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Abstract: As function preservation cancer therapy, targeted radiation therapies have been developed
for the quality of life of cancer patients. However, preclinical animal studies evaluating the safety
and efficacy of targeted radiation therapy is challenging from the viewpoints of animal welfare and
animal protection, as well as the management of animal in radiation-controlled areas under the
regulations. We fabricated the human 3D oral cancer model that considers the time axis of the follow
up in cancer treatment. Therefore, in this study, the 3D model with human oral cancer cells and
normal oral fibroblasts was treated based on clinical protocol. After cancer treatment, the histological
findings of the 3D oral cancer model indicated the clinical correlation between tumor response and
surrounding normal tissue. This 3D model has potential as a tool for preclinical studies alternative to
animal studies.

Keywords: 3D cancer model; preclinical study; cancer treatment; quality of life; multidisciplinary
treatment

Key Contribution: The human 3D cancer model is a potential tool for evaluating safety and efficacy
in follow ups after cancer treatment, especially for multidisciplinary treatment, including a chemora-
diotherapy regimen. The 3D oral cancer model would also be an essential tool for the evaluation of
oral mucositis in the near future.

1. Introduction

Although ablative surgery is a major therapeutic modality, cancer treatment is per-
formed in multidisciplinary modalities, combining local radiotherapy with systemic chemo
therapy. Various radiation devices such as X-rays, proton beams, heavy particle beams, and
neutron beams have been developed for radiation therapy for cancer [1]. Currently, targeted
radiation therapy that combines the drugs within cancer tissue and reacts with radiation to
induce cancer cell death at the cellular level has been developed in consideration of the
quality of life (QOL) such as photoimmunotherapy [2] and Boron neutron capture therapy
(BNCT) [3]. This targeted drug-radiation technology requires a comprehensive assessment
of the drug, radiation, and the reaction of the drug and radiation as preclinical studies.
Preclinical studies in humans are desirable, but there are ethical difficulties. Therefore,
preclinical studies rely on animal models of human disease. However, preclinical animal
studies determining the safety and efficacy of a new radiation therapy are challenging from
the viewpoints of animal welfare and animal protection, as well as the management of
animals in radiation-controlled areas [4].

The various three-dimensional (3D) models mimicking cancer microenvironments,
such as spheroids and organoids, are promising for the suitable safety test compared with
simple 2D models [5–7]. Therefore, various 3D cell culture systems for screening drugs
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have been developed, instead of 2D cell culture screening systems [8]. Regarding chemical
safety and animal welfare, the skin corrosion test using a 3D human skin model has been
committed to Organization for Economic Cooperation and Development (OECD) test
guidelines [9]. Recently 3D tissue models for screening cancer radiotherapy have been
developed [10,11].

In this study, we developed a 3D human oral cancer model focused on the time axis
of the subsequent course of cancer treatment. Our 3D oral cancer model is composed of
a stromal layer of type I collagen gel, approximately 3 mm in thickness, in which normal
oral fibroblasts are repopulated, and an oral cancer layer is generated on top of it, which
results in a vertical dimension in this model. This method recreates more physiologically
relevant microenvironments for cells, and the collagen matrix (gel), as an extracellular
matrix (ECM), provides structural support for constituting cells. This 3D model mimics
the biochemical and cellular makeup of tumors in their microenvironments more closely
than 2D cultures. Using our 3D oral cancer model consisting of human oral squamous
carcinoma cells and normal oral mucosal fibroblasts, the safety and efficacy of cancer
treatment were evaluated. As a cancer treatment, BNCT was chosen in this study because
it requires comprehensive evaluation based on the boron agent as a chemical drug and
neutron irradiation as radiotherapy.

2. Materials and Methods
2.1. Human Cell Culture

To develop the oral cancer model, human primary normal oral fibroblasts (NOFs;
Niigata University) and the human oral squamous carcinoma cell lines (SAS; JCRB) were
used. Both human cell lines were authenticated using short tandem repeat profiling in
May 2020, and all experiments were performed with mycoplasma-free cells [12]. The cells
were maintained in Dulbecco’s Modified Eagle Medium (DMEM; Thermo Fisher Scientific,
Waltham, MA, USA) supplemented with 10% fetal bovine serum (FBS; Corning, New York,
NY, USA), gentamicin (5.0 µg/mL), and amphotericin B (0.375 µg/mL; Thermo Fisher
Scientific) under a humidified atmosphere of 5% CO2 at 37 ◦C.

2.2. Fabrication of Human 3D Oral Cancer Model

Collagen matrix solution (Nitta gelatin, Osaka, Japan) containing NOFs (1.67 × 105 cells/mL)
in a 6-well tissue culture insert (Greiner Bio, Roskilde, Denmark) was incubated with
DMEM containing 10% FBS under a humidified atmosphere of 5% CO2 at 37 ◦C for 2 days.
The composite of collagen matrices was then detached from the wall of the tissue culture
insert using a 200-µL micropipette tip. After 5 days, SAS cells (5.0 × 105 cells) were seeded
on the top surface of the collagen matrix in which NOFs are embedded. The 3D cancer
models were cultured under submerged conditions with DMEM containing 10% FBS for
7 days and then raised to an air–liquid interface from day 14 and cultured for an additional
7 days. The 3D oral cancer models were completed for 21 days in culture.

2.3. Treatment Planning of BNCT for 3D Oral Cancer Model

First, the boron concentration of 3D cancer model was measured. The cancer model
administered with boron (Borofaran, Stella Pharma, Osaka, Japan) for 2 h was cleaned
with PBS twice and heated after being treated with HNO3, measured by Inductively
Coupled Plasma-Mass Spectrometer (ICP-MS, Agilent7500cx, Agilent Technologies, Tokyo,
Japan) [13]. Subsequently, the neutron fluence at the tumor area and normal area in the 3D
oral cancer model was measured by activation method using gold foil at Kyoto University
Research Reactor (KUR) [14]. Based on the boron concentration and the neutron fluence,
the optimal irradiation time for 3D cancer model was determined by clinical methods of
BNCT. That is, it was calculated from the value of relative biological effectiveness (RBE,
neutron: 3.0, gamma: 1.0) and compound biological effectiveness (CBE, cancer: 3.8, mucosa:
4.9) in BNCT [15].
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2.4. BNCT for 3D Oral Cancer Model

Before neutron irradiation, boron agent (Borofaran, Stella Pharma, Japan) or saline
(OTSUKA NORMAL SALINE, Tokyo, Japan), as placebo was added to the oral cancer
model, respectively, and incubated for 2 h. Then, oral cancer models were irradiated by
neutron at KUR and cultured for another 7 days.

2.5. Histological Analysis

After 7 days of BNCT, the 3D models were fixed with 10% formalin, embedded in
paraffin, cut in 5 µm sections, and stained with hematoxylin and eosin staining. All images
of the sections were obtained with an all-in-one fluorescence microscope (BZ-X800, Keyence,
Osaka, Japan).

2.6. Statistical Analysis

The data are shown as means ± standard deviation (S.D.). The statistical differences
were compared by one-way analysis of variance or Fisher’s exact test. A p-value of less
than 0.05 was considered statistically significant.

3. Results
3.1. Fabrication of Human 3D Oral Cancer Model

The diagram of a hybrid human 3D oral cancer model consisting of human SAS cells
and NOFs was shown (Figure 1, left panel). The histological examination showed the
vertical proliferation of SAS cells over time (Figure 1, right panel). Just 1 day after the
seeding of SAS cells, the cancer cells formed a monolayer at day 8 from the start of 3D
model fabrication, and they generated a few layers at day 14 in a submerged condition.
Finally, they developed a multilayer during an air-liquid interface for the last 7 days within
21 days in culture. The thickness of the stromal layer of the 3D oral cancer model, in
which NOFs were proliferated, was 20.7 ± 9.3 mm on day 7, 8.9 ± 0.5 mm on day 14, and
3.7 ± 0.2 mm on day 21.

BioTech 2023, 4, x FOR PEER REVIEW 3 of 7 
 

 

neutron: 3.0, gamma: 1.0) and compound biological effectiveness (CBE, cancer: 3.8, mu-
cosa: 4.9) in BNCT [15]. 

2.4. BNCT for 3D Oral Cancer Model 
Before neutron irradiation, boron agent (Borofaran, Stella Pharma, Japan) or saline 

(OTSUKA NORMAL SALINE, Tokyo, Japan), as placebo was added to the oral cancer 
model, respectively, and incubated for 2 h. Then, oral cancer models were irradiated by 
neutron at KUR and cultured for another 7 days. 

2.5. Histological Analysis 
After 7 days of BNCT, the 3D models were fixed with 10% formalin, embedded in 

paraffin, cut in 5 µm sections, and stained with hematoxylin and eosin staining. All images 
of the sections were obtained with an all-in-one fluorescence microscope (BZ-X800, 
Keyence, Osaka, Japan). 

2.6. Statistical Analysis 
The data are shown as means ± standard deviation (S.D.). The statistical differences 

were compared by one-way analysis of variance or Fisher’s exact test. A p-value of less 
than 0.05 was considered statistically significant. 

3. Results 
3.1. Fabrication of Human 3D Oral Cancer Model 

The diagram of a hybrid human 3D oral cancer model consisting of human SAS cells 
and NOFs was shown (Figure 1, left panel). The histological examination showed the ver-
tical proliferation of SAS cells over time (Figure 1, right panel). Just 1 day after the seeding 
of SAS cells, the cancer cells formed a monolayer at day 8 from the start of 3D model 
fabrication, and they generated a few layers at day 14 in a submerged condition. Finally, 
they developed a multilayer during an air-liquid interface for the last 7 days within 21 
days in culture. The thickness of the stromal layer of the 3D oral cancer model, in which 
NOFs were proliferated, was 20.7 ± 9.3 mm on day 7, 8.9 ± 0.5 mm on day 14, and 3.7 ± 0.2 
mm on day 21. 

 
Figure 1. Fabrication of 3D oral cancer model. The proliferation of cancer cells was shown over time. 
The follow-up date is shown from the start of 3D model fabrication. 

3.2. Treatment Planning of BNCT for 3D Oral Cancer Model 
The boron concentration and the neutron fluence of the oral cancer model were meas-

ured before neutron irradiation. The boron concentrations of cancer cells and the stromal 
layer were 26.2 ± 0.3ppm and 5.9 ± 0.8 ppm, respectively, and the neutron fluence at cancer 
cells and stromal layer were 1.52 × 1012 cm−2 and 1.16 × 1012 cm−2 (Table 1). The irradiation 

Figure 1. Fabrication of 3D oral cancer model. The proliferation of cancer cells was shown over time.
The follow-up date is shown from the start of 3D model fabrication.

3.2. Treatment Planning of BNCT for 3D Oral Cancer Model

The boron concentration and the neutron fluence of the oral cancer model were
measured before neutron irradiation. The boron concentrations of cancer cells and the
stromal layer were 26.2 ± 0.3ppm and 5.9 ± 0.8 ppm, respectively, and the neutron fluence
at cancer cells and stromal layer were 1.52 × 1012 cm−2 and 1.16 × 1012 cm−2 (Table 1). The
irradiation time was determined to be 20 min, based on the tumor dose (>10 Gy-eq) [16]
and the normal dose (<5Gy-eq) [17].
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Table 1. BNCT treatment planning.

Oral Cancer Model Boron Concentration
[ppm]

Thermal Neutron
Fluence [cm−2]

* Total Dose
[Gy-Eq]

Cancer cell layer 26.2 ± 0.3 1.52× 1012 13
Stromal cell layer 5.9 ± 0.8 1.16× 1012 3.7

* The total dose was calculated from relative biological effectiveness v (RBE) values (neutron: 3.0, gamma: 1.0)
and CBE (cancer: 3.8, mucosa: 4.9).

3.3. Evaluation of BNCT for 3D Oral Cancer Model

According to the treatment planning, the boron-administered 3D oral cancer models
irradiated by a neutron for 20 min were cultured for another 7 days. The histological
examinations revealed that the thickness of the cancer cells layer in the model that received
BNCT reduced from the multilayer to a monolayer, although it stayed in the multilayer
in the placebo group. In contrast, there was not significant difference in the thickness of
stromal layers (Figure 2).
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Figure 2. Evaluation for 3D oral cancer model at post-BNCT day 7. Before neutron irradiation,
(a) placebo (saline) and (b) boron agent was administered. The histological examinations of the
3D oral cancer model at post-BNCT day 7 revealed that the thickness of cancer cells layer was
significantly thinner compared with placebo.

4. Discussion

Recently, a 3D model is known as a promising tool mimicking the tumor and its
microenvironment, and it is applied for the drug and radiation screening system [6]. In
this study, the 3D oral cancer model with normal oral fibroblasts and oral cancer cells
was fabricated as the follow-up 3D oral cancer model. In our 3D oral cancer model, the
overlying cancer cells proliferated on the stromal layers, resulting in an increase in the
thickness of the oral cancer cells layer over time as opposed to a decrease in the thickness
of the stromal layer. Our preliminary data indicated that the subsequent conditions of the
treatment, including not only the tumor response but also the surrounding normal tissue,
were obtained via this 3D oral cancer model before registration of the cancer treatment.

Oral cancer management is shifted from radical therapy to function-preserving ther-
apy for QOL because the maintenance of oral functions such as mastication, swallowing,
respiration, and vocalization is essential for a healthy life [18]. The targeted drug radia-
tion therapy at the cellular level, in which chemical agents accumulated in cancer cells
responded by radiation, is expected to be the next generation of minimally invasive cancer
therapy because it has scarce adverse effects on surrounding normal cells and preserves
oral functions. As one of the targeted drug radiation therapies, BNCT is applied for head
and neck cancer because of highly selective tumor cell death induction without significant
damage to normal tissue [3,15]. The principle of BNCT is that boron at a tumor cell is
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irradiated with a neutron, the producing energy affects a single cell area, and subsequently,
a tumor cell was damaged at the cellular level with little damage to surrounding normal
cells. BNCT is a promising treatment for oral cancer, helping cancer patients early return
to social life. More than thirty BNCT projects have been initiated worldwide, but in 2020,
accelerator-based BNCT for locally unresectable recurrent or unresectable advanced head
and neck cancer was approved only in Japan [19]. It took a long time to obtain an approval
for human clinical trial due to the complicated procedures, including the three approvals
of the medical boron drug, neutron device, and treatment program. That is, the animal
tests for the medical boron drug and neutron device were required as preclinical studies.
The large number, the long breeding period, and the high cost of animals in developing
BNCT will violate the principle of 3Rs (Replacement, Reduction, and Refinement) [20]. In
addition, it is difficult to conduct animal management in a radiation-controlled area due to
regulations, although the neutron has no charge, and its area of influence can be estimated
before the treatment to reduce the damage to surrounding tissues for QOL. Therefore, the
alternative animal model is urgently needed for BNCT. For verification of the model as
a preclinical study, our 3D oral cancer model was received by BNCT in the same way as
human oral cancer treatment and follow up. In this oral cancer model, boron concentration
was measured by ICP-MS, and neuron fluence was measured by gold foil in the same
preparation of BNCT cancer treatment in humans [21]. An indication of BNCT was the
boron concentration in our 3D oral cancer model, which was over 25 ppm. Based on the
treatment planning for the cancer model [22], we were able to observe the 3D cancer model
for 2 weeks after BNCT. The histological analysis showed that the oral cancer cells were
significantly damaged, and the proliferation of cancer cells was controlled by BNCT. Our
findings showed that the invasion of cancer cells to surrounding tissues was suppressed,
then the stromal layer was not damaged. Since the 3D oral cancer model could be treated
as a malignant lesion in vivo by BNCT, this 3D oral cancer model has the potential to
be indicative of the therapeutic efficacy of BNCT for the international standardization of
BNCT [23].

Oral mucositis after BNCT frequently occurs in cases of recurrent cancer after chemora-
diation therapy [18]. One of the reasons is based on the optimistic evaluation of intestinal
mucosa instead of oral mucosa in animal studies because the causes of mortality and pain
are not clear from nutritional disorder or overdose of treatment. Recently, the histopatho-
logical evaluation of oral mucositis in mice treated by conventional X-ray was reported [24].
There are several reports for 3D oral mucosa models to meet the quality control criteria of
OECD guidelines valid for the skin model to prevent COVID-19 [25,26]. By the combination
of this 3D oral cancer model and the existing oral epithelial model, both treatment effects
and the adverse effects of cancer therapy could be measured directly. In further study, the
development of histological criteria is necessary to evaluate toxicity to oral mucosa using a
3D oral cancer model. Additionally, there are several animal models and the 3D organoids
of oral mucositis for the development of therapeutic drugs [27,28]. Comparing these 3D
oral mucositis models, the causes of oral mucositis will be clearly determined by using
our 3D oral cancer model after the treatment of chemotherapy or radiotherapy. Moreover,
since there are individual differences in therapeutic effects and side effects even under the
same treatment protocol, the therapeutic efficacy for each patient by fabricating the 3D
model using cancer and normal cells derived from the patients will provide the optimal
multidisciplinary treatment as personalized medicine.

5. Conclusions

In this study, the 3D oral cancer model that considers the time axis of the treatment
procedure was fabricated with human oral cancer cells and normal oral fibroblasts. The
efficacy of a 3D oral cancer model, instead of in vitro 2D study and in vivo animal study,
was verified in BNCT as drug-radiation therapy. In this preliminary data, the 3D human
oral cancer model would be a useful tool for preclinical studies in the development of drug-
radiation cancer therapy. However, further studies are needed to evaluate the long-term
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effects of cancer treatment. In the near future, the 3D oral cancer model using oral cancer
and normal mucosal cells derived from the patients would provide personalized medicine.
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