and
intercellular adhesion molecule 1 (ICAM-1) contribute to the prothrombotic state [101]. NET formation is increased in MPNs



Hemato 2021, 2 314

and contributes to both venous and arterial thrombosis [76,129]. P-selectin-mediated expression of TF and platelet-
induced cytokine expression are characteristic of monocytes in MPN [97–99]. Endothelial-Markers of endothelial activation
are increased [69,102,103] as are markers of angiogenic activity [104–106]. The activated endothelium interacts with
platelets via vWF-mediated platelet expression of CD40 ligand with endothelial CD40 as well as cross-talk with RBC’s
(via expression of Lu/BCAM) and leukocytes (via expression of β1 and β2 integrins). Endothelial cells (ECs) carrying the
JAK2V617F mutation [108] express a pro-inflammatory transcriptome with increased expression of vWF and P-selectin and
increased adhesiveness of leukocytes to ECs [109]. They also display a pro-adhesive, pro-inflammatory, vasculopathic
phenotype [110] due to increased endothelial P-selectin exposure, secondary to degranulation of Weibel–Palade bodies.
Thrombo-inflammation-Increased levels of pro-inflammatory cytokines such as interleukin (IL)-1β, IL-6, IL-8 and tissue
necrosis factor (TNF)-α [112,113], as well as increased inflammatory markers such as C-reactive protein (CRP) and pentraxin-
3 [114,115] are found in patients with MPNs.

5. Current Strategies to Prevent Thrombosis

Treatment approach in PV and ET is mainly guided by the risk for recurrent thrombosis.
Management of low-risk PV includes low dose aspirin and phlebotomy to maintain

hematocrit <45% while in high-risk patients, low dose aspirin, phlebotomy and cytoreduc-
tion are recommended [16,145].

Management of ET is comprised of observation in very low-risk patients, low dose
aspirin in low-risk patients, low dose aspirin +/− cytoreduction in intermediate risk
patients and low dose aspirin combined with cytoreduction in high-risk patients.

Assessment and management of CV risk factors (e.g., blood pressure, glucose, hyper-
lipidemia, smoking, etc.) should be considered in all patients.

5.1. Aspirin

Low dose aspirin is an effective treatment for preventing thrombosis in PV according
to the ECLAP study [146] while the data supporting its use in ET is mainly based on
the extrapolation from this study. It was also found to be beneficial in a retrospective
study, in patients with JAK2V617F-mutated low-risk ET, in preventing venous thrombosis,
and in patients with CV risk factors, in preventing arterial thrombosis [147]. Furthermore,
Low dose aspirin is effective in relieving vasomotor symptoms in ET [148]. Recent reports
suggested that twice-daily aspirin may be more efficient than once-daily aspirin and
should be considered in patients with uncontrolled vasomotor symptoms or those with
an exceptional high risk for arterial thrombosis (e.g., the presence of CV risk factors,
leukocytosis, and a history of arterial thrombosis) [2,140,149]. Nevertheless, it should be
used with caution in patients with acquired vWD (von Willebrand disease) and a higher
risk of bleeding.

5.2. Hematocrit

The hematocrit goal of treatment is <45% in patients with PV treated with phlebotomy
and/or hydroxyurea. A lower hematocrit (e.g., hematocrit <42%) might be appropriate,
especially in women and those with uncontrolled vasomotor symptoms.

5.3. Cytoreduction

In high-risk PV/ET cytoreduction is used to reduce the thrombotic risk, although,
there is no evidence to imply a risk reduction of VTE recurrence in unusual sites [150].
Cytoreductive agents in PV include hydroxyurea33, [151], recombinant interferon α [152]/
peginterferon [153] or busulfan [154]. JAK inhibition is currently utilized as a second-line
treatment only in PV. In ET hydroxyurea, recombinant interferon α, busulfan or anagrelide
may be used for cytoreduction.

Cytoreduction and specifically hydroxyurea are considered superior to a non-myelo-
suppressive treatment in ET [27,155] and to phlebotomy in PV [8,156,157]. Cytoreduction
is not indicated in low-risk PV/ET in respect to thrombotic risk but might be indicated
in certain instances such as uncontrolled PV/ET related symptoms, progressive leuko-
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cytosis/thrombocytosis, symptomatic or progressive splenomegaly or poor tolerance to
phlebotomy in PV [158].

Recombinant interferon α-2 has been used to treat patients with PV and ET. Pegin-
terferon α-2a, given once weekly, was investigated as 2nd line treatment in patients with
PV (n = 50) and ET (n = 65) with resistance or intolerance to hydroxyurea (MPN RC 111
ET and PV trials). Complete hematologic response was documented in 22% of patients
and the cumulative incidence of major vascular events at 1 year and 2 years were 2%
(95% CI, 1–8%) and 5% (95% CI, 2–15%), respectively [159]. Low and comparable rates of
VTEs were also documented in patients with ET (n = 81) who were randomized to either
peginterferon α-2a or hydroxyurea (MPN-RC-112 study) [160]. Recently, ropeginterferon
α-2b, given every two weeks, was approved as first-line treatment in patients with PV by
the European Medicines Agency (EMA). This approval was based on the 5 years results
of the PROUD/COUNTIONUATION PV trial, where the rate of complete hematologic
response was comparable between ropeginterferon α-2b and the control arm, treated with
hydroxyurea, in patients with PV at 12 months. Furthermore, only a few thromboembolic
events were recorded in both arms (major cardiovascular events (10% vs. 6%) and major
thromboembolic events (3% vs. 3%) [161].

Anagrelide is an oral imidazoquinazoline derivative which is used as cytoreduction
in ET. It inhibits proliferation and differentiation of megakaryocytes and reduces platelet
counts [162]. It was compared to hydroxyurea in two different studies. In the UK PT1 study,
patients with high-risk ET were more prone to develop arterial and venous thrombosis,
hemorrhage, or death from any cause while on anagrelide and aspirin in comparison to
hydroxyurea and aspirin. In addition, anagrelide was associated with an increased rate
of progression to myelofibrosis. Anagrelide advantage over hydroxyurea was a reduced
rate of venous thrombosis [155]. The ANAHYDRATE study included 259 patients with ET.
This study showed non-inferiority of anagrelide in comparison to hydroxyurea in regard
to thrombotic events and in the rates of transformation to MF and leukemia [163].

5.4. JAK Inhibitors

Ruxolitinib (JAK 1/2 inhibitor) has been shown to be effective in respect to hematocrit-
and symptom-control in the second-line treatment setting in patients with PV with in-
tolerance or resistance to hydroxyurea (RESPONSE and RESPONSE II trials) [164,165].
Although a meta-analysis of trials utilizing ruxolitinib in PV failed to demonstrate that
JAK inhibition reduces thrombosis as compared to best available therapy [166], in the
RESPONSE trail 5-year follow-up, the rate of thrombosis was decreased with ruxolitinib
therapy [167]. Furthermore, a meta-analysis of trials assessing ruxolitinib in MF was able to
demonstrate a significant reduction in thrombotic risk in patients treated with ruxolitinib
(risk ratio 0.45, 95% confidence interval (CI) 0.23–0.88) [168].

5.5. Anticoagulation

Anticoagulation therapy is recommended in high-risk patients with PV/ET and
venous thrombosis. Although the use of vitamin K antagonists (VKAs) decreases the rate of
VTE recurrence, the rate remains high in addition to higher rates of major bleeding events
when compared to the general population [169]. There are no convincing data to guide the
appropriate duration of anticoagulation treatment. Hence, the duration of anticoagulation
therapy is guided by the severity of thrombosis, the risk of recurrence after stopping
anticoagulation, and whether disease is controlled. Thus, long-term anticoagulation is
recommended in patients with MPN-associated VTE.

Traditionally, VKAs have been used in patients with MPNs and venous thrombosis.
It should be noted that there is no compelling evidence to guide the choice of anticoagula-
tion. According to non-inferiority trials, direct oral anticoagulants (DOACS) are effective
and safe in preventing and treating VTE in the general population and in patients with
solid tumors, in comparison to VKA and low molecular weight heparins (LMWH), respec-
tively [170–173]. The therapeutic role of DOACS in MPNS is currently being investigated
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and has been suggested in retrospective studies. In a real-world setting of 71 patients
with MPNs affected by VTE (including few cases of VTE in unusual sites) or atrial fib-
rillation, the use of DOACs was well tolerated, apparently safe, without recurrences of
thrombotic events and significant bleeding complications even in high-risk patients [174].
Likewise, a recent large retrospective study of 442 patients with MPNs reported similar
rates of VTE with DOACs and VKA for prevention of thrombosis in atrial fibrillation and
in secondary prevention of VTE [175]. The use of DOACS was also investigated among
those with splanchnic vein thrombosis, where recurrence rates with the use of VKA’s are
unsatisfactory [176,177]. Curto-Garcia et al. reported on 102 patients with MPN-associated
thrombosis. In this analysis, 32 patients that experienced a total of 38 thrombotic events
(15 splanchnic, 12 pulmonary embolisms, eight deep vein thrombosis, two cerebral venous
sinus thrombosis, and one superficial thrombophlebitis) received DOACS. DOACS were
given for the long term in 25 patients and for a limited course after provoked VTE in
7 patients. With a median follow-up of 2.1 years (range 0.1–7.8), only one case of mesenteric
ischemia was recorded, and no major bleedings were recorded apart from 3 patients with
non-major significant bleedings under DOACS and aspirin [178].

6. Novel Targets to Prevent Thrombosis

Thrombosis in MPNs represents the clinical endpoint of several concomitant, inter-
dependent disease extrinsic and intrinsic processes (Figure 1). Although this poses many
challenges in clinic and in research, it also exposes several potential therapeutic targets and
may inform treatment approaches (Table 1).

6.1. Targeting the JAK/STAT Pathway

The hyperactive JAK/STAT pathway is fundamental to the pathogenesis and disease
phenotype and drives many of the processes implicated in thrombogenicity in MPNs
including inflammation, cell-cell interactions and activation of blood cells and of the en-
dothelium (as exhaustively described above). Thus, inhibiting this pathway may be an
attractive approach to prevent thrombosis. In patients with MF, ruxolitinib was shown early
on to be associated with significant reductions in the levels of circulating inflammatory
cytokines [179]. In a small pilot study, Keohane et al. assessed the impact of JAK inhibition
(ruxolitinib, n = 11; fedratinib, n = 4) on biomarkers of thrombosis as compared to patients
receiving conventional therapy. No significant difference was observed between the groups
in platelet-monocyte aggregates, platelet-neutrophil aggregates, platelet activation markers
or neutrophil activation markers. Although monocyte counts were elevated in the JAK in-
hibition group, a trend towards reduced monocyte TF expression was noted [180]. Another
report showed a JAK2-driven increase in ROS production via increased phosphorylation
of the p47phox on Ser345 and up-stream of ERK1/2 kinase. JAK inhibition with selective
JAK2 inhibitors (AG490 and CEP701) resulted in inhibition of ROS production suggesting
ROS as a target for JAK/STAT inhibition in MPNs. A recent report suggests that ruxoli-
tinib is associated with reduced pro-adhesive VWF, VCAM-1, and P-selectin expression
in a TNF-α-activated HUVEC endothelial cell model [181]. In a Jak2V617F murine model,
ruxolitinib treatment was associated with a significant reduction in venous thrombosis as
assessed by partial ligation of the IVC [76]. The large clinical trials assessing ruxolitinib
in patients with MF (COMFORT I-II) and PV (RESPONSE) were not designed to detect
reduction in thrombotic rates and recent metanalyses yielded inconclusive results [166].

6.2. Targeting Cell-Cell Interaction

Targeting cell-cell interaction may be a practical approach to reduce thrombosis rates
in MPNs. P-selectin, a marker of platelet activation, plays a central role in mediating
platelet interactions with other blood cells and the endothelium and may be an attractive
therapeutic target. In murine models, P-selectin blockade was shown to affect thrombosis.
Guy et al. showed that blocking the overexpressed P-selectin (with a blocking antibody)
in EC-specific JAK2V617F mice models (Pdgfb-iCreERT2) reverted the thrombotic pheno-
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type [94]. Platelet-induced NET formation was shown in ex-vivo murine models to be
P-selectin dependent and blocking PSGL1 resulted in abrogating NET formation in this
model [182].

P-selectin inhibitors are available in clinic for other indications. Crizanlizumab is a
humanized monoclonal antibody against P-selectin that was shown to significantly lower
the rate of sickle cell-related pain crises in a large phase 3 trial [183]. In a recent report,
an Italian group assessed a murine p-selectin blocking antibody, RB40.34, that was used
in the pre-clinical efforts that supported the clinical trial with crizanlizumab in sickle
cell disease. In a p-selectin dependent, Gata1low MF murine model [184], RB40.34 in
combination with ruxolitinib reverted MF phenotype with limited toxicity setting the stage
for early phase clinical trials with this drug [185].

The leukocyte integrins VLA-4 and LFA-1 were shown to be to have a JAK2-dependent,
RAP1 mediated increase in affinity to their respective endothelial receptors that were as-
sociated with thrombosis in MPN murine models. Blocking anti–VLA-4 and anti–LFA-1
integrin antibodies suppressed thrombosis in this model [101]. Blocking VCAM-1, the en-
dothelial adhesion molecule that binds VLA-4 inhibited cancer-associated thrombosis and
extended survival in a pancreatic ductal adenocarcinoma mouse model [186]. Antibodies to
block leukocyte integrin interactions are already in use in clinics to modulate inflammatory
responses in various disease states. For example, natalizumab, a monoclonal antibody di-
rected against the alpha chain of the VLA-4 integrin is used to treat multiple sclerosis [187]
and Crohn’s disease [188]. A humanized CD11a blocking antibody, Efalizumab, was devel-
oped to inhibit LFA-1 and was used to treat psoriasis [189] but was later withdrawn from
the market due to reports of JC virus reactivation associated with this drug [190,191].

6.3. Targeting Cell Activation

Targeting prothrombotic components of cell activation may also be a valid therapeutic
approach. Several potential inhibitors for NETosis were introduced and some were shown
to reduce thrombosis in MPN murine models. Ruxolitinib was shown to inhibit NET for-
mation in neutrophils and significantly reduced venous thrombosis in an MPN IVC patrial
ligation model [76]. N-acetylcysteine (NAC), a sulfhydryl-containing compound, that is
associated with glutathione replenishment, free radical scavenging, and reducing disulfide
bonds was shown to reduce thrombosis in an acute pulmonary thrombosis JAK2VV617F

murine model. Complementary analysis showed a reduction in platelet-leukocyte aggre-
gates in mice and inhibition of NET formation in neutrophils derived from MPN patients
and controls [192]. Inhibition of PAD4 that is responsible for histone 3 citrullination and the
subsequent propagation of NETs was shown to abrogate NET formation and reduce throm-
bosis in MPN and non-MPN murine models although the utility of such an approach in
clinic remains to be studied [76,193]. The use of anti-histone antibodies also demonstrated
protective effects against infarcts in a mouse model of transient middle cerebral artery
occlusion [194]. DNAse is a deoxyribonuclease (DNA) enzyme produced by recombinant
gene technology that is currently used as a nebulizer in clinic to manage patients with
Cystic Fibrosis [195]. This drug dismantles NETs and has been shown to be associated with
reduced thrombosis in several MPN and non-MPN murine models [76,196–198]. Lastly,
there is evidence to suggest that standard drugs that are currently used to prevent throm-
bosis in MPNs have an inhibitory effect on NET production as was shown to be the case
with acetylsalicylic acid [199] and hydroxyurea [200].

Plek2 is overexpressed in JAK2V617F positive MPNs and associated with disease
phenotype including an increase in RBC mass and vascular occlusions. Han and col-
leagues recently reported on a Plek2 inhibitor in an MPN murine model. NUP-17d blocks
hematopoietic cell proliferation through the disruption of the Plek2 complex and inhibition
of the PI3K-Akt pathway. In-vivo, this inhibitor reverted MPN phenotype although its
effect on thrombotic tendency was not reported to date [201].
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6.4. Targeting Inflammation

Targeting components of the thrombo-inflammatory process have been described in
the non-MPN setting. For example, a large phase 3 trial demonstrated that canakinumab,
an IL-1β inhibitor led to a significantly lower rate of recurrent CV events as compared to
placebo-treated patients, independent of lipid-levels lowering [202].

Poisson et al. described excessive arterial constriction and thrombosis in JAK2V617F

murine model that was mediated via oxidative stress and disruption of the NO pathway
by MPO-loaded MV’s. These pathologic pathways were blunted by treating mice with
NAC. While hydroxyurea improved endothelial dysfunction, ruxolitinib had no effect.
Finally, simvastatin was shown to significantly alter endothelial dysfunction and blunt
vasoconstriction [51].

Table 1. Potential novel approaches to target pro-thrombotic pathways in MPNs.

Pathway/Target Target Drug/Compound Effect Context Ref.

JAK-STAT JAK1/2 Ruxolitinib

Pro-inflammatory
cytokines ↓ MF, Clinical trial [179]

Neutrophil:
ROS ↓
NETs ↓

Ex-vivo studies,
Murine models [76,84]

RBC:
HCT ↓,

Lu/BCAM ↓

Clinical trial
Ex-vivo studies

[33]
[50]

Monocyte:
TF expression ↓ Ex-vivo studies [180]

Endothelial activation ↓ Pre-clinical
HUVEC model [181]

Selectins P-selectin P-selectin blocking
antibodies

Thrombosis ↓
NETs ↓

PLT-endothelial ↓
PLT-leukocyte ↓

Murine models
Crizanlizumab is a

clinically available Ab
[94,182,185]

Integrins VLA4
LFA1

VLA4 and LFA1
blocking antibodies Thrombosis ↓ Murine models [101]

Neutrophil
functions* NETs NAC

Thrombosis ↓
NETs ↓

PLT-leukocyte ↓
Arterial dysfunction ↓

Ex-vivo studies,
Murine models

[192]
[51]

PAD4 Thrombosis ↓
NETs ↓

Ex-vivo studies,
Murine models

[76]
[193,203]

DNAse Thrombosis ↓
NETs ↓ Murine models [196–198]

RBC’s Plek2 Plek2 inhibitor Thrombosis ↓
RBC mass ↓ Murine models [53,201]

Inflammation Vasoconstriction simvastatin Arterial dysfunction ↓ Murine models [51]

Abbreviations: Ref.: references, MF: myelofibrosis, ROS: reactive oxygen species, NETs: neutrophil extracellular traps, JAK-STAT: janus
kinase-signal transducers and activators of transcription, JAK1/2: janus kinase 1/2, RBC: red blood cell, HCT: hematocrit, Lu/BCAM:
Lutheran/blood group and basal cell adhesion molecule, TF: tissue factor, HUVEC: human umbilical vein endothelial cells, NAC: N-
acetylcysteine, PLT: platelets, Plek2: Pleckstrin-2,. *Ruxolitinib and P-selectin antibodies also target NET formation as detailed in their
respective boxes; ruxolitinib also target ROS formation as detailed in the respective box.

7. Summary

Preventing and treating arterial and venous thrombosis represents one of the major
challenges in managing MPNs. The expanding understanding of how genetic, epigenetic,
metabolic, cellular and biophysical factors contribute to this complication may enable more
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accurate risk assessment and guide therapy. Identification of biomarkers of cell activation
and functional assays to assess prothrombotic tendency as well as bleeding tendency may
refine and individualize thrombotic risk stratification.

Several potential therapeutic approaches are informed by recent pathogenetic insights
including targeting of hyperactivated pathways downstream to JAK/STAT, interfering
with cell-cell interactions and abrogating cell activation and the resultant inflammation.
Advancing these therapeutics from the bench to the clinic has the potential to significantly
impact how we prevent and treat thrombosis in MPNs. Lessons learned from other
thrombo-inflammatory conditions may further inform and improve our understanding
and treatment of thrombosis in MPN.
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105. Treliński, J.; Wierzbowska, A.; Krawczyńska, A.; Sakowicz, A.; Pietrucha, T.; Smolewski, P.; Robak, T.; Chojnowski, K. Plasma
levels of angiogenic factors and circulating endothelial cells in essential thrombocythemia: Correlation with cytoreductive therapy
and JAK2–V617F mutational status. Leuk. Lymphoma 2010, 51, 1–7. [CrossRef] [PubMed]
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