Varietal Differences in Juice, Pomace and Root Biochemical Characteristics of Four Rhubarb (Rheum rhabarbarum L.) Cultivars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Protocol and Growing Conditions
2.2. Juice Density and Brix
2.3. Dry Matter
2.4. Anthocyanins
2.5. Preparation of Ethanolic Extracts
2.6. Polyphenols (TP)
2.7. Antioxidant Activity (AOA)
2.8. Total Dissolved Solids (TDS)
2.9. Nitrates
2.10. Organic Acids
2.11. Dietary Fiber
2.12. Pectin
2.13. Statistical Analysis
3. Results and Discussion
3.1. Yield and Morphological Characteristics
3.2. Juice
3.2.1. Juice Yield
3.2.2. Nitrates
3.2.3. Juice Density, Total Dissolved Solids (TDS) and Sugar Content
3.2.4. Total Antioxidant Activity (AOA) and Total Polyphenol (TP) Content
3.2.5. Organic Acids
3.3. Stalk Pomace
3.4. Rhubarb Roots
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Will, F.; Dietrich, H. Processing and chemical composition of rhubarb (Rheum rhabarbarum) juice. LWT-Food Sci.Technol. 2013, 50, 673–678. [Google Scholar] [CrossRef]
- Xiang, H.; Zuo, J.; Guo, F.; Dong, D. What we already know about rhubarb: A comprehensive review. Chin. Med. 2020, 15, 88. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.S.; Huang, Y.; Cai, L.Q.; Zhu, J.; Duan, Q.; Duan, Y.; Imperato-McGinley, J. The Chinese medicinal herbal formula ZYD88 inhibits cell growth and promotes cell apoptosis in prostatic tumor cells. Oncol. Rep. 2003, 10, 1633–1639. [Google Scholar] [CrossRef]
- Kolodziejczyk-Czepas, J.; Czepas, J. Rhaponticin as an anti-inflammatory component of rhubarb: A mini review of the current state of the art and prospects for future research. Phytochem. Rev. 2019, 18, 1375–1386. [Google Scholar] [CrossRef][Green Version]
- Ibrahim, E.A.; Baker, D.A.; El-Baz, F.K. Anti-inflammatory and antioxidant activities of rhubarb roots extract. Int. J. Pharm. Sci. Rev. Res. 2016, 39, 93–99. [Google Scholar]
- Zhang, X.; Wang, L.; Chen, D.C. Effect of rhubarb on gastrointestinal dysfunction in critically ill patients: A retrospective study based on propensity score matching. Chin. Med. J. 2018, 131, 1142–1150. [Google Scholar] [CrossRef] [PubMed]
- Liudvytska, O.; Kolodziejczyk-Czepas, J.A. Review on rubarb-derived substances as modulators of cardiovascular risk factors —A special emphasis on anti-obesity action. Nutrients 2022, 14, 2053. [Google Scholar] [CrossRef] [PubMed]
- Öztürk, M.; Öztürk, F.A.; Duru, M.E.; Topcu, G. Antioxidant activity of stem and root extracts of rhubarb (Rheum ribes): An edible medicinal plant. Food Chem. 2007, 103, 623–630. [Google Scholar] [CrossRef]
- Abu-Irmaileh, B.E.; Afifi, F.U. Herbal medicine in Jordan with special emphasis on commonly used herbs. J. Ethnopharmacol. 2003, 89, 193–197. [Google Scholar] [CrossRef]
- Tabata, M.; Sezik, E.; Honda, G.; Yesilada, E.; Fuki, H.; Goto, K. Traditional medicine in Turkey III. Folk medicine in East Anatolica, Van and Bitlis provinces. Int. J. Pharmacogn. 1994, 32, 3–12. [Google Scholar] [CrossRef]
- Wojtania, A.; Markiewicz, M.; Waligórski, P. Regulation of the bud dormancy development and release in micropropagated rhubarb ‘Malinowy’. Int. J. Mol. Sci. 2022, 23, 1480. [Google Scholar] [CrossRef] [PubMed]
- Wojtania, A.; Markiewicz, M.; Waligórski, P. Growth cessation and dormancy induction in micropropagated plantlets of Rheum rhaponticum ‘Raspberry’ influenced by photoperiod and temperature. Int. J. Mol. Sci. 2023, 24, 607. [Google Scholar] [CrossRef] [PubMed]
- Cojocaru, A.; Munteanu, N.; Petre, B.A.; Stan, T.; Teliban, G.C.; Vintu, C.; Stoleru, V. Biochemical and production of rhubarb under growing technological factors. Rev. Chim. 2019, 70, 2000–2003. [Google Scholar] [CrossRef]
- Pájaro, N.P.; Granados Conde, C.; Torrenegra Alarcón, M.E. Actividad antibacteriana del extracto etanólico del peciolo de Rheum rhabarbarum. Revista Colombiana de Ciencias Químico-Farmacéuticas 2018, 47, 26–36. [Google Scholar] [CrossRef]
- Canli, K.; Yetgin, A.; Akata, I.; Murat Altuner, E. In vitro antimicrobial activity screening of Rheum rhabarbarum roots. Int. J. Pharm. Sci. Lett. 2016, 5, 1–4. [Google Scholar]
- Özenver, N.; Saeed, M.; Demirezer, L.O.; Efferth, T. Aloe emodin as drug candidate for cancer therapy. Oncotarget 2018, 9, 17770–17796. [Google Scholar] [CrossRef][Green Version]
- Hong, N.R.; Park, H.S.; Ahn, T.S.; Jung, M.H.; Kim, B.J. Association of a methanol extract of Rheum undulatum L. mediated cell death in AGS cells with an intrinsic apoptotic pathway. J. Pharmacop. 2015, 18, 26–32. [Google Scholar]
- Kalisz, S.; Oszmiański, J.; Kolniak-Ostek, J.; Grobelna, A.; Kieliszek, M.; Cendrowski, A. Effect of a variety of polyphenols compounds and antioxidant properties of rhubarb (Rheum rhabarbarum). LWT-Food Sci. Technol. 2020, 118, 108775. [Google Scholar] [CrossRef]
- Moon, M.K.; Kang, D.G.; Lee, J.K.; Kim, J.S.; Lee, H.S. Vasodilatory and anti-inflammatory effects of the aqueous extract of rhubarb via a NO-cGMP pathway. Life Sci. 2006, 78, 1550–1557. [Google Scholar] [CrossRef]
- Matsuda, H.; Tewtrakul, S.; Morikawa, T.; Yoshikawa, M. Anti-allergic activity of stilbenes from Korean rhubarb (Rheum undulatum L.): Structure requirements for inhibition of antigen-induced degranulation and their effects on the release of TNF-alpha and IL-4 in RBL-2H3 cells. Bioorg. Med. Chem. 2004, 12, 4871–4876. [Google Scholar] [CrossRef]
- Gao, J.; Zhang, K.; Wang, Y.; Guo, R.; Liu, H.; Jia, C.; Sun, X.; Wu, C.; Wang, W.; Du, J.; et al. A machine learning-driven study indicates emodin improves cardiac hypertrophy by modulation of mitochondrial SIRT3 signaling. Pharmacol. Res. 2020, 155, 104739. [Google Scholar] [CrossRef] [PubMed]
- Babulka, P. Evaluation of medicinal plants used in Hungarian ethnomedicine, with special reference to the medicinally used food plants. Médicaments et al.iments. Lápproche Ethnopharmacol. 1993, 1, 129–139. [Google Scholar]
- Pieroni, A.; Gray, C. Herbal and food folk medicines of the Russlanddeutschen living in Kűnzelsau/Taläcker, South-Western Germany. Phytother. Res. 2008, 22, 889–890. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Song, M.-J.; Heldenbrand, B.; Kyoungho, C. A comparative analysis of ethnomedicinal practices for treating gastrointestinal disorders used by communities living in three national parks (Korea). Evid-Based Complement Altern. Med. 2014, 2014, 108037. [Google Scholar] [CrossRef] [PubMed]
- Kolodziejczyk-Czepas, J.; Liudvytska, O. Rheum rhaponticum and Rheum rhabarbarum: A review of phytochemistry, biological activities and therapeutic potential. Phytochem Rev. 2021, 20, 589–607. [Google Scholar] [CrossRef]
- Dregus, M.; Engel, K.H. Volatile constituents of uncooked rhubarb (Rheum rhabarbarum L.) stalks. J. Agric. Food Chem. 2003, 51, 6530–6536. [Google Scholar] [CrossRef]
- Smolarz, H.D.; Medyńska, E.; Matysik, G. Determination of emodin and phenolic acids in the petioles of Rheum undulatum and Rheum rhaponticum. J. Planar Chromat.—Modern TLC 2005, 18, 319–322. [Google Scholar] [CrossRef]
- Cojocaru, A.; Vlase, L.; Munteanu, N.; Stan, T.; Teliban, G.C.; Burducea, M.; Stoleru, V. Dynamic of phenolic compounds, antioxidant activity, and yield of rhubarb under chemical, organic and biological fertilization. Plants 2020, 9(3), 355. [Google Scholar] [CrossRef]
- Krafczyk, N.; Kötke, M.; Lehnert, N.; Glomb, M.A. Phenolic composition of rhubarb. Eur. Food Res. Technol. 2008, 228, 187–196. [Google Scholar] [CrossRef]
- Ko, S.K.; Lee, S.M.; Whang, W.K. Anti-platelet aggregation activity of stilbene derivatives from Rheum undulatum. Arch. Pharm. Res. 1999, 22, 401–403. [Google Scholar] [CrossRef]
- Ha, M.T.; Kim, M.; Kim, C.S.; Park, S.E.; Kim, J.A.; Woo, M.H.; Choi, J.S.; Min, B.S. Tetra-aryl cyclobutane and stilbenes from the rhizomes of Rheum undulatum and their a-glucosidase inhibitory activity: Biological evaluation, kinetic analysis, and molecular docking simulation. Bioorg. Med. Chem. Lett. 2020, 30, 127049. [Google Scholar] [CrossRef]
- Mezeyová, I.; Mezey, J.; Andrejiová, A. The effect of the cultivar and harvest term on the yield and nutritional value of rhubarb juice. Plants 2021, 10, 1244. [Google Scholar] [CrossRef]
- Robb, H.F. Death from rhubarb leaves due to oxalic acid poisoning. J. Am. Med. Assoc. 1919, 73, 627–628. [Google Scholar] [CrossRef]
- Ren, G.; Li, L.; Hu, H.; Li, Y.; Liu, C.; Wei, S. Influence of the environmental factors on the accumulation of the bioactive ingredients in Chinese rhubarb products. PLoS ONE 2016, 11, e0154649. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Huang, Y.; Zhao, G.; Li, B.; Qin, X.; Xu, J.; Li, X. Phytoremediation potential evaluation of three rhubarb species and comparative analysis of their rhizosphere characteristics in a Cd- and Pb-contaminated soil. Chemosphere 2022, 296, 134045. [Google Scholar] [CrossRef]
- Takeoka, G.R.; Dao, L.; Harden, L.A.; Pantoja, A.; Kuhl, J.C. Antioxidant activity, phenolic and anthocyanin contents of various rhubarb (Rheum spp.) varieties. Int. J. Food Sci. Technol. 2013, 48, 172–178. [Google Scholar] [CrossRef]
- Cao, Y.J.; Pu, Z.J.; Tang, Y.P.; Shen, J.; Chen, Y.Y.; Kang, A.; Zhou, G.S.; Duan, J.A. Advances in bio-active constituents, pharmacology and clinical applications of rhubarb. Chin. Med. 2017, 12, 36. [Google Scholar] [CrossRef][Green Version]
- Ye, M.; Han, J.; Chen, H.; Zheng, J.; Guo, D. Analysis of phenolic compounds in rhubarbs using liquid chromatography coupled with electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 2007, 18, 82–91. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Han, J.; Ye, M.; Xu, M. Comparison of phenolic compounds of rhubarbs in the section deserticola with Rheum palmatum by HPLC-DAD-ESI-MSn. Planta Med. 2008, 74, 873–879. [Google Scholar] [CrossRef][Green Version]
- Ramasami, P.; Jhaumeer-Laulloo, S.; Rondeau, P.; Cadet, F.; Seepujak, H.; Seeruttun, A. Quantification of sugars in soft drinks and fruit juices by density, refractometry, infrared spectroscopy and statistical methods S. Afr. J. Chem. 2004, 57, 24–27. [Google Scholar]
- Giusti, M.M.; Wrolstad, R.E. Current Protocols in Food Analytical Chemistry; F1.2.1–1.2.13; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2001. [Google Scholar]
- Golubkina, N.A.; Kekina, H.G.; Molchanova, A.V.; Antoshkina, M.S.; Nadezhkin, S.M.; Soldatenko, A.V. Plant Antioxidants and Methods of their Determination; Infra-M: Moscow, Russia, 2021. [Google Scholar]
- Kharchenko, V.A.; Moldovan, A.I.; Amagova, Z.A.; Matsadze, V.K.; Golubkina, N.A.; Caruso, G. Effect of sodium selenate foliar supplementation on Cryptotaenia japonica and Petroselinum crispum nutritional characteristics and seed quality. Veg. Crops Russ. 2022, 4, 5–10. [Google Scholar] [CrossRef]
- GOST P 52841-2007; Wine Products. Capillary Electrophoresis Method of Organic Acids Determination. (In Russian). Standartinform: Moscow, Russia, 2007.
- P 4.1.1672-03; Guidance on Methods of Quality Control and Safety of Biologically Active Food Supplements, 2004, Determination of Soluble and Non Soluble Food Fiber-46-50. Ministry of Health of Russia: Moscow, Russia, 2004.
- P 4.1.1672-03; Guidance on Methods of Quality Control and Safety of Biologically Active Food Supplements, 2004, Pectin Determination, 40-41. Ministry of Health of Russia: Moscow, Russia, 2004.
- Umar, A.S.; Iqbal, M. Nitrate accumulation in plants, factors affecting the process, and human health implications. Agron. Sustain. Dev. 2007, 27, 45–57. [Google Scholar] [CrossRef]
- Santamaria, P. Nitrate in vegetables: Toxicity, content, intake and EC regulation. J. Sci. Food Agr. 2006, 86, 10–17. [Google Scholar] [CrossRef]
- Wojtania, A.; Mieszczakowska-Frac, M. In vitro propagation method for production of phenolic-rich planting material of culinary rhubarb ‘Malinowy’. Plants 2021, 10, 1768. [Google Scholar] [CrossRef] [PubMed]
- Franceschi, V.; Nakata, P. Calcium oxalate in plants: Formation and function. Annu. Rev. Plant Biol. 2005, 56, 41–71. [Google Scholar] [CrossRef]
- Prasad, R.; Shivay, Y.S. Calcium as a plant nutrient. Int. J. Bio-Res. Stress Manag. 2020, 11, i–iii. [Google Scholar] [CrossRef]
- Allsopp, A. Seasonal changes in the organic acids of rhubarb (Rheum hybridum). Biochem. J. 1937, 31, 1820–1829. [Google Scholar] [CrossRef][Green Version]
- Stoleru, V.; Munteanu, N.; Stan, T.; Ipǎtioaie, C.; Cojocaru, A.; Butnariu, M. Effects of production system on the content of organic acids in Bio rhubarb (Rheum rhabarbarum L.). Rom. Biotechnol. Lett. 2018, 24, 184–192. [Google Scholar] [CrossRef]
- Kabuo, N.O.; Omeire, G.C.; Ibeabuchi, J.C. Extraction and preservation of cashew juice using sorbic and benzoic acids. Am. J. Food Sci.Technol. 2015, 3, 48–54. [Google Scholar] [CrossRef]
- Cakir, R.; Cargi-Mehmetoglu, A. Sorbic and benzoic acid in non-preservative-added food products in Turkey. Food Addit. Contam. Part B Surveill. 2013, 6, 47–54. [Google Scholar] [CrossRef]
- Golubkina, N.; Kharchenko, V.; Bogachuk, M.; Koshevarov, A.; Sheshnitsan, S.; Kosheleva, O.; Pirogov, N.; Caruso, G. Biochemical characteristics and elemental composition peculiarities of Rheum tataricum L. in semi-desert conditions and of European garden rhubarb. Int. J. Plant Biol. 2022, 13, 368–380. [Google Scholar] [CrossRef]
- Etienne, A.; Génard, M.; Lobit, P.; Mbeguié-A-Mbéguié, D.; Bugaud, C. What controls fleshy fruit acidity? A review of malate and citrate accumulation in fruit cells. J. Exp. Bot. 2013, 64, 1451–1469. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Saradhuldhat, P.; Paull, R.E. Pineapple organic acid metabolism and accumulation during fruit development. Sci. Hort. 2007, 112, 297–303. [Google Scholar] [CrossRef]
- Albertini, M.V.; Carcouet, E.; Pailly, O.; Gambotti, C.; Luro, F.; Berti, L. Changes in organic acids and sugars during early stages of development of acidic and acidless citrus fruit. J. Agr. Food Chem. 2006, 54, 8335–8339. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.H.; Quilot, B.; Génard, M.; Kervella, J.; Li, S.H. Changes in sugar and organic acid concentrations during fruit maturation in peaches, P. davidiana and hybrids as analyzed by principal component analysis. Sci. Hort. 2005, 103, 429–439. [Google Scholar] [CrossRef]
- Ooraikul, B.; Atapattu, C.; Basu, T.K.; Smit, M.E.; Laing, B.M. Development of dietary fiber and other value added products from rhubarb stalks. In Final Report to the Alberta Agriculture Research Institute; Alberta Agriculture: Edmonton, AB, Canada, 1993. [Google Scholar]
- Basu, T.K.; Ooraikul, B.; Garg, M. The lipid lowering effects of rhubarb stalk fiber: A new source of fiber. Nutr. Res. 1993, 13, 1017–1024. [Google Scholar] [CrossRef]
- Goel, V.; Ooraikul, B.; Basu, T.K. Effect of dietary rhubarb stalk fiber on the bioavailability of calcium in rats. Int. J. Food Sci. Nutr. 1996, 47, 159–163. [Google Scholar] [CrossRef]
- Srivastava, P.; Malviya, R. Sources of pectin, extraction and its applications in pharmaceutical industry—An overview. Indian J. Nat. Prod. Resour. 2011, 2, 10–18. [Google Scholar]
- Hord, N.G.; Tang, Y.; Bryan, N.S. Food sources of nitrates and nitrites: The physiologic context for potential health benefits. Am. J. Clin. Nutr. 2009, 90, 1–10. [Google Scholar] [CrossRef]
Parameter | Malakhit | Krupnochereshkovy | Upryamets | Zaryanka | M ± SD | CV (%) |
---|---|---|---|---|---|---|
Leaves biomass | ||||||
(g per plant) | 822.3 ± 70.2 b | 771.2 ± 63.2 bc | 1736.5 ± 109.0 a | 689.4 ± 55.3 c | 1005 ± 491 | 48.9 |
Stalk biomass | ||||||
(g per plant) | 946.5 ± 78.0 b | 951.8 ± 79.8 b | 2277.3 ± 200.0 a | 722.3 ± 67.2 c | 1224 ± 710 | 58.0 |
Stalk yield (t·ha−1) | 56.79 ± 5.32 b | 57.11 ± 5.65 b | 79.64 ± 7.89 a | 43.34 ± 4.29 c | 59.2 ± 15.0 | 25.3 |
Stalk width (cm) | 1.8 ± 0.1 b | 1.9 ± 0.2 b | 4.0 ± 0.3 a | 1.7 ± 0.2 b | 2.4 ± 1.1 | 46.8 |
Stalk length (cm) | 59.0 ± 3.6 a | 57.1 ± 3.3 a | 61.0 ± 4.6 a | 56.1 ± 3.4 a | 58.0 ± 2.0 | 3.4 |
Stalk dry matter (%) | 6.4 ± 0.5 b | 7.5 ± 0.6 ab | 8.5 ± 0.7 a | 7.3 ± 0.6 ab | 7.4 ± 0.9 | 12.2 |
Juice Parameter | Malakhit | Krupnochereshkovy | Upryamets | Zaryanka | M ± SD | CV (%) |
---|---|---|---|---|---|---|
Yield (%) | 74.6 ± 7.5 a | 74.9 ± 7.5 a | 82.4 ± 7.9 a | 77.2 ± 7.6 a | 77.3 ± 3.6 | 4.7 |
Density (g·mL−1) | 1.114 ± 0.001 a | 1.115 ± 0.001 a | 1.115 ± 0.001 a | 1.109 ± 0.001 a | 1.113 ± 0.003 | 0.3 |
Brix° | 0.7 ± 0.1 c | 1.8 ± 0.1 a | 1.6 ± 0.1 b | 1.7 ± 0.1 c | 1.5 ± 0.2 | 13.3 |
Nitrates (mg·L−1) | 175 ± 16 b | 190 ± 18 ab | 216 ± 20 a | 174 ± 17 b | 189 ± 20 | 10.6 |
TDS (mg·L−1) | 397 ± 35 a | 396 ± 35 a | 426 ± 40 a | 386 ± 36 a | 401 ± 17 | 4.2 |
Monosaccharides (%) | 0.96 ± 0.10 a | 1.07 ± 0.10 a | 1.02 ± 0.10 a | 1.10 ± 0.10 a | 1.04 ± 0.06 | 5.8 |
Total sugar (%) | 1.28 ± 0.11 b | 2.10 ± 0.20 a | 1.95 ± 0.17 a | 2.00 ± 0.20 a | 1.83 ± 0.37 | 20.2 |
AOA (mg GAE ·mL−1) | 4.4± 0.4 b | 4.8 ± 0.5 b | 4.8 ± 0.5 b | 7.6 ± 0.7 a | 5.4 ± 1.5 | 27.8 |
TP (mg GAE · mL−1) | 3.1 ± 0.3 b | 3.7 ± 0.3 b | 3.3 ± 0.3 b | 5.3 ± 0.5 a | 3.9 ± 1.0 | 25.6 |
Anthocyanins (mg·L−1) | 2.5 ± 0.2 b | 1.9 ± 0.2 c | 1.7 ± 0.1 c | 8.1 ± 0.8 a | 3.6 ± 3.1 | 86.1 |
Organic Acid | Malakhit | Krupnochereshkovy | Upryamets | Zaryanka | M ± SD | CV (%) |
---|---|---|---|---|---|---|
Citric | 12550 ± 890 b | 17000 ± 1300 a | 18100 ± 1650 a | 12800 ± 1008 b | 15113 ± 2852 | 18.9 |
Oxalic | 2045 ± 175 a | 2520 ± 223 a | 1800 ± 175 a | 2200 ± 201 a | 2141 ± 301 | 14.1 |
Succinic | 993 ± 88 bc | 1105 ± 108 ab | 635 ± 63 c | 1550 ± 138 a | 1071 ± 377 | 35.2 |
Ascorbic | 125.0 ± 12.0 b | 164. ± 16.1 a | 139.0 ± 13.0 ab | 133.0 ± 12.3 ab | 140.3 ± 16.8 | 12.0 |
Acetic | 39.1 ± 4.0 b | 75.0 ± 7.2 a | 70.1 ± 6.9 a | 64.0 ± 6.1 a | 62.0 ± 16.0 | 25.8 |
Lactic | 58.0 ± 5.1 b | 95.0 ± 9.2 a | 18.1 ± 1.5 c | 60.2 ± 6.0 b | 57.8 ± 31.5 | 54.5 |
Malic | 80.2 ± 8.0 a | 62.1 ± 6.1 b | 40.0 ± 3.9 c | 46.1 ± 5.0 c | 57.0 ± 17.9 | 31.4 |
Tartaric | 52.1 ± 5.0 a | 25.0 ± 2.2 b | 30.1 ± 3.0 b | 20.0 ± 2.0 c | 31.8 ± 14.1 | 44.3 |
Sorbinic | 16.8 ± 1.3 c | 26.7 ± 2.6 b | 36.2 ± 3.5 a | 23.1 ± 2 b | 25.7 ± 8.1 | 31.5 |
Benzoic | 7.0 ± 0.6 b | 0.7 ± 0.1 c | 11.7 ± 1.1 a | 7.4 ± 0.7 b | 6.7 ± 4.5 | 67.2 |
Total | 15966.2 c | 21073.5 a | 20880.2 ab | 16903.8 bc | 18706 ± 3384 | 18.1 |
Parameter | Malakhit | Krupnochereshkovy | Upryamets | Zaryanka | M ± SD | CV (%) |
---|---|---|---|---|---|---|
AOA (mg GAE ·g−1 d.w.) | 31.5 ± 3.0 a | 30.5 ± 3.0 a | 28.3 ± 2.9 a | 34.4 ± 3.2 a | 31.2 ± 2.5 | 8.0 |
TP (mg GAE ·g−1 d.w.) | 18.8 ± 1.8 a | 15.8 ± 1.5 b | 17.0 ± 1.7 ab | 18.1 ± 1.8 ab | 17.4 ± 1.3 | 7.5 |
TDS (g·kg−1 d.w.) | 46.1 ± 4.5 a | 50.0 ± 4.9 a | 37.4 ± 3.7 b | 43.2 ± 4.2 ab | 44.0 ± 5.0 | 11.4 |
Nitrates (mg·kg−1 d.w.) | 2045 ± 202 ab | 2123 ± 200 a | 1335 ± 129 c | 1682 ± 164 b | 1796 ± 363 | 20.2 |
Nonsoluble Fiber (% d.w.) | 47.8 ± 4.8 a | 44.9 ± 4.5 a | 51.9 ± 5.2 a | 47.8 ± 4.8 a | 48.1 ± 2.9 | 6.0 |
Soluble Fiber (% d.w.) | 15.8 ± 1.6 a | 13.9 ± 1.4 a | 14.9 ± 1.5 a | 14.4 ± 1.4 a | 14.9 ± 0.8 | 5.5 |
Total Fiber (% d.w.) | 63.6 ± 6.1 a | 58.8 ± 5.8 a | 66.8 ± 6.6 a | 62.2 ± 6.0 a | 62.9 ± 3.3 | 5.3 |
Pectin (% d.w.) | 23.0 ± 2.1 a | 21.0 ± 2.0 a | 24.0 ± 2.3 a | 23.0 ± 2.0 a | 22.8 ± 1.3 | 5.5 |
Parameter | Malakhit | Krupnochereshkovy | Upryamets | Zaryanka | M ± SD | CV (%) |
---|---|---|---|---|---|---|
AOA peel (mg GAE ·g−1 d.w.) | 121.1 ± 12.0 d | 115.0 ± 11.0 d | 170.1 ± 16.2 bc | 150.0 ± 15.1 c | 139.0 ± 26.1 | 18.7 |
AOA pulp (mg GAE ·g−1 d.w.) | 164.0 ± 16.1 c | 161.2 ± 15.0 c | 192.1 ± 18.0 b | 232.0 ± 20.1 a | 187.3 ± 33.0 | 17.6 |
TP peel (mg GAE ·g−1 d.w.) | 16.6 ± 1.6 b | 17.8 ± 1.7 b | 19.8 ± 1.9 b | 19.5 ± 1.8 b | 18.4 ± 1.5 | 8.2 |
TP pulp (mg GAE ·g−1 d.w.) | 20.0 ± 1.9 ab | 20.6 ± 2.0 ab | 21.0 ± 2.0 ab | 24.9 ± 2.3 a | 21.6 ± 2.2 | 10.2 |
Nitrates (mg kg−1 d.w.) | 664 ± 66 a | 558 ± 54 ab | 465 ± 46 b | 474 ± 46 b | 540 ± 93 | 17.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kharchenko, V.; Golubkina, N.; Tallarita, A.; Bogachuk, M.; Kekina, H.; Moldovan, A.; Tereshonok, V.; Antoshkina, M.; Kosheleva, O.; Nadezhkin, S.; et al. Varietal Differences in Juice, Pomace and Root Biochemical Characteristics of Four Rhubarb (Rheum rhabarbarum L.) Cultivars. BioTech 2023, 12, 12. https://doi.org/10.3390/biotech12010012
Kharchenko V, Golubkina N, Tallarita A, Bogachuk M, Kekina H, Moldovan A, Tereshonok V, Antoshkina M, Kosheleva O, Nadezhkin S, et al. Varietal Differences in Juice, Pomace and Root Biochemical Characteristics of Four Rhubarb (Rheum rhabarbarum L.) Cultivars. BioTech. 2023; 12(1):12. https://doi.org/10.3390/biotech12010012
Chicago/Turabian StyleKharchenko, Viktor, Nadezhda Golubkina, Alessio Tallarita, Maria Bogachuk, Helene Kekina, Anastasia Moldovan, Vladimir Tereshonok, Marina Antoshkina, Olga Kosheleva, Sergey Nadezhkin, and et al. 2023. "Varietal Differences in Juice, Pomace and Root Biochemical Characteristics of Four Rhubarb (Rheum rhabarbarum L.) Cultivars" BioTech 12, no. 1: 12. https://doi.org/10.3390/biotech12010012