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Abstract: Cytochrome P450 (CYP) enzymes play important roles in metabolising endogenous and
xenobiotic substances. Characterisations of human CYP proteins have been advanced with the rapid
development of molecular technology that allows heterologous expression of human CYPs. Among
several hosts, bacteria systems such as Escherichia coli (E. coli) have been widely used thanks to their
ease of use, high level of protein yields, and affordable maintenance costs. However, the levels of
expression in E. coli reported in the literature sometimes differ significantly. This paper aims to review
several contributing factors, including N-terminal modifications, co-expression with a chaperon,
selections of vectors and E. coli strains, bacteria culture and protein expression conditions, bacteria
membrane preparations, CYP protein solubilizations, CYP protein purifications, and reconstitution of
CYP catalytic systems. The common factors that would most likely lead to high expression of CYPs
were identified and summarised. Nevertheless, each factor may still require careful evaluation for
individual CYP isoforms to achieve a maximal expression level and catalytic activity. Recombinant
E. coli systems have been evidenced as a useful tool in obtaining the ideal level of human CYP
proteins, which ultimately allows for subsequent characterisations of structures and functions.

Keywords: human cytochrome P450; heterologous expression; Escherichia coli; purification;
N-terminal modification

Key Contribution: This review provides an overview of various methods employed in expressing
recombinant human cytochrome P450 (CYP) enzymes from Escherichia coli (E. coli) cells, including
recombinant techniques and genetic engineering approaches. Another key contribution of this review
is the in-depth analysis of the conditions (culture of bacteria, bacterial membrane isolation, CYP
protein solubilization, purification, and reconstitution) that may influence the CYP protein expression
levels and activities.

1. Introduction

Cytochrome P450 (CYP) enzymes are a group of membrane-bound hemoproteins re-
sponsible for the synthesis of a great number of endogenous compounds including steroid
hormones, bile acids, fatty acids, and eicosanoids [1–3]. CYPs are also major phase I metabo-
lizing enzymes, bio-transforming xenobiotics such as drugs and carcinogens, in the body [4,5].
In humans, the CYP families 1, 2, and 3 contribute significantly to xenobiotic metabolism,
while other CYPs are mainly involved in endogenous biotransformation [6]. Unlike prokary-
otic CYPs, which are soluble, mammalian CYPs are integral membrane proteins found in
the endoplasmic reticulum or mitochondria [7]. Characterisations of the structure–function
relationships for CYP enzymes have been impeded by the challenges of purifying these
insoluble CYPs from human tissues with sufficient quantity and activity [8,9]. Moreover,
with the advanced development of whole-genome sequencing technologies, a large number
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of CYP genomic variations have been identified [10]. CYP polymorphisms, in particular,
CYP2C9, CYP2C19, and CYP2D6, account for the most commonly seen variations in phase
I drug metabolism clinically [11]. Nevertheless, the low frequencies of CYP variants have
limited the evaluations of their impact on the pharmacokinetics of clinical drugs [12].

The heterologous expression systems provide an alternative opportunity to obtain in-
dividual CYP isoforms and their variants in evaluating the enzyme activities or in analysing
protein structures under reproducible conditions [13]. Thus far, several in vitro expression
systems, including mammalian cells, baculoviruses, yeast, and bacteria cells, have been
documented for applications in characterising CYP enzymes [14]. Mammalian cells such as
the African green monkey kidney-derived cells COS-1 and the human embryonic kidney
cells HEK293 have been employed in expressing recombinant human CYP enzymes [15,16].
The advantages of the mammalian cell systems include no requirement for cDNA modi-
fications, as well as adequate levels of endogenous NADPH-CYP oxidoreductase (OxR)
and cytochrome b5 to support electron transport and CYP catalytic activities [17]. However,
employment of mammalian cells is often associated with high technical demand and a long
duration of culture [18]. Besides, the CYP expression levels in mammalian cell cultures are
usually low, which is unsuitable to study CYP variants, in particular, with low enzyme
activity [14]. Baculovirus systems employ insect cells to express recombinant human CYPs,
which can achieve high levels of expression [19]. Nevertheless, the technical demand and
cost for insect cell cultures are high. The baculovirus systems also require the co-expression
of OxR as insect cell lines are unable to express sufficient levels of OxR [17]. Yeasts such
as Saccharomyces cerevisiae and Schizosaccharomyces pombe are useful in expressing human
recombinant CYP [20,21]. The advantages of using yeast cells are low cost for mainte-
nance, ease of culture, and a relatively high yield of CYP proteins. Moreover, the protein
expression and post-translational modification processes are similar to those of higher
eukaryotes, hence modifications of cDNA are usually not required [17]. Despite that yeasts
contain endogenous OxR, the activity and quantity may be insufficient to fully support
CYP enzyme activities, thus exogenous OxR may be essential [22]. Bacterial cells such as
Escherichia coli (E. coli) demonstrate several advantages when being used as a heterologous
system for human CYP expression. Culturing bacterial cells involves minimal maintenance
cost as well as easier and faster cultivation. The recombinant CYP expression levels in
bacteria are usually higher compared with those in yeast cells [23]. On the other hand, as
human CYPs are membrane-bound, their expression in bacteria systems would require
N-terminal modifications of the CYP cDNA to achieve optimal protein expression, conserve
ideal folding, and maintain native biological functions [7,24].

Among these heterologous hosts for the purpose of expression of recombinant human
CYPs, bacteria E. coli is the most commonly used. However, the levels of expression in
E. coli reported in the literature sometimes differ significantly. Several contributing factors,
including N-terminal modifications, co-expression with a chaperon, selection of vectors
and E. coli strains, bacteria culture and protein expression conditions, bacteria membrane
preparations, CYP protein solubilizations, CYP protein purifications, and reconstitution of
CYP catalytic systems have been manipulated to allow maximal expression and purification
of a multitude of human CYP proteins in bacterial systems [25–27]. Considering the number
of variables responsible for optimal recombinant human CYP enzymes expressed in the
bacteria systems, this paper explored and gathered successful recombinant expression
designs to gain a collective understanding of maximal human microsomal CYP protein
expression in bacteria cells.

2. Modifications of N-Terminus

In contrast to prokaryotic CYPs, mammalians including human CYPs are associated
with membranes, making them insoluble. The rough endoplasmic reticulum (ER) and
mitochondrial membranes are the major sites to which human CYPs are attached [28]. The
CYP isoforms share around 40% sequence similarity with a common and highly conserved
CYP fold [29]. It contains twelve α-helices (named A to L starting from the N-terminus)
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and a small percentage of β-sheets. The highly conserved I-helix plays an essential role
in catalysis, while the F/G-loop, the F and G-helices, and the B/C-loop form a ‘lid’ over
the active site cavity [29]. Figure 1 shows the structure of human CYP3A4 obtained by
X-Ray diffraction as one example. CYPs can form dimers, trimers, and tetramers via
multiple non-covalent interactions or covalent bonds, which is known as oligomerization.
Conditions such as environmental pH, temperature, and the presence of lipids can affect
their oligomerization states [30]. On the other hand, the oligomerization state can influence
CYP enzymes’ kinetic properties and substrate specificities. Dimer formation resulted in
enhanced catalytic efficiency of the CYP [31]. More details regarding the membrane effects
on structure, ligand binding, as well as interactions with co-enzymes/co-factors can be
found in a review by Martin and colleagues [32].

In humans, it is believed that the catalytic domain of CYPs and the N-terminus are lo-
cated on the cytosolic side and luminal side of the ER, respectively [28,33]. The
N-terminal transmembrane is a single α-helix containing a long stretch of hydrophobic
amino acids, allowing this region to interact with the hydrophobic membrane environment
on the ER [33]. Different CYP families consist of amino acids with a large variation on the
N-terminal helix [34]. On the other hand, the mitochondrial CYPs have a topogenic sequence;
hence, they do not need the N-terminal transmembrane anchor [35]. Prokaryotes and eu-
karyotes employ similar systems in the process of directing the protein to the membrane.
However, a foreign signal peptide from the human CYPs may not be well-recognised by the
bacterial expression systems, resulting in low levels of expression [36]. Insertion of E. coli
leader sequences such as ompA and pelB into the beginning of the protein sequence has been
led to the ability to obtain CYPs with a full length [37]. Alternatively, the alterations of CYP
N-terminal membrane-directing signaling sequences lead to direct expression of CYP at the
plasma membrane because bacteria cells have no organelles [23]. The common N-terminal
modifications employed for human CYP expression in bacterial systems include truncations
of the N-terminus, incorporation of the ‘LLLAVFL’ sequence, substitutions of N-terminal
sequence with hydrophilic residues, and silent mutations to optimise AT content [7,38,39].
Zelasko and coworkers performed a thorough review of how these N-terminal modifications
were applied in optimising recombinant CYP yields in E. coli [23].
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Figure 1. Crystal structure of human CYP3A4 (image from the RCSB PDB (rcsb.org) of 1W0F) [40].

2.1. N-Terminal Trucation

Partial or complete truncation of the N-terminal anchor sequence of the CYP protein
would likely increase its solubility in the cytoplasm [41]. It is difficult to attain fully soluble
CYP protein only by modifying the N-terminal sequence, as other parts of the CYP protein
such as F-G helices are also responsible for the membrane anchor [30]. The removal of
the N-terminal sequence has been applied to various human CYP expressions in bacteria
systems such as CYP2E1, CYP3A4, CYP2B4, CYP1A1, CYP1A2, CYP2D6, CYP1B1, CYP2A6,
and CYP2S1 [7,38,39,42–48]. However, the expression yields and enzyme activities varied
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dramatically from one study to another. Human CYP2E1 lacking residues 3–29 demon-
strated comparable catalytic activity to the native protein, suggesting that this segment has
no function in its oxidative activity [7,49]. Some enhancement of human CYP3A4 expres-
sion yield was observed in the construct with the removal of residues 3–24 [42]. However,
truncation of CYP2B6 cDNA did not enhance protein expression yield in bacterial cells [47].

2.2. Substitutions of N-Terminal Sequences with Hydrophilic Residues

Apart from the truncation of the N-terminal sequence to improve the overall hy-
drophilicity of human CYP proteins expressed from bacteria cells, additional hydrophilic
or charged sequences such as ‘AKKTSS’, have been inserted at the N-terminus [31]. The
incorporation of ‘AKKTSS’ is likely to aid in the solubilization of several human CYP
enzymes including CYP2C8, CYP2C9, CYP2A6, and CYP4X1 [31,50–52]. Solubilization of
CYP protein is essential for the subsequent crystallisation processes in order to obtain struc-
tural information. Collectively, N-terminal truncations or insertions of hydrophilic residues
primarily affect CYP protein localisation between cytosol or membrane, and they alone
seem to not always correlate with the enhancement in expression. Other modifications
within the N-terminal region should be considered.

2.3. Incorporation of the ‘LLLAVFL’ Sequence

Barnes and colleagues introduced residues ‘LLLAVFL’ at the N-terminus of bovine
CYP17α hydroxylase protein to produce optimal protein expression and activity [25]. This
N-terminal ‘LLLAVFL’ is a binding consensus sequence of the ribosome, which enables
maximal ribosome recognition and translation initiation across many human CYP isoforms
including CYP1A2, CYP2B6, CYP2D6, CYP3A4, CYP2C19, and CYP3A43 [38,47,53–55].
Nevertheless, Sandhu and coworkers reported that constructs containing this sequence did
not yield any spectrally detectable CYP2C9 [24].

2.4. Silent Mutations

In E. coli, the translation of mRNA codons to amino acids involves the ribosome
containing a 30S and a 50S subunit. The translation process starts with the recognition of
the start codon (AUG) and subsequent binding of the 30S ribosomal subunit to the Shine–
Dalgarno sequence AGGAGG. Any form of secondary or tertiary structures may block
this ribosomal binding [56]. Optimisations of nucleotides in this region to avoid secondary
structures have been shown to enhance protein expression by increasing ribosomal binding.
Therefore, a silent mutation that does not change the protein’s amino acid sequence has
become one of the strategies in the heterologous expression of human CYPs in bacterial
systems. However, several studies found that silent mutations alone were not usually
sufficient for maximal expression, and concurrent modifications of the N-terminus were
often required [38,39]. The silent mutations often involved the enhancement of AT content
over the first few codons, which minimised the potential of mRNA secondary structure
formation by reducing the free energy [45,46].

Moreover, E. coli ribosomes are not able to recognise and bind some eukaryotic codon
sequences because bacterial cells may lack the corresponding tRNA. This codon bias
showed a significant correlation with transcription efficiency at the N-terminus [57]. Apart
from minimising the mRNA secondary structure, favouring E. coli codons through silent
mutation may also facilitate heterologous CYP protein expression. According to a review,
E. coli preferred to translate certain codons that are different from those of humans. For
instance, E. coli frequently employs CUG for coding leucine, GGU for glycine, and AAA
for lysine [58]. Several studies have employed in silico tools such as DNAWORKS from
the National Institutes of Health to incorporate automatic codon optimisation to fulfil the
codon preference bias of E. coli such as CYP2W1, CYP4X1, and CYP2S1 [48,52,59,60].
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2.5. Use Codons Encoding Alanine as the Second Codon

It is known that the presence of mRNA secondary structure in the binding sites of
the ribosome potentially inhibits the gene expression. In addition to the silent mutations
described above to minimise the secondary structure, mutation of the second codon to
alanine has been shown as an effective approach to maximise protein expression in bac-
terial systems [61]. Following Barnes et al.’s successful CYP17α expression optimisation
by mutating the second codon to alanine, the majority of the subsequent heterologous
expression of human CYP in bacteria cells incorporated the alteration of the second codon
to code for alanine [25]. Many of them demonstrated enhanced protein expression in the
testing systems [44]. Nevertheless, similar to other modifications, alteration of the second
codon alone has been insufficient, but additional N-terminal changes were required to
achieve optimal expression [39,45].

3. Co-Expression with Chaperon

E. coli usually degrades misfolded proteins rapidly [62]. A chaperon system can
facilitate the correct folding and proper incorporation of heme into CYP protein by sup-
plying a hydrophilic environment [63]. Thus, CYP expression yields can be increased
dramatically. Co-expression of recombinant human CYPs with molecular chaperon GroES-
GroEL has been frequently employed. Many researchers have adopted this system with
higher levels of protein expression, including CYP1A2, CYP2W1, CYP2B6, CYP4X1, and
CYP2J2 [9,26,52,59,64].

4. Selections of Expression Vectors and E. coli Strains

The successful expression of CYP protein in bacteria is also influenced by the choice of
plasmid vectors and E. coli strains (see Table 1).

The most commonly employed CYP expression plasmid vector in E. coli is pCWori+.
It was initially developed by F.W. Dahlquist and is not commercially available [23]. The
overall structure of pCWori+ has been illustrated previously [65]. Essentially, it contains
two tac promoters upstream of the Nde I restriction enzyme digestion site coincident with
the ATG codon (start codon). Only one tac promoter (the one upstream of the polylinker
site) is used, which is recognised by E. coli RNA polymerase. Upon the addition of Isopropyl
β-D-1-thiogalactopyranoside (IPTG), the protein expression output is proportional to the
amount of IPTG, which allows the expression of the precise level of CYP [23]. Additionally,
it contains one trpA (a strong transcription terminator), the β-lactamase gene (conferring
ampicillin resistance), and the lacIq gene that encodes the Lac repressor (prevents any
transcription initiated from the tac promoters without adding inducing agents) [65]. In
general, the target CYP cDNA (native or modified) is introduced between the ATG start
codon (contained within the Nde I site) and another restriction enzyme site, which is
usually carried out by polymerase chain reaction (PCR) mutagenesis [25].

The recombinant vector was used in the transformation of various E. coli strains to produce
recombinant human CYP proteins. Among them, DH5α [8,9,24,26,27,38,39,42,44–46,52,53,59,66–76]
and JM109 [24,25,38,64,77–81] strains are the most commonly used, while MV1304 [7,43,47,49], XL-1
blue [82], and TOPP [83,84] have also been used. It is important to note that the E. coli strain selection
can impact CYP expression levels. It was evidenced that CYP2C10 was not detectable in JM109 cells,
but expressed in DH5α cells [24]. Nevertheless, no genetic markers were identified in these strains,
showing a significant correlation with the capability of producing high levels of recombinant CYP
proteins [65]. It is suggested to evaluate these common E. coli strains for their ability to express a
particular recombinant CYP at the beginning of the study.
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Table 1. External contributing factors for selected human CYP expression in E. coli.

CYP Expression
Vector E. coli Strain LB to TB

Ratio OD600
Temp
(◦C)

Shaking
Speed
(rpm)

Duration
(hour)

IPTG
(mM)

∆-ALA
(mM) Reference

2E1 pCWori+ MV1304 1:90 0.5–0.8 N/A N/A 4 1 N/A [7]
17A1 pCWori+ JM109 N/A 0.4–0.8 28 N/A 48 1 N/A [25]
1A2 pCWori+ DH5α 1:100 N/A 30 125 72 1 N/A [66]
3A4 pCWori+ DH5α 1:100 N/A 32 N/A 24 1 N/A [42]

2E1&2B4 pJL MV1304 N/A 1.0 N/A N/A 4 1 N/A [43]
1A1 pCWori+ DH5α 1:100 N/A 30 Vigorous 48 N/A N/A [44]
2E1 pCWori+ DH5α 1:100 N/A 30 Vigorous 48 1 N/A [68]
1A2 pCWori+ DH5α or JM109 1:100 N/A 30 Vigorous 48 1 N/A [38]
7A1 pJL TOPP3 N/A 0.4–0.6 30 150 15–18 1 0.2 [83]

17A1-OxR pCWori+ DH5α 1:111 N/A 27 125 72 1 N/A [69]
3A5 pCWori+ DH5α 1:100 N/A 30 220 24 1 N/A [70]
2D6 pDS9 JM109 1:10 to 40 0.7–0.9 23 100 48 5 µM 0.5–1 [77]
2D6 pCWori+ DH5α N/A N/A 30 200 43 1.5 0.5 [39]

2E1-OxR pJL2 XL Blue N/A 0.8 26 100 60 1 N/A [82]
1A1-OxR pCWori+ DH5α 1:100 N/A 28 125 48 1 0.5 [71]

27A1 pTrc99A TOPP3 1:100 N/A 29 210 48 0.5 0.5 [84]
1A2-OxR pCWori+ DH5α 1:100 N/A 28 125 48 1 0.5 [85]
1B1-OxR pCWori+ DH5α 1:100 N/A 30 200 24 1 0.5 [45]

3A5 pCWori+ DH5α 1:100 0.3 30 160 28 0.1 1 [72]
2A6 pCWori+ DH5α 1:100 N/A 32 200 40 1 0.5 [46]
2B6 pCWori+ MV1304 N/A N/A 28 200 40–48 1 0.5 [47]

2D6-OxR pCWori+ DH5α 1:100 0.6–1.0 26 190 40–48 1 0.5 [27]
1A2-HDJ-1 pCWori+ DH5α N/A 0.4–0.5 37 N/A 24 1 1.5 [26]

2B6-GroES/EL pCWori+ JM109 1:100 N/A 30 160 72 1 0.5 [64]
27C1 pCWori+ JM109 1:100 N/A 27 200 48 1 0.5 [79]
4X1 pCWori+ DH5α 1:100 0.5 28 190 17–21 1 0.5 [52]
2S1 pBdtacHR LMG194 1:400 N/A 30 115 24–36 0.5 0.5 [48]

1A1-OxR pCWori+ DH5α 1:1000 0.5–0.7 30 200 24 1 0.5 [8]
2C10 &2C9 pCWori+ DH5α and JM109 1:100 N/A 30 Vigorous 24 1 N/A [24]

4A11 pCWori+ DH5α N/A 0.5 28 200 48 1 0.5 [74]
2J2 pCWori+ DH5α N/A N/A 28 N/A 48 1 0.5 [75]
4B1 pCWori+ DH5α N/A 0.4 27 120 48 1 0.5 [76]

39A1-GroEL/ES pCW-LIC C41 N/A 0.6 26 110 48 0.5 0.5 [86]
2J2-GroEL/ES pCWori+ DH5α 1:100 0.4–0.6 28 180 48 1 0.5 [9]

N/A = not available.

5. Bacteria Culture and Protein Expression Conditions

The typical bacteria culture and protein expression start with the initial culture of trans-
formed E. coli strain in LB media supplemented with ampicillin (50–100 µg/mL) overnight
at 37 ◦C (the optimal growth temperature for E. coli), followed with growing in Terrific
Broth (TB) media containing ampicillin for an extended number of hours. The protein
expression is subsequently induced by adding an inducing agent such as IPTG [42]. Factors
involved in this process that may affect the yield of CYP protein expression include the ratio
of LB to TB, OD600 readings upon initiation of protein expression, temperature, shaking
speed, expression duration, concentrations of IPTG, with or without δ-aminolevulinic acid
(δ-ALA), and other more specific conditions for a particular CYP isoform (see Table 1).

TB is a type of phosphate-buffered media that maintains a neutral pH level and
comprises readily utilisable carbon sources [65]. The LB culture-to-TB culture ratio is
usually maintained at 1:100 (e.g., 10 mL of LB culture to 1 L of TB) [42,66]. The TB media is
often supplemented with trace elements to maintain CYP enzyme stability. Different studies
applied different trace element compositions. As reported by Ahn and colleagues, trace
elements expressing CYP1A2 in E. coli included 50 µM FeCl3, 1 mM MgCl2, and 2.5 mM
(NH4)2SO4 [26]. It is common for 1 mM thiamine (also known as vitamin B1) to be added
to the TB culture media to ensure rapid E. coli growth [87]. The typical OD600 values of 0.4
to 0.8 representing the mid-exponential bacterial growth phase were mostly used prior to
induction [7,27]. Arabinose was required to induce the chaperon GroES-GroEL [9,48,52].

IPTG is a compound that mimics the molecular structure of allolactose that triggers
the transcription of lac operon in E. coli. Hence, IPTG is used for protein expression
induction where the gene expression is controlled by the lac operator, including pCWori+,
the most commonly used vector for heterologous CYP protein expression in E. coli [65]. The
majority of the studies employed 1 mM IPTG to induce CYP expression in E. coli cells, while
exceptions were found in the expressions of CYP2D6 (1.5 mM IPTG) [39], CYP3A5 (0.1 mM
IPTG) [72], CYP2S1, and CYP39A1 (0.5 mM) [48,86]. ∆-ALA, a well-known heme precursor,
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is involved in the pathway of protoporphyrin IX synthesis, and thus heme synthesis [88].
E. coli cells are able to produce heme-containing proteins with their endogenous heme
biosynthesis system. The current results show that, although not an exclusive requirement
for maximal production of all human CYP proteins in E. coli, the supplementation of δ-ALA
could enhance the expression dramatically [65]. δ-ALA is readily taken up by E. coli cells,
followed by heme synthesis catalysed by bacterial enzymes, which is subsequently inserted
into the recombinant CYP polypeptide to form an enzymatically active protein [89]. The
most commonly used final concentration of δ-ALA added before induction is 0.5 mM, with
exceptions such as 1 mM for CYP3A5 [72] and 1.5 mM for CYP1A2 [26]. The addition of
other chemicals to expression media was more specific to one or a group of CYP proteins.
4-methyl pyrazole, an inhibitor of CYP2E1 with high affinity, was added to the expression
culture to stabilise the protein [7,82,90]. Bactopeptone was seeded in a TB medium to
enhance cell growth in several studies [24,26,47,71].

The employment of 37 ◦C for protein expression usually results in recombinant CYP
accumulating as inclusion bodies. A lower expression temperature has been shown to pro-
duce more stable proteins without aggregation [91]. Nevertheless, expression temperatures
below 25 ◦C lead to a dramatic drop in the expression level [23]. The optimal expression
temperature during protein induction is often within a rather narrow range, and thus
sensitive to drastic fluctuations in the temperature of the incubator. The typical induction
temperature is not higher than 30 ◦C (mostly 28–30 ◦C). Certain human CYP proteins can
be expressed with higher yields under higher temperatures, such as CYP2A6, CYP2E1,
and CYP1A2, which were expressed at a comparable level and activities at 37 ◦C [26,92].
Moreover, the shaking speed and length of incubation during induction may also influence
the optimal expression levels. The culture media in flasks shaken vigorously at 100–200 rpm
were routinely performed to obtain optimal yields [47,76]. During the induction phase, the
incubation usually lasts for 24–72 h. For instance, Bui and Hankinson reported that the
growth of E. coli at 30 ◦C for 24 h provided the best expression conditions for a recombinant
CYP2S1 [48].

6. Membrane Isolation

At the end of protein expression, bacterial cells are harvested by centrifugation, fol-
lowed by membrane isolation prior to purification. The general steps of membrane isolation
include suspension of harvested cells, lysis of cells, removal of cell debris, and membrane
fraction sedimentation by ultra-centrifugation. Different studies applied different proto-
cols in terms of suspension buffer, lysis of cell methods (by a high-pressure homogenizer,
lysozyme, and ultrasonic energy), choice of a protease inhibitor, and collection of membrane
fraction sedimentation.

The harvested cells were usually suspended in phosphate buffers [49,86] or tris acetate
buffers [38,42] with a pH range of 7.4–7.8 containing additional common compositions such
as ethylenediamine tetraacetic acid (EDTA), sucrose, dithiothreitol (DTT), and glycerol. All
of the steps were carried out at 4 ◦C. Both buffers functioned equally well in suspending
bacterial cells expressing various recombinant human CYP proteins. Bacteria cells were
suspended in a concentrated sucrose solution supplemented with EDTA, which were
subsequently re-suspended in cold water. Under this condition, the bacteria cells shrink as
a result of the high osmotic strength of the sucrose solution. EDTA plays a role in releasing
lipopolysaccharide (LPS) from the cell envelope of bacterial cells, hence increasing the
permeability of the outer membrane. Cold water leads to the rapid enlargement of cell
size, resulting in the release of periplasmic proteins. This technique for the recovery of
recombinant protein from E. coli is known as an osmotic shock [93]. Serious challenges have
occurred in preserving protein stability and activity in biological applications as they are
just marginally stable [94]. DTT is one of the protein reductants responsible for breaking
down protein disulfide bridges and stabilizing enzymes [95]. Moreover, the most widely
employed co-solvents for protein stabilization are polyols and, among polyols, glycerol is
one of the most commonly used to stabilize and avoid aggregation of the protein [96,97].
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Cell lysis can be defined as the destruction of the outer boundary or cell membrane to
release inter-cellular materials. Cell lysis methods can be classified into mechanical (such
as high-pressure homogenizer and bead mill) and non-mechanical approaches (including
physical and chemical disruption) [98]. For the lysis of E. coli cells to obtain expressed
human CYP proteins, mechanical approaches that use high-pressure homogenizer and non-
mechanical techniques employing ultrasonic cavitation and enzymatic cell lysis were often
recorded. A high-pressure homogenizer disrupts the membrane of cells by forcing them
through an orifice valve [7,86]. Additionally, lysozyme is usually added to the suspended
cell solution and incubated on ice or at 4 ◦C with stirring or shaking for 30 min [8,53].
Lysozyme is specific towards bacterial cells and reacts with the peptidoglycan layer, leading
to the breaking of the glycosidic bond in the bacterial cell wall [99]. Ultrasonic cavitation is
routinely applied in laboratories to disrupt cells. Ultrasound waves generate ultrasonic
energy, which is transferred into the liquid solution and results in negative pressure. Once
the negative pressure is lower than the vapour pressure of the liquid, vapour-filled bubbles
are formed in the liquid solution. Then, when the bubbles grow to the size at which the
ultrasonic energy is insufficient to maintain the vapour inside, they collapse and release a
large amount of mechanical energy in the form of a shock wave, leading to cell rupture [100].
One of the disadvantages of ultrasonic cavitation is the generation of a large amount of heat,
which may degrade enzymes [98]. During the lysis of E. coli, cells to isolate recombinant
CYP proteins, a few rounds of ultrasonic treatment along with intervals on the ice were
carried out in an ice bath to maintain cold conditions [24,25].

Upon lysis of cells, proteases are also released and their digestive functions are trig-
gered, which can degrade isolated CYP enzyme proteins. Hence, the addition of protease
inhibitors is required to preserve protein from imminent natural degradation. The major-
ity of the proteases found in E. coli cells belong to the class of the serine protease group.
Among the many classes of protease inhibitors, phenylmethylsulfonyl fluoride (PMSF) that
inhibits serine protease irreversibly by deactivating the serine hydroxyl group is the most
commonly used [101]. More recently, protease inhibitor cocktails comprising a mixture of
several inhibitor compounds are more preferred in targeting a wide range of proteases that
degrade enzymes via different mechanisms [27,81].

It was demonstrated that recombinant CYP proteins were anchored to the inner
membrane of E. coli cells [49,68]. Ultracentrifugation with a speed of 100,000–225,000 g
for a duration of 30–180 min was carried out to separate the membrane protein fraction
(containing CYP) from other cytoplasmic soluble proteins and the majority of nucleic acids.
The conditions described above are summarised in Table 2.

Table 2. Conditions of E. coli membrane isolations for selected human CYPs.

CYP Suspension Buffer

Lysis Approach (yes/no)
Protease
Inhibitor

Ultra
Centrifugation ReferenceHigh-Pressure

Homogenizer Lysozyme Ultrasonic
Cavitation

2E1 Potassium phosphate buffer Yes No No N/A 142,000 g for 1 h [7]

17A1 Mops ** buffer No Yes Yes PMSF, leupetin,
aprotinin 225,000 g for 30 min [25]

1A2 Potassium phosphate buffer Yes No No N/A 100,000 g for 60 min [66]

3A4 Tris acetate buffer No Yes Yes PMSF, leupeptin,
aprotinin, bestatin 180,000 g for 65 min [42]

1A1 Tris acetate buffer No Yes Yes PMSF, leupeptin,
aprotinin, bestatin 180,000 g for 65 min [44]

2E1 Tris acetate buffer No Yes Yes PMSF, leupeptin,
aprotinin, bestatin 180,000 g for 65 min [68]

1A2 Tris acetate buffer No Yes Yes PMSF,
leupeptin, aprotinin 180,000 g for 65 min [38]

7A1 Potassium phosphate buffer No Yes No PMSF 100,000 g for 60 min [83]
17A1-OxR Tris-HCl buffer No Yes Yes PMSF 100,000 g for 60 min [69]

2D6 Potassium phosphate buffer Yes No No PMSF, leupeptin 142,000 g for 60 min [77]
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Table 2. Cont.

CYP Suspension Buffer

Lysis Approach (yes/no)
Protease
Inhibitor

Ultra
Centrifugation ReferenceHigh-Pressure

Homogenizer Lysozyme Ultrasonic
Cavitation

2D6 Tris acetate buffer No Yes Yes PMSF, leupeptin,
aprotinin, bestatin

100,000 g for 45 min,
supernatants further

centrifuge at
100,000 g for 16 h

[39]

2E1-OxR Potassium phosphate buffer Yes No No N/A 142,000 g for 1 h [82]

1A1-OxR Tris acetate buffer No Yes Yes PMSF, leupeptin,
aprotinin, bestatin 180,000 g for 65 min [71]

27A1 Potassium phosphate buffer No Yes Yes PMSF 146,000 g for 60 min [84]

3A5 Tris acetate buffer No Yes No PMSF,
aprotinin 193,000 g for 40 min [72]

2A6 Tris acetate buffer No Yes Yes PMSF, leupeptin,
aprotinin, bestatin 180,000 g for 65 min [46]

2B6 Tris acetate buffer No Yes Yes PMSF, leupeptin,
aprotinin 180,000 g for 65 min [47]

2D6-OxR Tris acetate buffer No Yes Yes PMSF, protease
inhibitor cocktail 100,000 g [27]

1A2-HDJ-1 Tris acetate buffer No Yes Yes PMSF, leupeptin,
aprotinin 180,000 g for 65 min [26]

2B6-GroES/EL Tris-HCl buffer No Yes Yes N/A 100,000 g for 60 min [64]

27C1 Tris acetate buffer No Yes Yes PMSF, leupeptin,
aprotinin, bestatin 180,000 g for 65 min [79]

4X1 Tris acetate buffer No Yes Yes PMSF, leupeptin,
aprotinin, bestatin 180,000 g for 65 min [52]

2S1 Potassium phosphate buffer Yes No No PMSF N/A [48]
1A1-OxR Tris acetate buffer No Yes Yes N/A 100,000 g for 75 min [8]

2C10 &2C9 Tris acetate buffer No Yes Yes PMSF, leupeptin 180,000 g for 65 min [24]

2J2 Tris acetate buffer No Yes No PMSF, protease
inhibitor cocktail 100,000 g for 3 h [75]

4B1 Potassium phosphate buffer Yes No No PMSF, protease
inhibitor cocktail N/A [76]

N/A = not available; ** Mops = 3-(N-morpholino) propanesulfonic acid.

7. CYP Protein Solubilization and Purification

As noted above, isolated CYP proteins are bound to bacteria membranes, and solubi-
lization with appropriate detergents is essential prior to protein purification. The desirable
properties of the detergents used for this purpose include the following: (i) good solu-
bilizing power; (ii) low tendency towards protein denaturation; (iii) can be removed by
dialysis or dilution easily; (iv) optical transparency to allow detection of protein using
a spectrophotometer; (v) free of interference with protein determinations; (vi) owning
non-ionic properties for ion-exchange chromatography and isoelectric focusing; (vii) good
solubility; (viii) simple procedure of detergent determination; (ix) stable; and (x) affordable
cost [102].

Among these detergents, n-ocylglucoside, also known as octyl β-D-glucopyranoside, is a
non-ionic surfactant endowed with a majority of the desirable properties listed above; how-
ever, it is rather expensive, limiting its application mostly to small-scale experiments [103].
It has been applied to solubilize CYP2E1, CYP1A2, and CYP3A4 [7,49,104]. Sodium cholate
is a type of bile acid salt that is a biologically active anionic detergent [105]. It consists of
a hydrophobic steroid nucleus, three hydroxyl groups, and one ionic head of a carboxyl
group [106]. Sodium cholate was one of the most employed detergents in the literature for
solubilizing CYP proteins from E. coli, which was used alone [42,84] or more commonly
used together with another non-ionic detergent such as Triton N-101 [38,44–47,64,68,70,73],
or less often with Tergito NP10 [59,79] and Emulgen 911 [8,24]. The combination of ionic
(e.g., sodium cholate) and non-ionic detergents (e.g., Triton N-101, Tergitol NP-10, or Emul-
gen 911) has been more effective for the solubilization of some CYP proteins [107,108].
Besides, Emulgen 911 or 913 was also often employed as a single detergent in this pro-
cess [27,67,69,71,84,85]. Another commonly used detergent to enhance CYP solubilization
is CHAPS, which is a non-denaturing zwitterionic detergent [9,48,52,59,74,75,81]. Several
other detergents were also seen during CYP solubilization from E. coli membranes including
Triton X-114 [39], C12E9 [77], Nonidet-P40 [78], and Renex-690 [72].

Detergents that remained in the purified enzyme samples potentially modulate enzy-
matic activity [107]. Non-ionic detergents generally produce more inhibition than either
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zwitterionic or ionic detergents [109]. Moreover, detergents including Tritons X100 and
X114, Emulgens 911 and 913, and Tergitol NP-10 were seen to be oxidized by CYP en-
zymes [110]. Once the isolated E. coli membrane containing CYP proteins is solubilized,
the membrane solution is subject to various columns for chromatography purification to
obtain CYP proteins and remove detergents. The commonly used chromatography meth-
ods include anion-exchange chromatography (in particular, diethylaminoethyl (DEAE)),
cation-exchange chromatography (in particular, carboxymethyl (CM)), and hydroxylapatite
chromatography in the presence of non-ionic detergent [111]. Ion-exchange chromatog-
raphy is used to separate proteins and other components according to their net charge.
Proteins with negative charges (anionic proteins) can be purified by chromatography of
positively charged DEAE-cellulose and proteins that are positively charged (cationic pro-
teins) can be purified with negatively charged CM-cellulose columns [112]. Typically, many
membrane proteins of E. coli solubilized using sodium cholate and Triton N-101 were found
to be bound to the DEAE-Sephacel column and the recombinant human CYP protein was
eluted in the void volume. The remaining proteins with a low molecular weight could
be subsequently removed by adsorption to a CM-Sepharose Fast-Flow column. Finally,
detergents were removed by dialysis and adsorption to the hydroylapatite column [68].

Besides, the addition of His residues at the N- or C-terminus has been performed to
facilitate protein purification [113]. These, added free His residues, are able to chelate Ni2+, hence
application of the Ni2+-chelate affinity column allows rapid purification. Such strategies have
been used with CYPs, with most of the His tags at the C-terminus [8,47,48,52,59,72,75,79,81]
or, to a lesser degree, at the N-terminus [77,86]. Compared with the traditional ion-exchanged
chromatography approaches described earlier, metal affinity methods have advantages such as
(1) reducing the use of non-ionic detergents that are difficult to remove and can be inhibitors or
substrates of CYPs [110] and (2) the studies of CYP mutants sometimes require a more rapid
purification process as mutants are relatively less stable [114]. Table 3 provides examples of
detergents and columns employed for human CYPs expressed in E. coli cells.

Table 3. Solubilization, purification, and reconstitution of expressed human CYPs from E. coli membranes.

CYP Detergent Column (s) OxR Cytochrome b5

Specific
Content

(nmol/mg Protein)
Reference

2E1 n-octylglucoside

S-Sepharose
Hydroxyapatite

DEAE-Sepharose
Hydroxyapatite

N/A N/A 15.8 [7]

2E1 n-octylglucoside S-Sepharose Rabbit liver N/A 2 [49]

3A4 Sodium cholate

Octylamino-Sepharose
Cosmogel DEAE

KB Type-S
Cosmogel CM

Hydroxylapatite

Rabbit liver Human liver 23 [42]

2E1&2B4 Tergitol NP-10
S-Sepharose (CYP2E1)

high-resolution hydroxyapatite
(CYP2B4)

N/A N/A N/A [43]

3A4+OxR Emulgen 911 2′ ,5′-ADP Sepharose affinity Fused OxR N/A 150–200
per L of culture [67]

1A1 Sodium cholate
Triton N-101

DEAE-Sephacel
CM-Sepharose fast-flow

Hydroxylapatite
Rabbit liver Human liver 10–15

per L of culture [44]

2E1 Sodium cholate
Triton N-101

DEAE-Sephacel
CM-Sepharose fast-flow

Hydroxylapatite
Rabbit liver Human liver 160

per L of culture [68]

1A2 Sodium cholate
Triton N-101

DEAE-Sephacel
CM-Sepharose fast-flow Rabbit liver Human liver 225–245

per L of culture [38]

17A1-OxR Emulgen 911
DE-52

2′ ,5′-ADP-Sepharose 4B
LKB Ultragel AcA34

Co-expressed N/A 3.8 [69]

3A5 Sodium cholate
Triton N-101

DEAE-Sephacel
CM-Sepharose fast-flow

Hydroxylapatite
Rabbit liver Human liver 260

per L of culture [70]
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Table 3. Cont.

CYP Detergent Column (s) OxR Cytochrome b5

Specific
Content

(nmol/mg Protein)
Reference

2D6 C12E9

Ni2+-NTA-agarose
DEAE-Sephacel

HTP hydroxylapatite
Rat liver N/A 20–40

per L of culture [77]

2D6 Triton X-114 E. coli flavodoxin affinity
Biogel HTP hydroxylapatite Rabbit liver Human liver 90

per L of culture [39]

2E1-OxR n-octylglucoside

S-Sepharose
Hydroxyapatite

DEAE-Sepharose
Hydroxyapatite

Co-expressed Rabbit liver 0.11 [82]

1A1-OxR Emulgen 911
DE-52

2′ ,5′-ADP agarose
BioGel HTP hydroxylapatite

Co-expressed Human liver 25
per L of culture [71]

27A1 Emulgen 913 DEAE-cellulose
Hydroxylapatite Rat liver N/A 3.5 [84]

1A2-OxR Sodium cholate
octyl-Sepharose
Hydroxylapatite

Adrenodoxin-Sepharose
Co-expressed N/A 15 [85]

1B1-OxR Emulgen 911
DE-52

2′ ,5′-ADP agarose
BioGel HTP hydroxylapatite

Co-expressed Human liver 35
per L of culture [45]

3A5 Sodium cholate
Triton N-101

DEAE-Sephacel
CM-Sepharose (fast-flow)

Hydroxylapatite
Recombinant Recombinant 9.2 [72]

2A6 Renex-690 Ni2+-NTA agarose
Bio-Gel HTP hydroxylapatite Rabbit liver N/A 12.35 [46]

2B6 Sodium cholate
Triton N-101

DEAE-Sephacel
Amberlite XAD-2

CM-Sepharose
Hydroxylapatite

E. coli expressed rat
OxR N/A 25–80

per L of culture [47]

2D6-OxR Sodium cholate
Triton N-101

DEAE-Sephacel
Hydroxylapatite Co-expressed N/A 1–3 [27]

1A2-HDJ-1 Emulgen 911

Mono Q Hi-Trap
2′-5′-ADP-Sepharose
Sephacryl S-200 HR

2′-5′-ADP-Sepharose

Expressed from E.
coli N/A 60–120

per L of culture [26]

2B6-GroES/EL Sodium cholate
Triton N-101

TOYOPEARL DEAE-650M
TOYOPEARL SP-550C

Hydroxyapapite

Commercial
purchased N/A 8.2 [64]

4X1 Sodium CHAPS Ni2+-nitriloacetic acid Co-expressed N/A 100–200
per L of culture [52]

2S1 CHAPS NTA agarose Co-expressed N/A 16 [48]

1A1-OxR Emulgen 911
Sodium cholate Ni-NTA agarose Co-expressed N/A N/A [8]

2C10 &2C9 Emulgen 911
Sodium cholate

DEAE-Sephacel
Hydroxylapatite Rabbit liver Human liver 5–19

per L of culture [24]

4A11 CHAPS Ni-NTA agarose Co-expressed N/A 125–320
per L of culture [74]

2J2 CHAPS Ni-NTA agarose Rat liver N/A 16–18.6
per L of culture [75]

39A1-
GroEL/ES

CHAPS
TritonX100

Ni-NTA-protino
Ion-exchange Source S Recombinant N/A N/A [86]

2J2-GroEL/ES CHAPS Ni2+-NTA agarose Rat liver N/A 140–230 [9]

N/A = not available.

8. Reconstitution of CYP Enzyme Assay Systems In Vitro

Reactions catalysed by human CYP enzymes involve two electron transferences from
the redox partner. NADPH-CYP reductase (OxR) functions as the redox partner, transfer-
ring both electrons required for the catalytic cycle. Some CYP reactions employ cytochrome
b5 to transfer the second electron [115]. Successfully purified CYP proteins are usually
characterised by their functions, structures, and interactions with other proteins. In this
review, we focus on the reconstitution of CYP enzyme assay conditions in vitro by revealing
how factors such as sources of OxR, presence of cytochrome b5, the ratio of OxR to CYP,
and lipid compositions affect CYP catalytic properties.

OxRs from different sources including purified rat [9,25,84,86] or rabbit [24,38,39,42,44–
46,49,68,70,71,73,77,85] liver microsomes, recombinant OxR [9,26,27,47,66,74,75,81,104],
co-expression with CYP [48,52,53,67,80,82], and commercial products [64,72,78,83] were
employed by different studies (see Table 3). Although immunological differences were
observed among OxRs isolated from rats, rabbits, and human liver microsomes, the
OxRs prepared from the three species were all able to reduce CYPs at relatively simi-
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lar rates [116]. Besides, molecular techniques have been developed to obtain recombinant
OxR proteins or to co-express OxR and CYP proteins from E. coli at the same time. In
order to achieve the co-expression of OxR and CYP, several strategies have been applied,
including (1) co-expression as a fusion protein [67]; (2) expression of both CYP and OxR
from one plasmid [48,52,80,82]; and (3) expression of CYP and OxR from two independent
plasmids [53,54,117,118]. The ratio between OxR and CYP could affect the CYP-catalysed
reaction kinetics. It was seen that the CYP1A2 and CYP2A6 catalytic activities began to
saturate when the OxR was twice (2:1 molar ratio) that of these two CYPs [119]. In liver
microsomes, the concentration of CYP protein is significantly higher than the level of
OxR (20:1) [120]. Under this condition, a single OxR molecule must transfer electrons to a
number of CYP proteins, and it requires a highly organised system to regulate substrate
metabolism effectively. The lipid bilayers of the membrane would provide facilitation to
assemble such a system [115]. Together with their redox partners, human CYP enzymes
are mainly embedded in the endoplasmic reticulum membrane and phospholipids are
essential for their catalytic reactions [121]. In vitro reconstitution systems for CYP activ-
ities have employed lipids such as dilauroylphosphatidylcholine, phosphatidycholine,
phosphatidylethanolamine, phosphatidylserine, and phosphatidic acid [122–125]. Dif-
ferent lipid compositions in the reconstitution systems influenced the rate of substrate
metabolism, incorporation of CYP into the membrane, and enzyme stability [115,126–129].
As mentioned above, the second electron required for the reduction of CYP in the reac-
tion cycle can be supplied by cytochrome b5 as well. Additionally, cytochrome b5 plays
other vital roles in the monooxygenase system [130,131]. Cytochrome b5 was also able to
modulate the activities of several CYP enzymes [132,133]. Many reconstitution enzyme
systems for recombinant CYP expressed from E. coli included cytochrome b5 coupled with
OxR [24,38,39,42,44,45,68,70–72,78,82,86], but it did not enhance the CYP39A1-catalysed
reaction [86] (see Table 3).

9. Conclusions

The factors affecting the successful expression and reconstitution of recombinant
human CYP from E. coli in vitro include N-terminal modifications of CYP cDNAs, co-
expression with a chaperon, selection of expression vectors and E. coli strains, bacteria
culture and protein expression conditions, membrane and isolation conditions, CYP protein
solubilization and purification, and in vitro reconstitution of CYP enzyme assay systems.
Figure 2 provides an overview of these factors. It was observed from the collected findings
that some alterations might not produce active CYP enzymes. Hence, each factor should be
evaluated carefully to establish a system with high efficiency for a particular CYP isoform.
In general, N-terminal modifications are essential to improve CYP solubilization status by
truncation of the hydrophobic N-terminal region, the addition of 17α sequence (LLLAVFL),
silent mutations to reduce secondary mRNA structure, and the substitution of the second
codon to alanine. Additionally, co-expression with protein GroES-GroEL chaperone can
facilitate proper CYP folding. pCWori+ vector is the most popular expression plasmid used
for cloning recombinant CYP and to transform several E. coli strains such as DH5α and
JM109. External bacteria culture and protein expression conditions such as OD600 readings
upon initiation of protein expression, temperature, shaking speed, expression duration, and
concentrations of IPTG, with or without δ-ALA, have the potential to significantly influence
the expression yields. With regard to the membrane isolation, choices of suspension buffer,
lysis of cell methods (by a high-pressure homogenizer, lysozyme, and ultrasonic energy),
and the choice of protease inhibitor can be optimised to improve CYP protein yields.
Various types of detergents (most often non-ionic plus ionic) were employed to solubilize
expressed CYP proteins, followed by purification through ion-exchange chromatography.
His tags can be attached to the C or N terminal of CYP cDNA for easier purification through
affinity chromatography. Reconstitution of CYP reactions involves the construction of
conditions similar to the native environment by including redox partners such as OxR and
cytochrome b5 together at a suitable ratio with the appropriate type and level of lipids.
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E. coli cells.

Recombinant E. coli systems have been evidenced as a useful tool in obtaining the
ideal level of expression of human CYP proteins, which ultimately allows for subsequent
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technologies for CYP protein expression and purification from bacterial cells.
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