
Citation: Zárate-Moreno, J.C.;

Escobar-Sierra, D.M.; Ríos-Estepa, R.

Development and Evaluation of

Chitosan-Based Food Coatings for

Exotic Fruit Preservation. BioTech

2023, 12, 20. https://doi.org/

10.3390/biotech12010020

Academic Editor: Bryan W. Berger

Received: 30 December 2022

Revised: 27 January 2023

Accepted: 10 February 2023

Published: 13 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Development and Evaluation of Chitosan-Based Food Coatings
for Exotic Fruit Preservation
Juan Camilo Zárate-Moreno 1,2, Diana Marcela Escobar-Sierra 2 and Rigoberto Ríos-Estepa 1,*

1 Grupo de Bioprocesos, Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de
Antioquia UdeA, Calle 70 No. 52–21, Medellín 050010, Colombia

2 Grupo de Biomateriales, Programa de Bioingeniería, Facultad de Ingeniería, Universidad de Antioquia UdeA,
Calle 70 No. 52–21, Medellín 050010, Colombia

* Correspondence: rigoberto.rios@udea.edu.co; Tel.: +57-4-2198568

Abstract: Chitosan has gained agro-industrial interest due to its potential applications in food
preservation. In this work, chitosan applications for exotic fruit coating, using feijoa as a case of study,
were evaluated. For this, we synthetized and characterized chitosan from shrimp shells and tested
its performance. Chemical formulations for coating preparation using chitosan were proposed and
tested. Mechanical properties, porosity, permeability, and fungal and bactericidal characteristics were
used to verify the potential application of the film in the protection of fruits. The results indicated that
synthetized chitosan has comparable properties to commercial chitosan (deacetylation degree > 82%),
and, for the case of feijoa, the chitosan coating achieved significant reduction of microorganisms and
fungal growth (0 UFC/mL for sample 3). Further, membrane permeability allowed oxygen exchange
suitable for fruit freshness and natural physiological weight loss, thus delaying oxidative degradation
and prolonging shelf-life. Chitosan’s characteristic of a permeable film proved to be a promising
alternative for the protection and extension of the freshness of post-harvest exotic fruits.

Keywords: chitosan; fruit coating; fruit preservation; feijoa; fruit shelf-life

Key Contribution: Chitosan biofilm coatings protect feijoa fruits from pathogens and extend their
freshness and moisture content; thus, fruits become a better quality product with larger shelf-life.

1. Introduction

Feijoa (Acca sellowiana Berg) is a high value agricultural product that belongs to the
family Myrtaceae and the subfamily Myrtroidea. It is a bright green-at-maturity fruit that
is part of a special list of exotic fruits prompting increasing interest in international markets
because of their nutritional and health benefits [1]. Feijoa crops have been developed
and widely diversified in tropical climates; in Colombia, crops typically grow at altitudes
from 2100 to 2700 m, with an average temperature of 13 ◦C [2]. Nonetheless, temperature,
humidity, the presence of microorganisms, pathogens, and pests, interfere in the normal
maturation process, thus affecting ripening and fruit flavor, and shortening shelf-life. The
growing interest in the commercialization of feijoa supports the search for novel alternative
approaches to its post-harvest handling and storage.

In general, the agricultural industry experiences limitations while marketing perish-
able products, e.g., fruits, mainly due to the presence of pollutants, microorganisms, and
pests. Harvested agro-industrial products are largely susceptible to adverse storage and
transport conditions. The post-harvest handling, transport and storage of fruit may be suc-
cessfully improved by using biopolymer-based coatings, thanks to their antimicrobial and
antifungal activities [3,4]. Other alternatives for storage involve cool storage conditions [5].

Chitosan is a natural polymer obtained from chitin deacetylation after successful
demineralization, depigmentation and deproteinization processes. Sources of chitin are
fungal species and the exoskeletons of insects and crustaceans. Chitosan is regarded as

BioTech 2023, 12, 20. https://doi.org/10.3390/biotech12010020 https://www.mdpi.com/journal/biotech

https://doi.org/10.3390/biotech12010020
https://doi.org/10.3390/biotech12010020
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biotech
https://www.mdpi.com
https://orcid.org/0000-0002-3287-7056
https://doi.org/10.3390/biotech12010020
https://www.mdpi.com/journal/biotech
https://www.mdpi.com/article/10.3390/biotech12010020?type=check_update&version=2


BioTech 2023, 12, 20 2 of 15

a non-toxic, biodegradable, and biocompatible polymer with a broad variety of applica-
tions [6]. Chitosan biofilms have been evaluated concerning their mechanical properties,
permeability, surface assessment and antifungal and antimicrobial properties [7,8].

Crosslinking properties confers further chitosan capabilities and strength [9–12]. Chi-
tosan biofilms have been successfully applied in conserving the natural characteristics of
strawberries, apples, mangoes, and pears, which are continuously exposed to microorgan-
isms and/or external contaminants [13–15].

In this study, chemical formulations for chitosan film preparations were proposed and
tested for exotic fruit preservation, using feijoa as a case study. Furthermore, porosity and
permeability, both fungal and bactericidal biofilm characteristics, were also examined.

2. Materials and Methods
2.1. Chitosan Extraction and Characterization

Chitin extraction from shrimp shells was carried out following standard protocols [16,17].
Initially, the starting material (shells) was washed to eliminate the adhered organic residues
using potable water, and subsequently dried at 40 ◦C for 2 h. The cleaned material was
further crushed and sifted until a suitable particle size (0.8–1.5 mm) was acquired. Fol-
lowing, the material was demineralized using hydrochloric acid (HCl) at 4%, treated at
room temperature with a 1.5 solid: liquid ratio, under constant agitation for 2 h. Finally,
deacetylation was carried out by hydrolysis of the acetamide groups in an alkaline medium
at high temperature, and under constant agitation. Several samples were drawn to verify
reproducibility.

Chitin deacetylation for chitosan production compelled a complete experimental
design to obtain at least a standard quality material that can be used for fruit coating.
This design considered three process variables (reagent concentration, temperature, and
time of chitin exposure for further deacetylation), in a central composite experimental
design. Statistical analysis (ANOVA and response surface optimization) was performed
using Statgraphics®.

The obtained chitosan and its deacetylation degree was analyzed by Fourier transform
infrared (FTIR) using transmission mode in a Shimadzu IRTracer-100 using the method of
attenuated total reflection ATR in the range of 4000 to 500 cm−1.

2.2. Preparation of Chitosan Films

For chitosan biofilm preparation, process conditions were previously set and were
based on the literature [18]; process variables such as acid concentration, temperature and
time were defined through a central composite experimental design. Statistical analysis
(ANOVA and response surface optimization) was performed using Statgraphics®.

The extracted chitosan powder was dissolved into an acetic acid solution at a 1:10 ratio
and stirred at 350 rpm for 3 h, thus reaching complete homogenization; glycerol, as a
plasticizer, was added at 1% v/v), and the resulting solution was stabilized for 15 min.
Finally, 20 mL of the mixture were served on a 60 × 15mm plate and were isolated in an
aeration chamber at room temperature for 24 h, in order to remove bubbles formed during
the process. The films, formed after solvent evaporation, were later placed in desiccators
prior to be used.

2.3. Characterization of Chitosan Films
2.3.1. Film Thickness

Thickness is critical in determining other film properties such as permeability and
mechanical strength. For film thickness determination, five (5) to eight (8) points were
randomly selected and measured, thus covering the entire active film surface; for this, an
analog micrometer Mitutoyo Quantu Mike (Mitutoyo, Aurora, IL, USA) was used. Further,
statistics (mean +/− standard deviations) were applied to the measurements to determine
the average film thickness.
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2.3.2. Water Vapor Permeability

Permeability was evaluated following ASTM E96/ASTM 96-05 standards. The tests
were carried out in a controlled environment chamber at 25 ◦C and an average humidity
of 37%. Chitosan film samples with an area of 0.1225 cm2 were sealed to the mouth of
a container (glass tube) containing water. Then, the assemblage was placed within a
controlled atmosphere. It was periodically weighed to determine the rate of vapor lost
through the film, from water to the controlled atmosphere, according to the Gontard and
Guilbert’s protocol [19].

To evaluate film performance over time, a linear regression analysis was performed,
and, in turn, the rate of mass transfer was calculated according to Equation (1)

WVT =
dm
dt

∗ 1
A

(1)

where WVT is the water vapor transmission coefficient, dm
dt is the differential mass/time

and A is the area of the exposed film.
Then, the permeability was calculated by Equation (2):

Permeability :
WVT

S(R1 − R2)
(2)

where S is the water vapor saturation pressure at room temperature, R1 is the relative
humidity in the chamber, and R2 is the internal relative humidity of the test tube.

Finally, the permeance value multiplied by the film thickness allowed us to find the
film’s permeability to water vapor. The experiment was performed in triplicate.

2.3.3. Tensile Strength

Tensile strength is the maximum tensile stress that the film can sustain. It was evalu-
ated based on the ASTM D882-12 standard, which describes the testing methodology for
films of a thickness less than 1 mm. For this, a Universal Testing Machine (DIGIMESS) with
500 N load distributions and a 5 mm/min tension strain rate until break was used. Addi-
tionally, the film thickness was evaluated using a digital micrometer (Mitutoyo Quantu
Mike). All tests were performed in triplicate.

2.3.4. Analysis of Porosity

Morphological characterization of the membrane structure was carried out using
scanning electron microscopy (SEM) (JEOL-JSM 6490 LV microscope), (Jeol, Tokyo, Japan)
at an acceleration voltage of 20 kV for determining pore geometry and size, and the
homogeneity of the film surface. Samples were fixed in a graphite tape and previously
bombarded with gold ions (1.5 Å thick) to improve resolution, using a Sputtering Denton
Vacuum Desk IV coupled to the scanning microscope.

2.4. Feijoa Coating Using Chitosan Films

A complete surface fruit pretreatment is necessary to remove potential pathogens and
impurities that may alter the feijoa coating process conditions. Fruit samples were selected
in such a way that they present neither slashes nor differences in harvesting time, and
have similar bright conditions and appearance; this way, film performance during post-
harvest, transport and/or storage could be assessed accurately. The fruit was cleaned with
a 500-ppm sodium hypochlorite solution by immersion for 20 s, and washed with distilled
water to remove the residual solution; residual distilled water was further removed with
sterilized soft cloths.

Biofilm formation on the fruit surface was achieved by using the immersion technique
(into the prepared chitosan solution). Pretreated and selected fruits were immersed for 10 s;
chitosan excess was removed by gravity. Then, samples were dried for 8 min in a controlled
chamber. Graphical recording of results was conducted for 15 days.
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2.5. Microbiological Evaluation

The antimicrobial and antifungal properties of chitosan membranes have been reported
for medical applications [20] and fruit coating [21]. Chitosan films were evaluated on feijoa;
for this, a microbiological analysis was performed. Besides the barrier protections provided
by the film, fruits were previously pretreated for the purpose of preserving freshness, aroma,
and nutritional content. Selected fruits were at the same stage of maturity. Simultaneously,
fruits without biofilm treatment were used as control. Samples were treated by triplicate.

The microbiological risk assessment for the diverse organisms used different selective
culture media. Table 1 shows the most common microorganisms able to attack the fruit,
based on their sugar content and moisture conditions.

Table 1. Microbiological evaluation of specific organisms.

Cell Culture Medium * Gram Staining Description

Clostridium perfringes TSN Gram-positive bacillus Presence or absence
Escherichia coli EMB Gram-negative bacillus Presence or absence
Salmonella sp. XLD Gram-negative bacillus Presence or absence

Pseudomona Aeruginosa Cetrimide Gram-negative bacillus Presence or absence
Staphylococcus aureus Baird parker Gram-positive coccus Presence or absence

Aspergillus niger—
Candida albicans OGYE Fungus Fungus presence

* TSN: tryptone–sulfite–neomcyine Agar. EMB: eosin–methylene blue agar. XLD: xylose–lysine–desoxycholate
agar. OGYE: oxytetracycline–glucose–yeast extract agar.

The plate count method was used for quantification of microorganisms in samples.
In the event of dense population of microorganisms, the method suggests performing log
dilutions (base 10), as required. Surfaces were microbiologically evaluated for sampling
procedure. For sampling, sterile distilled water, bacteriological peptone (Merk), sodium
chloride (Carlo ERBA) and sterile swabs were used.

Peptone water (water, sodium chloride and peptone at a ratio 1:8, 5:1000) was prepared
and sterilized for swab wetting. Moistened and sterilized cotton swabs were applied on
the material surface for recovering the biomass and later releasing them on selected media.
Experiments were performed in triplicate.

3. Results and Discussion
3.1. Chitosan Characterization

Fourier transform infrared spectrum (FTIR) was used to identify the degree of deacety-
lation (DD) of the obtained chitosan samples 2 and 3. Figure 1 shows the corresponding
FTIR spectrum. The spectrum reveals the presence of hydroxyl groups belonging to a
broadband located at 3440 cm−1. Peaks of C-H stretching (3000–2850 cm−1), C=O stretch-
ing (amide I) (1650 cm−1), N-H bending (amide II) (1550 cm−1) and C-O (1280–1000 cm−1)
were observed, as was also reported by other authors [22].

The deacetylation degree was calculated as described elsewhere [22]. The obtained
percentages of deacetylation were 82.0%, 84.5% and 86.7% for the commercial sample, and
for samples 2 and 3, respectively. These values are highly comparable to those required for
chitosan industrial applications [23].

The chemical structure of chitosan lacks only the acetyl group, when compared to
chitin. The hydrophobic nature of the acetyl group limits chitin solubility, while chitosan
becomes soluble in aqueous solutions [24], considering the presence of an increased number
of amino groups; at low pH, these amines are protonated and become positively charged.
This condition makes chitosan a water-soluble cationic polyelectrolyte [25]. Further, the
presence/absence of the acetyl group, because of the deacetylation process, may also affect
the mechanical properties of chitin and chitosan.



BioTech 2023, 12, 20 5 of 15
BioTech 2023, 4, x FOR PEER REVIEW 5 of 15 
 

 

 
Figure 1. Fourier transform infrared spectrum of extracted chitosan. 

The deacetylation degree was calculated as described elsewhere [22]. The obtained 
percentages of deacetylation were 82.0%, 84.5% and 86.7% for the commercial sample, and 
for samples 2 and 3, respectively. These values are highly comparable to those required 
for chitosan industrial applications [23]. 

The chemical structure of chitosan lacks only the acetyl group, when compared to 
chitin. The hydrophobic nature of the acetyl group limits chitin solubility, while chitosan 
becomes soluble in aqueous solutions [24], considering the presence of an increased num-
ber of amino groups; at low pH, these amines are protonated and become positively 
charged. This condition makes chitosan a water-soluble cationic polyelectrolyte [25]. Fur-
ther, the presence/absence of the acetyl group, because of the deacetylation process, may 
also affect the mechanical properties of chitin and chitosan. 

The permeability of chitosan-based membranes is affected by the deacetylation de-
gree; thus, low values of %DD are associated with low values of permeability and there-
fore a reduction in the percentage of oxygen that enters the fruit, which further may inhibit 
its ripening. 

In contrast, the presence of acetyl groups contributes to the formation of stable H-
bonds. Therefore, low tensile strength is expected for high vales of %DD [26,27]. There-
fore, chitosan-based biofilm properties may prevent chitosan applicability in diverse 
fields. 

3.2. Chitosan Biofilm Preparation 
Figure 2 shows three elaborated films for comparison purposes. Figure 2a,b represent 

biofilms made with shrimp-extracted chitosan; Figure 2c shows a biofilm made with com-
mercial chitosan. 

A gradual improvement of film quality, regarding color, flexibility, and texture, was 
observed. From different experiments, it was noticed that a larger acetic acid content 
and/or higher temperatures did spawn coloring and poor mechanical properties in bio-
films; therefore, the experimental setup was re-evaluated, thus overcoming film coloring 
and mechanical strength problems. For the case of edible films, there are special charac-
teristics that need to be considered, among which are thickness, tensile strength, percent 
elongation, and transparency. 

The most appropriate conditions for the elaboration of extracted chitosan films en-
compassed acetic acid (1% v/v), low chitosan concentration (1%) at a 1:10 solid: liquid ra-

Figure 1. Fourier transform infrared spectrum of extracted chitosan.

The permeability of chitosan-based membranes is affected by the deacetylation degree;
thus, low values of %DD are associated with low values of permeability and therefore
a reduction in the percentage of oxygen that enters the fruit, which further may inhibit
its ripening.

In contrast, the presence of acetyl groups contributes to the formation of stable H-
bonds. Therefore, low tensile strength is expected for high vales of %DD [26,27]. Therefore,
chitosan-based biofilm properties may prevent chitosan applicability in diverse fields.

3.2. Chitosan Biofilm Preparation

Figure 2 shows three elaborated films for comparison purposes. Figure 2a,b represent
biofilms made with shrimp-extracted chitosan; Figure 2c shows a biofilm made with
commercial chitosan.
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A gradual improvement of film quality, regarding color, flexibility, and texture, was
observed. From different experiments, it was noticed that a larger acetic acid content
and/or higher temperatures did spawn coloring and poor mechanical properties in biofilms;
therefore, the experimental setup was re-evaluated, thus overcoming film coloring and
mechanical strength problems. For the case of edible films, there are special characteristics
that need to be considered, among which are thickness, tensile strength, percent elongation,
and transparency.

The most appropriate conditions for the elaboration of extracted chitosan films en-
compassed acetic acid (1% v/v), low chitosan concentration (1%) at a 1:10 solid: liquid
ratio, and glycerol as a plasticizer (1.4%). The addition of the plasticizer was critical for
improving film properties, mainly permeability and porosity; apparently, the plasticizer
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reduces intermolecular forces between the polymer chains, thus promoting an easy dif-
fusion of water or oxygen for fruit respiration [28]. The advantages of using glycerol as
a plasticizer in biopolymer synthesis are well known. Tarique J. et al. [29] did test its
applicability to starch biopolymer development, observing that an increment in glycerol
concentration caused an increment in film thickness and moisture content, though it also
caused a significant reduction in tensile strength. In general, the controlled use of glycerol
improves film properties.

3.3. Evaluation of Chitosan Films

Mechanical properties are important for edible films and coating since they contribute
to a more versatile mechanical handling of fruits.

In Table 2, the average thickness for selected chitosan biofilm samples is shown.
Thickness for tested biofilm formulations showed an acceptable variability of the diverse
measurements; hence, samples were used for subsequent characterizations.

Table 2. Average thickness for chitosan biofilm evaluated.

Evaluation
Sample 2

Extracted Chitosan
(cm)

Sample 3
Extracted Chitosan

(cm)

Commercial
Chitosan (cm)

1 0.00552 0.00652 0.02270

2 0.00522 0.00822 0.02202

3 0.00712 0.00582 0.02230

4 0.00542 0.00922 0.02103

Average thickness 0.00601 0.00852 0.02200

Deviation 0.001294 0.0019 0.00073

Confidence interval 0.000897 0.001326 0.0071

When compared with thickness of biofilms obtained from commercial chitosan, biofilms
made of extracted chitosan were thinner on average. Yet, differences did not limit biofilm
use and subsequent evaluation. The thickness of chitosan coatings is an important pa-
rameter considering the bright waxy green skin of feijoa fruits; as mentioned, the coating
acts as a semipermeable barrier against oxygen, carbon dioxide and moisture; it also may
reduce respiration and water loss, thereby counteracting the dehydration and shrinkage of
feijoa fruits. The fruit can be consumed along with its skin, which is a little bitter but still
contains plenty of nutraceutical qualities; therefore, the thinner the chitosan coating the
better, considering the edible character of chitosan.

Regarding biofilm permeability, Figure 3 shows the permeability results for the com-
mercial chitosan sample and the extracted chitosan samples. Assays were carried out on the
films that showed the best results (qualitative), in terms of transparency, appearance and
thickness. These characteristics would enable films to promote mass transfer in a controlled
manner, thus reducing adverse effects on the fruits’ organoleptic properties.

As observed in Figure 3, the weight of the assemblage used for the permeability test,
considering the different samples, showed a linear trend over time. Weight loss rate was
slightly different among the tested samples. Permeability values for commercial chitosan
samples ranged from 2.293 × 10−9 g/(m s Pa) and 3.382 × 10−9 g/(m s Pa).

These values were higher than those acquired for chitosan samples 2 and 3
(1.37 × 10−9 g/(m s Pa) and 1.53 × 10−9 g/(m s Pa), respectively). Still, permeability
values for extracted chitosan samples were highly comparative to those reported for poly-
mers used in food coating, e.g., (wheat) gluten (1.4–4.6 × 10−9 m.s.Pa) [30] and isolated
soy protein (1.6–4.4 × 10−9 g/m.s.Pa) [31,32], and were higher than those informed for
polyethylene (2.4 × 10−13 g/m.s.Pa) [33]. Hence, the obtained biofilms showed increased
permeability, a property quite useful for respiration and oxygenation of coated fruits.
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Nonetheless, high permeability values may affect fruit oxygenation, thus hastening growth
and physiological weight loss, and reducing the fruit’s shelf-life [28,34]. Weight loss might
be the major determinant of the storage life and quality of fruits. The use of chitosan
coatings significantly reduces the weight loss of fruits during storage, since it forms an
additional barrier against water diffusion through the stomata [21]. These outcomes have
been also observed in fruits such as papaya, strawberries, and cucumber and pepper [21].
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Figure 3. Weight loss for the assemblage using films made with commercial chitosan and extracted
chitosan, in permeability experiments.

Figure 4 shows the tensile test results for both the extracted and commercial chitosan
films. These data were essential for the calculation of the biofilm strength to applied forces,
the Young’s modulus, the biofilm tensile strength and the elastic limit of both extracted and
commercial chitosan biofilms (Table 3).
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Table 3. Biofilms’ mechanical properties.

Sample Elastic Limit (Pa) Tensile Strength (Pa) Young’s Modulus (Pa)

Commercial chitosan 0.1142 0.2514 1.1001

Extracted chitosan
sample 2 0.1400 0.3733 0.9739

Extracted chitosan
sample 3 0.2629 0.6244 0.7325

As noted, sample 3 has the lower modulus of all samples tested (Table 3); this might
be the result of its lower rigidity caused by the rendered deacetylation degree. It has been
well documented that the higher the deacetylation degree, the greater the solubility and
ease of crosslinking [28,35].

Clearly, the tensile strength of the extracted chitosan films was higher compared
to that of the commercial chitosan sample (0.3733 Pa and 0.6244 Pa for samples 2 and
3, respectively, and 0.2514 Pa for commercial chitosan); it is expected that film’s tensile
strength increases with increasing degree of deacetylation (%DD 82.1; 84.5 and 86.7 for
commercial, sample 2 and sample 3, respectively) [35].

Moreover, it was observed that at higher %DD of chitosan, the resistance properties
of the derived films seem to be favored; there was less rigidity and greater resistance to
deformation. This behavior could be affected by parameters such as molecular weight,
polymer–solvent interactions, and the presence of plasticizers [18].

Figure 5 shows SEM micrographs for the evaluated samples: the chitosan commercial
sample and the chitosan extracted samples.
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Porosity is another important biofilm property; it is very critical for molecule transfer,
molecular interactions, polymer relaxation and affinity. It allows water, or any other
compound, to pass through. It is known that that low porosity values may not affect
diffusion; molecular transport is limited only by polymer diffusion mechanisms. In this
study, porosity for the obtained samples was smaller than 2 µm.

As pointed out, porosity changes with the degree of deacetylation for samples 2 and 3.
Porosity values are the results of a combination of factors. The concentration of residual
minerals in the sample might affect porosity of chitosan biofilms; pH values can also affect
biofilm porosity, especially at the interval of 3 to 5 units. Under these conditions, solubility
is affected, thus generating regions with weak bonds and altered porosity [36].

Though porous size differs between those on biofilms obtained with plasticizers and
glycerol, permeability (5.17 × 10−6g/(m.h.Pa)) values are comparable to those reported
by Wiles et al. [37] (7.41 × 10−7g/(m.h.Pa)), which suggest glycerol, as plasticizer, confers
adequate properties for transport and controlled molecule release to the biofilm.
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3.4. Feijoa Coating Using Chitosan Films

Chitosan biofilm coating for the protection of fruits may extend freshness and moisture
content [8,38,39]. After a meticulous disinfection and a preliminary classification based on
size, color, freshness and appearance, fruits were coated with chitosan biofilms, using the
immersion technique. Skipping the initial disinfection step does leave fruits completely
attacked by fungal and/or microbial agents. The presence of the coating has demonstrated
an efficient control of microbial and fungal growth, hence preserving fruit shelf-life and
freshness [25]. The chitosan biofilm properties contribute to an appropriate fruit ripening
and homogeneous preservation as long as the coating process is successful. Coating can be
applied either single or in a multilayer structure with stable performance [40].

In this study, experiments were run for fruits exposed to a previous disinfection
process using commercial and extracted-chitosan films. Uncoated fruits were used as a
control (Figure 6).

As observed in Figure 6, fruits without coating developed a massive fungal growth,
whereas coated fruits were further preserved, considering the antifungal and antimicrobial
chitosan properties. Chitosan-based coatings are known to be the best edible and biologi-
cally safe preservative for fruits and vegetables, since they have antimicrobial action and
are biodegradable and nontoxic [41]. For chitosan-coated fruits, surfaces still preserved
their luster and showed low variability and scarce grooves; the coating controlled water
transpiration and loss of nutrients, thus enhancing resistance to external agents that may
vary their maturation over time. Though it was not part of this study, it is expected that
feijoa’s antioxidant properties were also preserved. In contrast, non-coated fruits showed
an accelerated ripening process, besides to a manifest external-agent attack, mainly fungi
and bacteria.

As pointed out, biofilm capacity for oxygen transfer depends on porosity, thickness,
and permeability; also, it has been observed that the degree of chitosan deacetylation influ-
ences film permeability. Although the extracted chitosan films showed lower permeability
than that of commercial chitosan films, oxygen transfers and fruit respiration were not
compromised, hence rendering longer a shelf-life for coated fruits.

Following the fruit coating experiments, microbiological samples were taken from
disinfected coated fruit samples. Samples were taken at day zero and on the 15th day
(Figure 7).

Feijoa samples (previously disinfected and provided with chitosan coatings) that
exhibited microbial growth on a selective medium were microbiologically evaluated and
quantitatively described by the plate-count method and Gram staining; these analyses
provided data for colony forming units for each microorganism. Extracted chitosan biofilm
sample 3 had no presence of fungi or microorganisms, as shown in Figure 7; this biofilm for-
mulation might be recommended for the protection of feijoa fruits against microorganisms.

For biofilms of chitosan sample 2, colonies appeared on the Baird-Parker medium,
which determines the presence of Staphylococcus; the presence of this microorganism was
further validated by Gram staining.

Once microbial evaluation of Feijoa with and without chitosan coatings was performed,
it was determined that the presence of microorganisms, on the first day, was reduced
due to the fruit disinfection with sodium hypochlorite. On the 15th day, the presence
of microorganisms was determined in three out of four samples evaluated; these were
characterized by Gram staining and plate counts for each microorganism type, grown on
selective media.
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Colony-forming units in these selected media were larger for uncoated fruits, thus
confirming the advantages of using biofilms for fruit protection [20,21]. Apparently, the
polycationic nature of chitosan favors the antifungal and antimicrobial activities through
a hitherto unclear mechanism of action between the microbial cell membranes and either
chitosan amine groups or low molecular weight chitosan molecules that may penetrate [42].
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Fruit samples with commercial chitosan-based coating were microbiologically eval-
uated; as observed (Figure 7), at 15th day, the OGY selective media was the only one
that showed a colony forming units (fungus). For the remaining selective media, absence
of colony units was observed after the 15th day of the experiment, thus confirming the
potential of the antimicrobial and antifungal chitosan properties.

Regarding the quantification of microorganisms, samples were evaluated on plate
count agar with different dilution factors, according to the concentration of colonies; the
results are shown in Table 4 for commercial and extracted chitosan biofilms.
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Table 4. Microbial counting at day 15 for different chitosan biofilm sources.

Feijoa
Samples

EMB
Cell Culture

(UFC/mL)

Baird-Parker
Cell Culture

(UFC/mL)

Cetrimide Cell
Culture

(UFC/mL)

OGY
Cell Culture

(UFC/mL)

Uncoated 501,000 6,100,000 0 Several fungi
Commercial

chitosan 0 561,000 0 0

Chitosan Sample 2 0 510,000 0 0
Chitosan Sample 3 0 0 0 0

By day 15, colonies of microorganisms in samples without pretreatment increased;
the presence of E. coli and Staphylococcus (>500,000 UFC/mL) in samples with commercial
chitosan coatings was also observed. The extracted chitosan film 2 showed comparative
UFV/mL values to commercial chitosan films for Staphylococcus. It was expected that the
coatings would provide complete protection against Gram-positive and Gram-negative
organisms, as well as fungi. Apparently, the antimicrobial properties of chitosan-based
coatings were not that efficient, perhaps due to operational conditions. As an example, it
has been reported that pH values interfere with chitosan adsorption rates and antimicrobial
activity in E. coli; adsorption strongly increases with increasing pH [43]. Hence, finding
the appropriate experimental conditions would greatly improve chitosan-based coating
antimicrobial efficiency. Moreover, antimicrobial chitosan properties can be improved
by blending synthetic and natural antimicrobial agents derived from essential oils with
chitosan-based coatings. In this sense, some herb varieties, e.g., basil, oregano, and thyme,
have been studied [44]. Chitosan treated with cotton fabric has also been shown to be
effective in causing morphological changes and shrinking after contact with cell membranes
of Gram-positive and Gram-negative bacteria. The forming layer blocks channels and
prevents the transport of essential nutrients, causing severe damage and ultimately cell
death [45].

Extracted chitosan biofilm 3 showed no UFC values. Seemingly, modifications on the
cell surface did appear, thus altering the integrity of the cell membrane and interfering
with nutrient transport and/or energy metabolism. This likely mechanism for effective
antimicrobial activity has been hypothesized to involve electrostatic forces between the
protonated amino groups and the negative residues at cell surfaces [43]. Further, researchers
have also demonstrated that phosphoryl groups of the phospholipid component of the
cell membrane are responsible for the electrostatic interaction with chitosan polycationic
groups, which reinforce its antimicrobial properties [46].

4. Conclusions

In this work, the characteristics of chitosan as a permeable film were evaluated for the
protection and extension of the freshness of post-harvested food. For the case of exotic fruits,
chitosan biofilms achieved significant reduction and even zero growth of microorganisms
and fungi in feijoa fruits coated with chitosan films. The obtained chitosan–membrane
permeability allowed a proper oxygen exchange suitable for fruit freshness and normal
physiological weight loss, thus delaying oxidative degradation and prolonging shelf-life.

However, it is known that chitosan films are permeable to water vapor, thus limiting
their applicability, especially in moist environments. Researchers have dealt with this draw-
back by increasing film hydrophobicity using neutral lipids, fatty acid waxes and/or clay,
the addition of cross-linking agents, and blending with proteins and/or polysaccharides.
These approaches not only improve chitosan-based film permeability characteristics but
also improve its mechanical properties. These strategies are the subjects of our current
research on exotic fruit preservation. Based on our findings, we argue that chitosan-based
protection is a worthy alternative for the preservation of valuable and exotic fruits.
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