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Abstract: Lectins (carbohydrate-binding proteins) are able to distinguish different patterns of gly-
cosylation on cell surfaces. This study investigated the effects of lectins from Alpinia purpurata
inflorescence (ApuL) and Schinus terebinthifolia leaf (SteLL) on the viability of human leukemia cells
(K562, chronic myeloid leukemia; JURKAT, acute lymphoblastic leukemia) and mesenchymal stem
cells (MSCs) from human umbilical cords. In addition, possible immunomodulatory effects of ApuL
and SteLL on MSCs were assessed by determining cytokine levels in cultures. ApuL reduced the
viability of JURKAT cells (IC50: 12.5 µg/mL), inducing both apoptosis and necrosis. For K562 cells,
ApuL at 50 µg/mL caused a decrease in viability, but of only 8.8%. Conversely, SteLL exerted a
cytotoxic effect on K562 (IC50: 6.0 µg/mL), inducing apoptosis, while it was not cytotoxic to JURKAT.
ApuL and SteLL (0.19–100 µg/mL) did not decrease MSCs viability. Treatment with ApuL strongly
suppressed (99.5% reduction) the release of IL-6 by MSCs. SteLL also reduced the levels of this
cytokine in culture supernatant. In conclusion, ApuL and SteLL showed potential to reduce the
viability of leukemia cells, as well as immunomodulatory effect on MSCs without being toxic to them.
These biological properties can be explored biomedically and biotechnologically in the future.
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1. Introduction

Lectins are proteins capable of recognizing and binding to carbohydrates in a specific
and reversible way, without causing structural modifications. Plant lectins are widely
studied and have several biological activities, such as antimicrobial, antitumor, and im-
munomodulatory actions [1–3]. ApuL is a lectin found in the inflorescences of Alpinia
purpurata that has immunomodulatory effect on human peripheral blood mononuclear
cells [4] and antimicrobial effect on bacteria and fungi [5]. Agglutination inhibition assays
indicated that the carbohydrate-recognizing domain (CRD) of ApuL can bind the glycan
moieties of fetuin and ovalbumin; on the other hand, the monosaccharides glucose, galac-
tose, N-acetylglucosamine, ribose, methyl-D-glucopyranoside, and mannose were not able

Macromol 2023, 3, 290–302. https://doi.org/10.3390/macromol3020018 https://www.mdpi.com/journal/macromol

https://doi.org/10.3390/macromol3020018
https://doi.org/10.3390/macromol3020018
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/macromol
https://www.mdpi.com
https://orcid.org/0000-0001-9015-5644
https://orcid.org/0000-0002-0065-2602
https://doi.org/10.3390/macromol3020018
https://www.mdpi.com/journal/macromol
https://www.mdpi.com/article/10.3390/macromol3020018?type=check_update&version=1


Macromol 2023, 3 291

to inhibit ApuL hemagglutinating activity [4]. The lectin isolated from leaves of Schinus
terebinthifolia (SteLL) showed in vivo antitumor [6], antinociceptive [7], anti-depressive-
like [8], and anxiolytic [9] activities in mice. An in vivo antiangiogenic property of SteLL
was proved in the Coturnix japonica embryo model [10]. Furthermore, SteLL showed im-
munomodulatory effect on mouse splenocytes, stimulating the release of interleukins (IL-2,
IL-4, and IL-17A), tumor necrosis factor alpha (TNF-α), interferon-gamma (IFN-γ), and
reducing the secretion of nitric oxide (NO) [11]. Similar to ApuL, the hemagglutinating
ability of SteLL was also not affected by monosaccharides (such as N-acetylglucosamine),
but it was inhibited by the glycoproteins fetuin and ovalbumin [12]. The presence of these
glycoproteins, as well as of azocasein, also prevented the labeling of Cryptococcus neoformans
cells by SteLL conjugated to quantum dots [12].

Cancer is one of the leading causes of death worldwide, accounting for nearly 10 million
deaths in 2020 alone [13]. Given the complexity of cancer, the treatments include chemother-
apy agents, radiotherapy, surgical removal, among others, the choice being dependent on
the location, risk factors, severity, and tumor type. However, these therapies are aggressive
and often affect normal cells and cause serious side effects; in addition, it has been reported
that there is resistance of some tumors to anticancer drugs [14,15]. Thus, the search for
new and less aggressive molecules that can fight cancer and improve cell selectivity drives
research around the world [15]. Some lectins have stood out for their in vitro cytotoxic
effects against tumor cell lines, in vivo antitumor action, and helping roles in the diagnosis
and monitoring of cancer progression and evolution [2,6,16,17]. Lectins can specifically
recognize changes in glycosylation patterns in tumor cell membranes, triggering effective
responses, such as activation of cell death and tumor growth inhibition mechanisms [2,18].

Leukemias are hematological neoplasms and can be manifested acutely or chronically.
Hematopoietic progenitors are capable of self-renewal and differentiation into cell lines that
make up the hematopoietic system. However, in leukemias, these cells stop responding to
external factors within the bone marrow microenvironment and, consequently, disordered
growth in the bone marrow contributes to immature cells being found in the peripheral
blood [19]. Ahmed et al. [20] showed that the incidence and mortality of acute myeloid
leukemia is increasing globally for males and females, from 1990 to 2019, and that disability-
adjusted life years (DALYs) increased for males. Plant lectins have been demonstrated to
be potential antitumor drugs, including against leukemia [21–24].

Stem cells are capable of self-renewal and differentiation into different cell types. In the
field of cell therapy, these cells stand out for their promising results in the recovery and cure
of various diseases [25,26]. For example, Xifro et al. [27] showed that the infusion of stem
cells from bone marrow into the midbrain significantly improved the loss and functionality
of dopaminergic neurons in a model of Parkinson’s disease in mice. Mesenchymal stem
cells (MSCs) can be isolated from almost all tissues in the human body, including the
umbilical cord, bone marrow, adipose tissue, and dental tissues. Considered multipotent,
they can differentiate into different mesenchymal lines (osteogenic, chondrogenic, and
adipogenic), in addition to presenting immunomodulatory properties useful for therapies
of degenerative disease and cancer [28–32]. Preclinical studies showed that MSCs modulate
innate and adaptive immune responses in various diseases, inhibiting pro-inflammatory
responses and stimulating anti-inflammatory responses. In the cellular microenvironment,
MSCs secrete a range of chemokines, cytokines, growth factors, as well as extracellular
matrix molecules, which have useful therapeutic properties [33,34].

Research involving lectins and stem cells is stimulated by the potential of lectins to
recognize carbohydrates present in cell membranes [35]. A high-density microarray, using
lectins, proved to be useful for the recognition of different stem cells [36,37]. The Erythrina
cristagalli lectin served as a support matrix for proliferation and increased the efficiency
of plating pluripotent stem cells and human embryonic stem cells [35]. In addition, it is
likely that the interaction of lectins with glycosylated receptors in these cells also leads to
intracellular responses.
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Reports of the immunomodulatory potential of ApuL and SteLL, as well antitumor
effect of this last, stimulated the investigation of the cytotoxic activity of these lectins
on leukemic tumor cell lines (K562, chronic myelogenous leukemia; JURKAT, acute lym-
phoblastic leukemia) and mesenchymal stem cells (MSCs) isolated from human umbilical
cord, as well as the ability of these lectins to modulate cytokine production by MSCs.

2. Materials and Methods
2.1. Isolation of Lectins

Inflorescences of A. purpurata were collected at the campus of the Universidade Fed-
eral de Pernambuco (UFPE), with authorization (36301) from the Instituto Chico Mendes de
Conservação da Biodiversidade (ICMBio). The research was entered in the Sistema Nacional de
Gestão do Patrimônio Genético e do Conhecimento Tradicional Associado (SisGen) (registration
A83A2DE). A voucher specimen is deposited under number 53,376 at the herbarium UFP
Geraldo Mariz from UFPE. The bracts were separated, washed with distilled water, and
dried at 28 ◦C for 2 days. ApuL was then isolated according to Brito et al. [4]. The dry
material was ground, and the resulting powder (10 g) was homogenized in 0.15 M NaCl
(100 mL) for 16 h at 28 ◦C under constant stirring. The suspension was filtered through filter
paper and then centrifuged (10 min, 3000× g) to obtain the extract. Ammonium sulfate
(40% saturation) was added to the extract for protein fractionation [38]. After constant agi-
tation for 4 h at 28 ◦C, the material was centrifuged (10 min, 3000× g), and the supernatant
was dialyzed (6 h) against distilled water. The dialyzed supernatant was subjected to gel
filtration chromatography on a column (30.0 × 1.5 cm) of Sephadex G-75 (GE Healthcare
Life Sciences, Uppsala, Sweden), previously equilibrated with 0.15 M NaCl. The column
was eluted with 0.15 M NaCl at a flow rate of 20 mL/h. Fractions of 5 mL were collected
and monitored for absorbance at 280 nm. The pool of unadsorbed fractions corresponds to
ApuL.

Leaves of S. terebinthifolia were also collected on the campus of UFPE, as authorized by
the ICMBio. The record in the SisGen was made under the protocol AED6BF8. A voucher
is archived (no. 73,431) at the Instituto Agronômico de Pernambuco (Recife, Brazil). The leaves
were washed with distilled water, dried for 4 days at 28 ◦C, and then ground. To obtain
the extract, the flour was suspended in the proportion of 10% (w/v) in 0.15 M NaCl. After
homogenization for 16 h at 4 ◦C and centrifugation (15 min, 9000× g, 4 ◦C), the protein
extract was obtained. SteLL was isolated according to the protocol described by Gomes
et al. [39]. The extract was applied onto a column (7.5 × 1.5 cm) of chitin (Sigma-Aldrich,
St. Louis, MO, USA), previously equilibrated with 0.15 M NaCl. Subsequently, the column
was washed to remove unbound proteins, and then SteLL was eluted (20 mL/h) with 1.0 M
acetic acid. The collected fractions were followed for absorbance at 280 nm. SteLL was
dialyzed against distilled water for about 6 h, using a cellulose membrane (Sigma-Aldrich)
to remove acetic acid.

2.2. Determination of Hemagglutinating Activity (HA) and Protein Concentration

The carbohydrate-binding capacity of the lectins was determined through the hemag-
glutinating activity (HA) assay, as described by Procopio et al. [16], using rabbit erythro-
cytes fixed with glutaraldehyde [40]. Protein concentration was determined by the method
described by Lowry et al. [41] using a standard curve of bovine albumin (31.25–500 µg/mL).

2.3. Leukemic Tumor Lines

Human cell lines K562 (chronic myeloid leukemia) and JURKAT (acute lymphoblastic
leukemia) were obtained from the Cell Bank of Rio de Janeiro, Brazil. Cells were cultured
in complete RPMI medium containing 10% fetal bovine serum (FBS) and 1% antibiotic
solution (100 µg/mL streptomycin and 100 U/mL penicillin).
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2.4. Evaluation of Cytotoxicity to Leukemic Tumor Lines

K562 (105 cells/well) and JURKAT (105 cells/well) were cultured in 24-well mi-
croplates containing RPMI 1640 medium with HEPES supplemented with 10% fetal
bovine serum (FBS, w/v). Next, K562 and JURKAT cells were treated with ApuL or
SteLL (6.25–50 µg/mL). Wells containing only cells and culture medium were used as the
negative control. Ethanol-treated wells were used as a positive death control. After a 24-h
incubation period (37 ◦C, 5% CO2), the cells were evaluated for viability using the MTT test
([3-4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide]) [42]. After each incubation
period, MTT (20 µL; 5 mg/mL) was added to the wells and the plate incubated for 4 h.
Then, the culture medium was removed, and dimethyl sulfoxide (DMSO, 100 µL) was
added to solubilize the formed formazan crystals. The absorbance reading (590 nm) was
performed in a microplate reader. Etoposide phosphate (0.625–10 µg/mL) was used as
positive control. Each experiment was performed in triplicate.

2.5. Evaluation of Cell Death

The cells were cultured for 24 h in the absence and the presence of the lectins, as
described above, and then they were washed with phosphate-buffered saline (PBS), col-
lected by centrifugation (450× g, 5 min), and evaluated for occurrence of apoptosis and/or
necrosis using the Annexin V-FITC/PI kit (Invitrogen, Waltham, MA, USA) following
the manufacturer’s instructions. The analysis was performed on a BD Accuri C6 flow
cytometer (BD Biosciences, Franklin Lakes, NJ, USA) with a collection of 10,000 events
per sample. Double-labeled cells were in late apoptosis; cells labeled with AnnV-FITC
alone were considered to be in an early stage of apoptosis; cells labeled only with PI were
considered in the process of necrosis; and unlabeled cells were considered viable. Each
experiment was performed in triplicate.

2.6. Human Umbilical Cords

Mesenchymal stem cells (MSCs) were isolated from human umbilical cords collected
after cesarean deliveries at the Hospital D’Avila, in the city of Recife, Pernambuco, Brazil.
Donor mothers signed a Free and Informed Consent Term. The procedures were approved
by the Human Research Ethics Committee of the UFPE (protocol 90172918.3.0000.5208). The
cords were transported to the laboratory in a sterile container, containing saline solution
with EDTA (2 mM) and antibiotics—penicillin (150 U/mL), streptomycin (150 µg/mL) and
amphotericin (5 µg/mL)—being processed in up to 6 h after delivery.

2.7. Isolation and Cultivation of MSCs

To isolate the cells, the cords were washed, and the veins were perfused with PBS.
Then, the cords were cut into small pieces lengthwise (approximately 2 cm in length), thus
removing veins and arteries, which were discarded. Tissue containing Wharton’s jelly
was then minced and transferred to sterile culture bottles (75 cm2), containing DMEM-low
glucose medium (Gibco, Thermo Fisher Scientific, Waltham, MA, USA) supplemented
with FBS (10% v/v), Ham’s F nutrient factor −12 (20% v/v; Gibco), and the antibiotics
penicillin (100 U/mL) and streptomycin (100 µg/mL) were kept in an oven at 37 ◦C, 80%
humidity, and 5% CO2. The MSCs isolation method was conducted without enzymatic
treatment, based on the spontaneous migration of tissue cells and their adhesion to plastic
with an average duration of 21 days. Identification was performed by known characteristics
of MSCs, such as ability to adhere to plastic, morphology (fibroblastoid aspect), and by
immunophenotyping [43].

2.8. Evaluation of Cytotoxicity of ApuL and SteLL to MSCs

MSCs (105 cells/well) were grown in 96-well plates in DMEM low glucose medium
and incubated in an oven (37 ◦C, 5% CO2) for a period of 24 h for adherence to the plate.
After this period, ApuL or SteLL were resuspended in the culture medium and added to
the plates in serial dilution to reach final concentrations between 0.139 and 100 µg/mL in
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the wells. Wells containing only cells and culture medium were used as negative controls.
Plates were incubated again for 24 and 48 h. After each incubation period, the MTT test
was performed, as described in Section 2.4.

To investigate cell death, MSCs were cultivated in 6-well plates in DMEM low glucose
medium and incubated in an oven (37 ◦C, 5% CO2) for a period of 24 h to adherence to
the board. After this period, the cells were treated with ApuL or SteLL (50 µg/mL). Wells
containing only cells and culture medium were used as negative controls. After treatment,
the plates were incubated in an oven for 24 h. Then, cells were collected using trypsin
(Gibco) and incubated again in an oven for 5 min to dissociate cells from the plate. Next, the
MSCs were collected, washed in PBS, and centrifuged (3000 rpm, 10 min). The occurrence
of apoptosis and/or necrosis was then assessed, as described in Section 2.5.

2.9. Cytokine Dosage in MSCs Culture Supernatants

Supernatants from MSC cultures treated or not for 24 h with ApuL or SteLL (50 µg/mL)
were collected for cytokine quantification using the Th1/Th2/Th17 human cytokine kit
–CBA (BD Biosciences) to detect interleukins (IL-2, IL-4, IL-6, IL-10, IL17A), tumor necrosis
factor alpha (TNF-α), and interferon gamma (IFN-γ). Assays were performed according to
the manufacturer’s instructions, and data were acquired on the BD Accuri C6 cytometer.

2.10. Statistical Analysis

The results obtained were analyzed using the GraphPad Prism® software, version 8.0,
expressed as mean ± standard deviation (SD). Statistically significant differences between
groups were calculated by applying analysis of variance (ANOVA), followed by Tukey’s
post test. The t-test was used to analyze the cytokine assay results. p values < 0.05 indicated
significance when compared to the control. IC50 (the concentration required to reduce the
cell viability by 50%) values were calculated by linear regression.

3. Results

ApuL and SteLL were isolated following the purification procedures previously estab-
lished [4,39], and they showed specific HA of 180 and 1,024, respectively. This result shows
that the carbohydrate-binding ability of the lectin molecules was preserved in the samples
used in the present work.

ApuL caused a reduction in the viability of JURKAT tumor cells, with an IC50 of
12.5 ± 1.3 µg/mL. On the other hand, the viability of the JURKAT cells was not significantly
reduced in the presence of SteLL. For K562 cells, ApuL caused a significant increase in
the number of non-viable cells only at the concentration of 50 µg/mL and even when
the inhibition percentage was low, ca. 8.8%. Conversely, SteLL significantly reduced the
viability of K562 cells, with an IC50 of 6.0 ± 0.27 µg/mL. Etoposide phosphate (positive
control) showed IC50 2.5 ± 0.2 and 2.9 ± 0.7 µg/mL on K562 and JURKAT, respectively.

When analyzing the type of cell death induced by the lectins, it was observed that
ApuL predominantly induced apoptosis (26.6 ± 1.3% of cells) of JURKAT, but a high
number of cells in late apoptosis or necrosis (20.4 ± 0.8%) was also detected (Figure 1a). In
its turn, SteLL induced mainly apoptotic death of K562 cells (26.0 ± 0.7%) (Figure 1b).

MSCs showed no significant reduction (p > 0.05) in viability after being treated with
ApuL or SteLL for periods of 24 h (Figure 2a,b) and 48 h (Figure 2c,d). In the period of 24 h,
it was observed that ApuL at 100 µg/mL caused higher cell viability (110.7%) than the
control. After 48 h, ApuL at 50 and 100 µg/mL also promoted higher cell viability (123.9%
and 111.5% respectively) when compared to the control.
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or necrosis in the MSCs, we performed the cell death evaluation assay. As expected, no 
significant differences were detected in the number of cells undergoing necrosis, early 
apoptosis, or late apoptosis compared to the untreated control (Figure 3). The viability of 
MSCs treated with ApuL (50 µg/mL) was 96.9 ± 1.0%, and, with SteLL (50 µg/mL), it was 
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significantly changed after treatment with ApuL or SteLL (50 µg/mL) (Figure 4). However, 
the high concentration of IL-6 (23,431 pg/mL) released by MSCs was reduced in the pres-
ence of SteLL to 15,045 pg/mL, and it was strongly suppressed to 101.8 pg/mL (99.5% re-
duction) when MSCs were treated with ApuL (Figure 4). 
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Figure 2. Evaluation of the viability of MSCs treated with different concentrations (0.19–100 µg/mL)
of ApuL (a,c) or SteLL (b,d) for 24 h (a,b) and 48 h (c,d), using the MTT assay. The bars represent the
mean cell viability (%) ± SD for three independent experiments performed in triplicate, considering
the control group as 100% viability. (*) p < 0.05 in comparison with control (C).
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To confirm the absence of cytotoxicity and to verify if the lectins induced apoptosis
or necrosis in the MSCs, we performed the cell death evaluation assay. As expected, no
significant differences were detected in the number of cells undergoing necrosis, early
apoptosis, or late apoptosis compared to the untreated control (Figure 3). The viability of
MSCs treated with ApuL (50 µg/mL) was 96.9 ± 1.0%, and, with SteLL (50 µg/mL), it was
97.4 ± 0.9%.
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Figure 3. Representative dot plots of the cell death evaluation of mesenchymal stem cells (MSCs)
from control or treated with ApuL or SteLL at 50 µg/mL. Quadrant LL: viable cells. UL quadrant:
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MSCs produced pro-inflammatory (TNF-α and IFN-γ, IL-2, IL-6, IL-17) and anti-
inflammatory (IL-4 and IL-10) cytokines, but the levels of most of these cytokines were
not significantly changed after treatment with ApuL or SteLL (50 µg/mL) (Figure 4).
However, the high concentration of IL-6 (23,431 pg/mL) released by MSCs was reduced in
the presence of SteLL to 15,045 pg/mL, and it was strongly suppressed to 101.8 pg/mL
(99.5% reduction) when MSCs were treated with ApuL (Figure 4).
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(IL-4 and IL-10) cytokine levels in supernatants of cultures of human MSCs maintained in the absence
(control) and in the presence of ApuL or SteLL (50 µg/mL) for 24 h. Bars represent mean cytokine
concentration (pg/mL) ± SD for three independent experiments performed in triplicate. (*) p < 0.05
in comparison with control.
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4. Discussion

Previous data on the carbohydrate-binding specificity of ApuL and SteLL, obtained
through HA inhibition assay, showed that both lectins can recognize the oligosaccharide
moieties of ovalbumin [4,12], which are rich in mannose and N-acetylglucosamine [44], but
they did not have their agglutinating properties prevented by monosaccharides in the free
form. Another similarity between them is that fetuin (containing sialic acid and galactose)
inhibited their hemagglutinating activity. In other studies, the preference of some lectins
to oligosaccharides has been associated with a better geometric fitting between the lectin
CRD and oligoglycans in comparison with mono- or disaccharides [45,46].

Studies have reported the presence of glycans containing mannose, sialic acid, and
galactose in K562 and JURKAT cells. An immunofluorescent assay using concanavalin
A conjugated to quantum dots revealed the presence of mannosyl groups on the surface
of K562 cells [47]. Nayak et al. [48] reported the presence of complex, hybrid, pauciman-
nose, and oligomannose glycans in membrane fraction of K652 cells, being predominantly
oligomannose- and complex-type glycans. Zhang et al. [49] also detected high mannoses
in K562, and Lizzi et al. [50] reported a high expression of both mannose and galactose in
this cell line. Leukosialin is a major sialoglycoprotein found on leukocytes that contains
high-mannose type N-glycan chains and further elongation with O-glycans containing
galactose and sialic acid [51].

Despite the similarities described above, ApuL and SteLL were cytotoxic against
leukemia cells, but each lectin was highly active against one of the two cell lines evaluated:
ApuL mainly reduced the viability of JURKAT, while SteLL showed effect only on K562
cells. Indeed, the biosynthesis of surface glycans in these cells occurs in a different way.
It was demonstrated that O-glycan elongation of leukosialin occurs very rapidly in K562
cells, probably before the final processing of the N-glycans of high-mannose type, while,
in JURKAT cells, there is a difference in enzymatic action that arrests O-glycan synthesis
at the first step [51,52]. Thus, although the HA inhibition assay was not able to evidence
differences in the carbohydrate-binding specificity of ApuL and SteLL, its CRDs possess
binding abilities strong enough to distinguish the point of recognition of the differences
between JURKAT and K562 cells. This evidence reinforces the complexity of the interactions
between lectins and glycans, as well as points to the need of studying the fine glycan
specificity of ApuL and SteLL in the future, which can be determined more precisely
through glycan arrays, for example.

The interaction of lectins with glycoconjugates present on tumor cell surfaces can
cause intracellular responses that lead to apoptosis and inhibition of tumor growth [3,53].
As described above, SteLL induced death of K562 by apoptosis. This result is similar
to those found by Ramos et al. [6], who described cytotoxicity of SteLL against sarcoma
180 cells (IC50: 8.30 µg/mL) through induction of apoptosis. Other lectins are capable of
inducing apoptosis in leukemic cells. Lectin isolated from the marine sponge Cliona varians
(CvL; 1.0–150.0 µg/mL) inhibited the growth of K562 and JURKAT leukemic cells, with
IC50 of 70 and 100 µg/mL, respectively. After a period of 72 h of incubation with the lectin,
cell death of K562 was induced by apoptosis [54]. Lectin from Astragalus membranaceus
roots (AML; 20 µg/mL) caused apoptosis in the K562 strain in a time-dependent manner,
resulting in the detection of morphological changes, such as chromatin condensation,
nuclear fragmentation, and apoptotic bodies [55]. Lectin from Calliandra surinamensis leaf
pinnulae (CasuL) reduced the viability of K562 strains after 72 h of incubation, with an IC50
of 5.7 µg/mL [16].

MSCs are a type of multipotent adult stem cells, being considered promising cellular
therapeutic agents, due to their self-renewal properties and differentiation into cell lin-
eages [56,57]. Lectins have been applied in studies with stem cells due to their ability to
recognize and bind to carbohydrates on the surface of these cells, being used mainly in the
microarray technique in order to search for new biomarkers [58,59]. Thus, we proposed to
evaluate the effects of ApuL and SteLL on cytokine production by MSCs.
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Initially, we evaluated whether ApuL and SteLL would cause any cytotoxic effect in
MSCs isolated from human umbilical cord. It was observed that they did not cause relevant
cytotoxicity in MSCs and did not lead these cells to undergo necrosis or apoptosis. This
result agrees with previous studies that showed that ApuL and SteLL do not have cytotoxic
effects on healthy cells. Brito et al. [4] demonstrated the safety of ApuL with regards to
human lymphocytes, while Santos et al. [11] showed that SteLL (3.12–50 µg/mL) is not
cytotoxic for mouse splenocytes. Additionally, the viability of macrophages isolated from
mice was not affected by SteLL (2.0–16.0 µg/mL) [60].

Evaluations of the cytotoxicity of other lectins to MSCs have been described. Micro-
gramma vacciniifolia frond lectin (MvFL) did not show cytotoxicity for MSCs at concentra-
tions of 0.1–50 µg/mL, but, at 100 µg/mL, it reduced their viability to 80% [61]. The lectin
isolated from the bark of Crataeva tapia (CrataBL; 100 µM) also affected the viability of
MSCs after 24 h of treatment; however, it did not induce apoptosis or necrosis [62]. Viscum
album coloratum lectin (VCA; 1–10 pg/mL) showed no cytotoxic effect and increased MSC
self-renewal and proliferation by interfering with the expression of factors involved in cell
cycle control [63]. In another study, it was demonstrated that VCA (10 pg/mL) increased
the viability of MSCs [64].

The immunomodulatory effect of MSCs is not fully understood, but there are data that
indicate that MSCs can reduce local inflammation through the secretion of antiproliferative
mediators, such as NO and, mainly, prostaglandin E2, and, systemically, they can shift
the host response from Th1/Th17 to a Th2 immune profile [65]. Liu and Hwang [66]
isolated MSCs from umbilical cord blood and found that this type of cell can produce
several cytokines and growth factors. The results of this study strongly suggest that
cytokine induction and signal transduction are important for the differentiation of umbilical
cord blood MSCs. IL-6, IL-8, MCP-1, RANTES, GRO-a, IFN-γ, IL-1α, TGF-β, GM-CSF,
angiogenin, and oncostatin M were constitutively expressed.

In the present work, MSCs produced pro-inflammatory (TNF-α and IFN-γ, IL-2,
IL-6, and IL-17) and anti-inflammatory (IL-4 and IL-10) cytokines, but the IL-6 levels
were remarkably higher in comparison with the others. More interestingly, only the
levels of IL-6 significantly changed after treatment with ApuL or SteLL. Accumulating
evidence supports an essential role for IL-6 in the development, differentiation, and regen-
eration of stem cells [67]. IL-6 is a pleiotropic cytokine with a role in immune regulation,
hematopoiesis, and tissue regeneration in vivo. Pricola et al. [68] demonstrated that MSCs
isolated from bone marrow were able to secrete and respond to IL-6. One study showed that
autocrine/paracrine IL-6 contributes to chondrogenic differentiation in MSCs isolated from
bone marrow [69]. Xie et al. [70] presented evidence that the IL-6/IL-6 receptor complex
promotes osteogenic differentiation of bone marrow MSCs. This cytokine, when produced
by MSCs, was also able to act in regenerative processes in the central nervous system [71].

Other studies show that lectins can exert an immunomodulatory effect on MSC cell
cultures. The VCA lectin (1 pg/mL) increased the expression of IL-6 [64]. On the other
hand, CrataBL reduced the secretion of cytokines (IL-6, IL-8) at concentrations of 50 and
100 µM [62]. MSCs modulate the functionality of antigen-presenting cells, T cells, and
NK cells (natural killer), mainly by immunosuppressive effects [72,73]. These cells can
migrate to injured or inflamed sites in response to inflammatory mediators. They exert
repairing effects through the transdifferentiating of tissue-specific cells or by secreting
immunoregulatory factors that facilitate the reestablishment of tissue homeostasis [73,74].
A study conducted by Raffaghello et al. [75] demonstrated that MSCs isolated from bone
marrow inhibit apoptosis of activated neutrophils, and the main soluble factor derived
from MSCs was IL-6. In this case, this cell exerted an anti-apoptotic action through soluble
factors, without the need for cell–cell contact.

In previous studies, SteLL (12.5 µg/mL) demonstrated the ability to stimulate the
release of cytokines (IL-6, IL-10, IL-17A, TNF-α), NO, and superoxide anion in cultured
macrophages isolated from mice. In addition, it stimulated the production of IL-17A,
TNF-α, IFN-γ, IL-4, and IL-2 in cultured splenocytes isolated from mice [11,60]. It has
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already been shown that ApuL is capable of inducing lymphocytes isolated from humans to
produce a Th17 response, producing IL-17 and IL-10, the latter with an immunoregulatory
function [4]. Our results show that the immunomodulatory action of ApuL and SteLL is
cell-type specific.

5. Conclusions

ApuL and SteLL were cytotoxic to leukemic tumor cells, and they did not exhibit toxic
activity on MSCs isolated from the umbilical cord, and they functioned as immunomodula-
tors of these cells, inhibiting the release of IL-6. Future studies can be conducted to unveil
the glycan-binding differences between ApuL and SteLL that led them to exert distinct
effects on the same leukemia cell line. In addition, our data open windows to investigate the
effects of ApuL and SteLL on the differentiation of MSCs, as well as to evaluate possibilities
of exploring their effects on stem cells biomedically and biotechnologically in the future
(for example, as immunomodulators of these cells when used in disease therapies).
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