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Abstract: In this study, biocompatible electrospun nanofiber scaffolds were produced using poly(-
caprolactone (PCL)/chitosan (CS) and Nigella sativa (NS) seed extract, and their potential for biomedi-
cal applications was investigated. Scanning electron microscopy (SEM), Fourier transform infrared
spectroscopy (FTIR), total porosity measurements, and water contact angle measurements were
used to evaluate the electrospun nanofibrous mats. Additionally, the antibacterial activities of
Escherichia coli and Staphylococcus aureus were investigated, as well as cell cytotoxicity and antioxidant
activity, using MTT and DPPH assays, respectively. The obtained PCL/CS/NS nanofiber mat was
observed by SEM to have a homogeneous and bead-free morphology, with average diameters of
81.19 ± 4.38 nm. Contact angle measurements showed that the wettability of the electrospun PCL/Cs
fiber mats decreased with the incorporation of NS when compared to the PCL/CS nanofiber mats.
Efficient antibacterial activity against S. aureus and E. coli was displayed, and an in vitro cytotoxic
assay demonstrated that the normal murine fibroblast cell line (L929 cells) remained viable after
24, 48, and 72 h following direct contact with the produced electrospun fiber mats. The results
suggest that the PCL/CS/NS hydrophilic structure and the densely interconnected porous design
are biocompatible materials, with the potential to treat and prevent microbial wound infections.

Keywords: Nigella Sativa; chitosan; electrospinning; polycaprolactone; biocompatibility

Key Contribution: Incorporating Nigella sativa extract into the synthesis of PCL/CS nanofibers
enhances the electrospinning process, and the resulting material is a biocompatible nanofibrous mat
that is low-cost, non-toxic, and has antioxidant and antibacterial properties, making it ideal for use as
a wound dressing.

1. Introduction

Electrospinning is an efficient and practical method that utilizes a powerful electric
force to move polymeric solutions to create micro- and nanofibers. Surface tension is
deformed by the high voltage of an electrically conductive fluid in the fabrication of fibers,
which have recently been investigated for their potential in biomedicine, such as in wound
treatment and tissue engineering [1–5]. In practical electrospinning, a variety of variables,
including melt or solution quality, electrospinning device parameters, and environmental
variables, might influence the shape and characteristics of the resulting fibers [6,7]. How-
ever, to understand the effects of such complicated parameters on nanofibers when using
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novel polymers, composites with different mixes, and solvent combinations for electrospin-
ning, extensive research is needed [8,9]. PCL, a synthetic polymer with FDA approval and
with considerable mechanical and biocompatibility properties, has been frequently used as
a polymer in electrospinning techniques for biomedical applications [10–13].

Chitosan electrospun nanofibers have gained a great deal of attention in the fields of
fibrous wound healing and tissue engineering due to their unique properties, including
biocompatibility, biodegradability, antibacterial activity, nontoxicity, antifungal activity,
and drug-loading capacity [14,15]. Numerous investigations have been conducted on
the electrospinning of chitosan and PCL in conjunction with other polymers or bioactive
compounds for use in tissue engineering and wound dressings. Medical plant extracts have
been utilized as a traditional treatment for wounds for decades due to their therapeutic ef-
fects, which include their antibacterial, antioxidant, anti-inflammatory, and wound-healing
effects [16,17]. Nanofibers containing naturally derived bioactive materials are beneficial
because of their high specific surface-area-to-volume ratio and extremely porous mesh,
which offers a range of advantages for the treatment of both chronic and acute wounds
compared to traditional dressings [18]. Nigella sativa (NS) is considered to be one of the
most promising herbal products due to the presence of numerous powerful bioactive com-
ponents, such as thymoquinone [19]. NS has been used for centuries in traditional medicine
to treat skin disorders and as an analgesic, liver tonic, diuretic, digestive, anti-diarrheal, and
antibacterial treatment [20–25]. It has several active ingredients and properties, including
antioxidant and anti-inflammatory agents, anti-cancerogenic agents, antimicrobials, and
immunostimulants [26–28]. Major nutrients in NS include carbohydrates, proteins, alka-
loids, vitamins, and minerals. Thymoquinone, which makes up around 45% of its essential
oils and is well known for its pharmacological and therapeutic properties, is one of the
most prominent components of this plant [29,30]. N. sativa plant extracts and their natural
compounds, used in nanoformulations, have demonstrated high activity in the manage-
ment of wounds and thus can be assumed as future pharmaceutical drugs for prospective
application as a wound dressing material. Shiva Teilaghi et al. evaluated an electrospun
solution of zein and black seed (Nigella sativa) oil at three different oil concentrations of
5, 10, and 15% w/v in advanced drug delivery applications [31]. Fatemeh Kalhori et al.
explored innovative electrospun mats that incorporated NS oil and polyacrylonitrile as
a sustained-release nano-bandage to treat rheumatoid arthritis [32]. However, few inves-
tigations have focused on the electrospinning of Nigella sativa extract for application in
antimicrobial wound dressings. In a recent study, Aras et al. [33]. performed a variety of
experiments on the loading of Nigella sativa oil into a polyurethane nanofibrous mat for
prospective application as a wound dressing material.

The objective of the current work was to combine the benefits of NS extract with CS and
PCL to create a biocompatible nanofibrous mat that was inexpensive, non-toxic, and had
antioxidant and antibacterial properties, which could be used as a wound dressing material.
In the study, an NS-extract-loaded electrospun PCL/CS nanofibrous mat was investigated
for potential use as an antioxidant and antibacterial wound dressing material. The produced
mat was characterized by scanning electron microscopy (SEM). FTIR spectroscopy was used
to identify the functional groups based on the peak values in the IR present in the native
sample. The hydrophilicity of the scaffold was characterized by the surface contact angle
test, and the scaffold’s porosity was also investigated. The cytotoxicity of the PCL/CS/NS
nanofibrous mat was examined using the L929 cell line, as well as its antioxidant and
antibacterial effects on strains of bacteria E. coli and S. aureus.

2. Materials and Methods
2.1. Material

All chemicals used were of analytical grade and were used as received, without
any further purification. They were obtained from Sigma-Aldrich as follows: (PCL) Mn
∼80 000, chitosan (CS, molecular weight = 120,000 Da, degree of deacetylation = 85%),
phosphate-buffered saline (PBS), Dulbecco’s modified Eagle’s medium (DMEM), fetal
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bovine serum (FBS), penicillin, streptomycin, dimethyl sulfoxide (DMSO), MTT, acetic acid,
and formic acid.

The NS seeds, as raw plant materials, were acquired from a local market in Hilla City,
Babylon, Iraq, in February 2022, and were authenticated by the College of Agriculture at
the University of Babylon in Iraq. Nigella sativa was extracted following the technique
described by H Mahmoudvand et al. [34], with some modifications.

2.2. Gas Chromatography–Mass Spectrometry (GC–MS) Analysis

Using a Perkin Elmer GC/MS-QP2 system and a Restek5, RT*R- (30 m × 0.215 mm)
capillary column, the ethanolic extract of N. sativa was examined. The extract (1 mg/mL)
was reconstituted in methanol before being injected into 1 µL at a split ratio of 20:1, with
99.9% helium gas as the carrier gas. The oven was gradually heated to 280 ◦C for 10 min,
starting at 60 ◦C for 5 min, with the inflator at 250 ◦C. The mass-spectral database (NIST
and WILLEY library) connected to the GC/MS system to obtain spectral configurations
was used to identify the chemicals [35,36].

2.3. Production of the Electrospun PCL, CS, and NS Nanofibrous Mats

First, various mixtures of PCL/CS and NS extract with different ratios and concen-
trations were selected for the electrospinning process. The best combination, with an
NS/PCL/CS ratio of 2/3/1, was chosen.

The first solution, the NS stock solution, was made by dissolving 0.1 g of NS extract in
100 mL of absolute ethanol (96%). Then, each 1 mL of this stock was supplemented with
5 µL of Tween 80.

A mixture of PCL (10% w/v) and CS (3% w/v) was made by dissolving 1 g of PCL
and 0.3 g of CS in 10 mL of glacial acetic acid and formic acid at a 30:70 ratio, followed
by stirring overnight. The mixtures were stirred for 4 h before electrospinning, followed
by 20 min of ultrasonication. The PCL/CS solution was then combined with 7% w/v NS
solution (5 mL), and the mixture was stirred for 3 h. Once these parameters were in place,
the flow rate for electrospinning was set at 0.5% per hour, the applied voltage was set at
18 kilovolts, the tip–collector distance was set at 12 cm, and the drum collector’s rotation
speed was fixed at 700 rpm [37].

2.4. Characterization of the PCL/CS/NS Nanofibrous Scaffold
2.4.1. Morphological Analysis Using SEM

SEM (MIRA TESCAN, Czech Republic) was used to examine the morphology of the
composite nanofibrous scaffold at a 15 kV accelerating voltage. The scaffolds were coated
with gold before imaging using a sputter coater with a 15 kV acceleration voltage and a
magnification scale of 100,000× g. Scaffold fiber diameters were calculated using image
analysis software based on SEM images at 5000× g magnification (ImageJ, U.S. National
Institutes of Health, Bethesda, Maryland, USA).

2.4.2. Infrared Spectroscopy with Fourier Transform

PCL/PLA/NS nanofibers were obtained by combining 1 mg of sample with 100 mg
of KBr of NS and using FTIR spectroscopy to analyze the structure and chemical makeup
of the nanofiber, as well as any potential interactions between the extract and polymer in
the nanofiber formations. In the 500–4000 cm−1 region, sample spectra were captured.

2.4.3. Water Contact Angle and Mechanical Properties

The water contact angle and mechanical features of the scaffolds were assessed.
The contact angle was dynamically calculated using the Wilhelm plate approach [38].

The hydrophilicity or hydrophobicity of the sample was tested and evaluated using water
with a surface tension of 72 dyn/cm. The liquid in the container increased until the metal
plate’s intended surface was completely submerged in water, at which point it began to
descend. We determined the porosity of the fibers by weighing the samples and soaking
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them in PBS for 24 h. The weight was once more measured after the surface water and
nanofiber web were eliminated from the solution. The nanofibrous scaffold’s porosity was
determined by the volume of liquid that it could retain.

2.5. In Vitro Cell Culture Studies

The MTT test was carried out to identify the cytoprotective criteria of PCL/CS/NS
nanofibrous mats under conditions of oxidative stress. To encourage cell adhesion on the
nanofiber surface, 1 cm2 nanofibrous mats were sterilized overnight in a laminar flow hood
under UV light for both the top and bottom surfaces. After being rinsed with distilled
water and PBS to remove any remaining solvent, they were then submerged in DMEM
overnight. Cells from L929 were cultured in DMEM supplemented with 10% FBS and 1%
antibiotics at 37 ◦C and 5% carbon dioxide. The L929 cells were trypsinized and seeded at
1 × 105 cells per well onto the nanofibrous mat once they had attained % confluence. They
were then incubated at 37 ◦C and 5% CO2. The MTT assay was used to test cell viability on
the nanofibrous mats for 24, 48, and 72 h time periods.

2.6. Antibacterial Activity

The Kirby–Bauer disk diffusion method to test antibacterial activity (Humphries et al.,
2018) [39] was considered a suitable method for evaluating the antibacterial activity of
PCL/CS/NS nanofibers. Briefly, five bacterial colonies of S. aureus (ATCC 29213) and E. coli
(ATCC 35218) were used to collect sterile inoculating loops, which were then suspended in
2 mL of sterilized PBS. By diluting the bacterial suspension with sterile PBS, the turbidity
was already reduced to a 0.5 McFarland level. Inoculum channels were populated with
sterile swabs. Bacterial swabs were inoculated into plates of Muller–Hinton agar. To
disperse the nanofibers, we dissolved 0.1 mg PCL/CS/NS nanofibers in 1 mL of distilled
water. Before use, the suspension was sonicated for 10 min. The standard was impregnated
with 35 µL of the PCL/CS/NS nanofiber suspension, chitosan suspension, Nigella sativa
extract (NS), distilled water (as a negative control), and antibiotic (as a positive control).

2.7. Activity of DPPH Radical Scavenging

This test was performed according to Blois’s description (1958) [40]. A total of 0.025 g/L
of DPPH was dissolved in methanol. Dimethyl sulfoxide (DMSO) was used to dilute
various concentrations of chitosan (CS), Nigella sativa (NS), nanofibers (PCL/CS/NS), and
ascorbic acid (as a control) to create a sample solution. Following the addition of 5 µL of the
sample solution to each well of a 96-well plate, 195 µL of the DPPH working suspension
was pipetted. The reaction took place at room temperature for 20 min, and the solution’s
absorbance at 515 nm was determined. The free radical scavenging activity of each fraction
was assessed by comparing its absorbance to that of a blank solution (no sample). The
following equation was used to calculate the percentage of inhibition, representing the
capacity to scavenge DPPH radicals.

DPP Scavenging Activity(%) = (A0 − A1)/A0 ∗ 100

A0 refers to the absorbance value of the control and A1 represents the absorbance value
of the test sample.

3. Results and Discussion
3.1. GC–MS Analysis

Multiple peaks were detected in the GC–MS analysis of the ethanolic extract of N.
sativa seeds (Figure 1). A repository of the recognized component spectra from the GC–MS
library was used to determine the chromatogram peaks. According to GC–MS profil-
ing, the extract contained 20 major elements. The discovered compounds are listed in
Table 1, along with their peak area (%), retention time, chemical formula, and molecular
weight. From these 20 compounds, six elements had a high peak percentage, including
hexadecanoic acid–methyl ester, undedecanoic acid, L-ascorbic acid 2,6-dihexadecanoate,
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9,12-octadecadienoic acid-(Z, Z)–methyl ester, 10,13-eicosadienoic acid, 9-octadecenoic acid
(Z), 9,12-octadecadienoic acid, and ethyl ester (Table 1). Hexadecanoic acid–methyl ester
and 10,13-eicosadienoic acid–methyl ester are natural acids with antifungal and antibacte-
rial properties, particularly against E. coli and Staphylococcus aureus [41]. Moreover, L-(+)-
ascorbic acid 2,6-dihexadecanoate is an essential molecule that functions as an antioxidant,
cardiovascular protectant, cancer-preventative, and flavoring agent [42]. Meanwhile, 9,12-
octadecadienoic acid (Z, Z)–methyl ester has analgesic, anti-inflammatory, and ulcerative
characteristics [43]. This polyunsaturated fatty acid is found in many plant glycosides,
including Nigella sativa [44]. Among their various roles in the body, polyunsaturated fatty
acids play a key role in anti-inflammation, antioxidant, and anti-atherosclerotic activities
via the regulation of vascular hemodynamics [45].
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Figure 1. GC–MS chromatogram of the ethanol extract of Nigella sativa seeds.

Table 1. Retention time, phytochemical compounds, and peak area % determined by GC–MS analysis
of Nigella sativa seed extract.

Peak
No.

Ret.
Time Phytochemical Compounds Molecular

Formula
Molecular

Weight Peak Area %

1 5.603 Glycerin C3H8O3 92 0.47
2 18.622 Phenol, 2,4-bis(1,1-dimethylethyl)- C14H22O 206 0.18
3 20.18 Phenol, 2,4-bis(1,1-dimethylethyl)- C14H22O 206 0.82
4 24.244 Phenol, 2,4-bis(1,1-dimethylethyl)- C14H22O 206 0.93
5 35.471 Hexadecanoic acid, methyl ester C17H34O2 270 0.73
6 35.555 7,9-Di-tert-butyl-1-oxaspiro(4,5)deca-6,9-diene-2,8-dione C17H24O3 276 0.15
7 35.807 Hexadecanoic acid, methyl ester C17H34O2 270 0.52
8 36.575 l-(+)-Ascorbic acid 2,6-dihexadecanoate C38H68O8 652 4.24
9 36.823 Pentadecanoic acid C15H30O2 242 3.73

10 37.284 Hexadecanoic acid, ethyl ester C17H34O2 270 0.82
11 37.511 Hexadecanoic acid, ethyl ester C17H34O2 270 0.52
12 39.765 9,12-Octadecadienoic acid (Z,Z)-, methyl ester C19H34O2 294 5.07
13 39.925 10,13-Eicosadienoic acid, methyl ester C21H38O2 322 6.46
14 40.066 9-Octadecenoic acid (Z)-, methyl ester C19H36O2 296 1.89
15 40.573 Methyl stearate C19H38O2 298 0.23
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Table 1. Cont.

Peak
No.

Ret.
Time Phytochemical Compounds Molecular

Formula
Molecular

Weight Peak Area %

16 41.125 Octadec-9-enoic acid C18H34O2 282 47.64
17 41.386 9,12-Octadecadienoic acid, ethyl ester C20H36O2 308 7.71
18 41.485 9,12-Octadecadienoic acid, ethyl ester C20H36O2 308 16.71
19 42.183 Heptadecanoic acid, 15-methyl-, ethyl ester C20H40O2 312 0.85
20 42.26 Heptadecanoic acid, 15-methyl-, ethyl ester C20H40O2 312 0.32

3.2. Morphology of Nanofibers

SEM micrographs showed the prepared PCL/CS/NS at various weight ratios. From
Figure 2, the nanofiber mat had a more uniform and thinner texture, demonstrating that
a uniformly favorable solution viscosity was achieved during electrospinning by using
the optimized operating parameters. The current study results revealed nanofibers of a
diameter between 40 ± 2.03 and 180 ± 2.16 nm, with an average of 101.85 ± 4.38 nm. The
morphology of the prepared electrospun nanofibers was directly influenced by parameters
such as the voltage, flow rate, and the distance from the tip to the collector.
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CS and NS have many polar groups, such as –NH2 and –COOH, which have the
potential to carry positive or negative charges and create a polyanion–polycation complex.
A larger charge density on the surface would result in more elongation forces being applied
to the released jet [46]. Additionally, the increased charge density may increase the jet
bending instability, resulting in a reduced fiber diameter [47]. Incorporating N. sativa into
PCL/CS nanofibers resulted in shifting the fibers’ diameter and diameter distribution to
lower values, which was in agreement with other previous reports [33].

The mechanical properties of PCL nanofibers have been enhanced through the addi-
tion of various fillers, including nanosilicates, graphene, cellulose nanocrystals, and Ag
nanoparticles [48,49]. The mechanical strength of PCL nanofibers for biomedical applica-
tions has also been improved by blending them with natural or synthetic polymers [50].
Wang et al. (2021) [51] reported that adding natural polymers such as chitosan, alginate,
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and lignin to PCL nanofibers can improve their structural integrity, and hence their func-
tionality. Since thymol was the active component of the NS extract, it stands to reason that
this extract could serve as a plasticizer and regulator of the polymer chains, resulting in a
reduction in the diameter of the nanofibers [52].

The shear viscosity of the spinning solution is often believed to be the key variable
of the fiber diameter [53]. When the viscosity is too low, polymeric fibers and droplets
of the material (electrospray) may be interrupted, while, when the viscosity is too high,
the polymeric material cannot be extruded [54]. The needed minimum viscosity threshold
varies with the molecular weight of the polymer and the type of solvent being employed and
correlates with a certain polymer concentration in the electrospun solution [55]. PCL and CS
are polymers with significantly different chemical properties and finding a common solvent
to create a film was an important challenge. Additionally, it was crucial to maintain the
optimal viscosity in order to create the double porous membrane structure. By increasing
the chitosan ratio, it was possible to electrospin PCL/chitosan blends, and SEM pictures
revealed that as the chitosan ratio increased, the fiber diameter and dispersion reduced.
According to Roozbahani, Fatemeh et al., PCL-treated chitosan nanofibers with a 70/30 ratio
have a smaller average diameter of 205 nm than blended nanofibers made from untreated
chitosan, which has a 356 nm diameter [56].

3.3. FTIR Analysis

FTIR analysis was used to determine how electrospinning altered the parts that
made up the PCL/CS/NS. The spectra of the PCL/CS/NS are shown in Figure 3. Prior
research [57] revealed that the asymmetric and symmetric CH2 stretching peaks of the
pure PCL membrane were at 2955 cm−1 and 2875 cm−1, the CO stretching peak was at
1735 cm−1, the asymmetric COC stretching peak was at 1260 cm−1, and the symmetric
CH2 stretching peak was at 1164 cm−1 (CC stretching). The broad peak at 3451 cm−1 that
distinguished PCL from the PCL/CS/NS spectrum was caused by the stretching vibration
of -OH and -NH2 from CS [58]. However, the PCL/CS/NS composite membrane’s peaks
were increased to 1500 cm−1 as a result of the peaks in the visible region of Figure 4 that
belonged to NS [59]. This demonstrated that bioactive materials were electrospun into the
PCL/CS/NS composite.
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3.4. Water Contact Angle and Porosity Results

Wettability is an essential factor to consider when choosing a wound dressing since
it influences cell adherence, proliferation, and the ability to absorb exudates. The water
contact angle can be used to determine the wettability of a surface. The water contact angle
was measured to determine the behavior of the composite PCL/CS/NS mats and to assess
the hydrophilicity alterations in the nanocomposite scaffolds. As presented in Table 2, the
PCL film exhibited poor hydrophilicity, with an average contact angle of 122.5◦, which was
in line with the hydrophobic nature of the polymer.

Table 2. Hydrophobicity and electrospinning conditions of the electrospun nanofibers.

Sample Solutions: Ratio Contact Angle (◦)
(Hydrophilicity) FR (mL/h) TCD (cm) Voltage (kV)

PCL - 122.5◦ ± 2.0 0.5 20 20
PC L/Cs 99.6◦ ± 4.0 0.5 20 20
PCL/Cs/NS 70:30 53.2 ± 1.0 0.5 20 20

The contact angle value of PCL at 8% decreased to 99.4◦, and then to 53.2◦, after the
addition of CS at 2% and NS at 10%, respectively. Results of the wettability test demon-
strated that the incorporation of NS and CS within the PCL matrix may have produced
some hydrophilic groups, such as NH and OH, on the surfaces of the nanocomposite mem-
branes. The results of the mechanical properties are displayed in Table 3. The PCL/CS/NS
nanofiber mat’s tensile strength was 5.4 ± 0.2 MPa, which was higher than the range of
1.8 ± 0.1 MPa for the PCL nanofibers alone, and was in line with earlier studies [60].

Table 3. Physical properties of the PCL/CS/NS nanofibers after cross-linking (*: p < 0.05).

Sample Ultimate Tensile Strength (MPa) Contact Angle (◦)
(Hydrophilicity)

PCL 1.8 ± 0.1 117.5 ± 2.0
PCL/Cs/NS 5.4 ± 0.2 * 121.8 ± 2.0 *
PCL/Cs 3.4 ± 0.1 118.2 ± 2.0
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3.5. In Vitro Cell Culture Studies

The MTT test was used to determine the impact of PCL/CS/NS nanofiber scaffolds on
the viability of L929 cells. The viability of the PCL/CS/NS scaffolds is shown in Figure 5
at 24, 48, and 72 h. As shown in the graph, the growth rate of the PCL/CS/NS nanocom-
posite scaffold was significantly higher than that of PCL, PCL/CS, and PCL/NS, and
it approached that of the control sample by the end of the third day. The PCL/CS/NS
scaffold’s fibers had very small diameters compared to pure PCL fibers, providing an
appropriate space for cells to be placed. Furthermore, according to the test for determin-
ing scaffold hydrophilicity, adding NS to the polymer solution significantly increased
the scaffold’s hydrophilicity, resulting in better cell adhesion to the scaffold. In a study
conducted by Zagórska-Dziok, Martyna et al., N. sativa was found to have no cytotoxic
effect on keratinocytes and fibroblasts, at concentrations of 1–1000 µg/mL [61]. Given these
findings, it is reasonable to conclude that the PCL/CS/NS scaffold, at the ratio of 3/1/2,
is a good option for cell culture because it increased the rate of proliferation of L929 cells
over time [62]. This is consistent with the findings of Uddin et al. 2022 [63], who proved
that, according to their MTT results, NS-containing composite mats were non-cytotoxic and
increased fibroblast migration and proliferation.
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zones (mm): 1—antibiotic; 2—CS/NS; 3—PCL/CS; 4—PCL/CS/NS nanofibers; 5—PCL; 6—negative
control (D.W.).

3.6. Antibacterial Activity

An antibacterial evaluation was conducted using a disk diffusion technique for each
bacterium. The diameter of the inhibition zone was measured after 24 h of incubation
by a caliper. As shown in Figure 6, the prepared PCL/CS nanofiber mats containing
NS had better antibacterial properties than PCL and PCL/CS. The results of the cur-
rent study showed a notable inhibition zone of 8.00 ± 0.22 mm and 7.4 ± 0.16 mm for
S. aureus and E. coli, respectively. The inhibition zone diameter was used as an index of
the scaffold’s antibacterial activity in the disk diffusion test; the inhibition zone diameter
of the mats containing PCL/CS/NS against S. aureus (Gram-positive) was greater than
for E. coli (Gram-negative bacteria). Ciprofloxacin at 10 µg/mL was used as a positive
control. According to the antibacterial activity test results of the present study, the inclusion
of NS in the composite scaffold promoted antibacterial activity. Gram-positive bacteria
are sensitive to these mats, and these results were in agreement with a result previously
reported by Shahverdi et al. 2022 [64]. The antibacterial action of N. sativa seed extract may
cause bacterial cell membranes to become permeable, resulting in cell destabilization and
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death [65]. Gram-negative bacteria are more resistant because their cell membranes are
double-layered, as opposed to Gram-positive bacteria’s single-layer membranes [66,67].
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3.7. Antioxidant Activity

Figure 6 depicts the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method used to assess
the antioxidant properties of the prepared nanofibrous mats. The free radical scavenging
capacities were measured using the DPPH assay. Scavenging is most effective with electron
or hydrogen donor scaffolds that quench and stabilize DPPH to DPPH-H. NS-containing
scaffolds demonstrated dose-dependent scavenging potency comparable to ascorbic acid
(p ≤ 0.005) (Table 4). Large amounts of ROS are produced during inflammation, causing
biological damage such as lipid, protein, and nucleic acid degradation, and ultimately cell
death, which disrupts the recovery process. The use of antioxidants can significantly aid
enzymatic repair and metabolism [68]. Many studies have demonstrated that biogenic
nanomaterials are a consistent source of antioxidant activity [69,70].

Previous studies have experimented with various extraction methods, including the
DPPH scavenging assay, for extracts of N. sativa seeds [71]. In addition to beta-sitosterol,
the NS seed extract contains significant amounts of other antioxidants, such as various
tocopherol and tocotrienol isomers found in the alpha, beta, gamma, and delta forms.
Another study found that an ethanolic extract of N. sativa seeds inhibited the DPPH
scavenging assay by a higher percentage than a methanolic extract, which inhibited the
assay by only 3.77% [72].

The current study’s findings are in excellent agreement with those of other investiga-
tions. Arif et al. (2021) [73] found that nanosuspensions of N. sativa extracts had the highest
free radical scavenging activity of up to 55% at doses of 1000 mg/mL, and the lowest
activity of up to 28% at 250 mg/mL. This work demonstrated that the DPPH free radical
scavenging activity was greatly enhanced by increasing the quantities of the nanosuspen-
sions and N. sativa extracts. The maximal amount of free radical scavenging activity for
nanosuspensions of N. sativa extract was seen at 500 g/mL, according Ali et al. [74]. Thus,
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the DPPH free radical scavenging activity was dramatically improved by increasing the
quantities of the nanofibrous mat.

Table 4. DPPH inhibition (%) of different concentrations of PCL/CS/NS nanofiber mats.

Concentration (µg/mL) CS % NS % NF % Ascorbic Acid %

10 20.079 18.108 40.986 41.23
20 29.787 30.63 42.342 50.01
30 41.935 37.903 50 57.14
40 46.825 49.206 56.349 68.74
50 49.107 53.968 63.492 77.18
60 60.15 63.888 74.306 84.94
70 67.123 68.211 79.47 91.41
80 75.159 77.844 83.832 96.01
90 79.289 80.662 87.845 99.01
100 80.829 84.455 94.81865 99.44
Mean 55.02 A 56.48 AB 67.34 AB 76.51 B
SD 20.99 * 22.51 * 19.43 * 21.31 *

LSD (p < 0.05) = 19.13
Different letters between any two groups indicate a significant difference at p < 0.05.* CS = Chitosan;
NS = Nigella sativa; NF = PCL/CS/NS nanofibers.

4. Conclusions

According to the research’s findings, Nigella sativa-loaded PCL/CH electrospun
nanofibers formed a new nanofibrous scaffold that was discovered to be non-toxic to skin
L929 fibroblast cells. The production method resulted in thin fibers with mean diameters as
low as 82 nm, high porosity, promising tensile strength, enhanced hydrophilicity, and bio-
compatibility. The incorporation of N. sativa into the PCL/CH matrix was supported by the
findings of the chemical investigation of the nanofibrous composite by FTIR spectroscopy
and structural XRD analysis.

The results of the cell viability test, which showed this formulation’s great bio-
compatibility, were supported by the MTT assay. The inclusion of Nigella sativa extract
also decreases the diameter of nanofibers. It also improves the antioxidant and antibacte-
rial properties.
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