Next Issue
Volume 3, June
Previous Issue
Volume 2, December
 
 

Macromol, Volume 3, Issue 1 (March 2023) – 7 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
29 pages, 3850 KiB  
Article
A Comprehensive Study on the Styrene–GTR Radical Graft Polymerization: Combination of an Experimental Approach, on Different Scales, with Machine Learning Modeling
by Cindy Trinh, Sandrine Hoppe, Richard Lainé and Dimitrios Meimaroglou
Macromol 2023, 3(1), 79-107; https://doi.org/10.3390/macromol3010007 - 22 Feb 2023
Viewed by 1373
Abstract
The study of the styrene–Ground Tire Rubber (GTR) graft radical polymerization is particularly challenging due to the complexity of the underlying kinetic mechanisms and nature of GTR. In this work, an experimental study on two scales (∼10 mL and ∼100 mL) and a [...] Read more.
The study of the styrene–Ground Tire Rubber (GTR) graft radical polymerization is particularly challenging due to the complexity of the underlying kinetic mechanisms and nature of GTR. In this work, an experimental study on two scales (∼10 mL and ∼100 mL) and a machine learning (ML) modeling approach are combined to establish a quantitative relationship between operating conditions and styrene conversion. The two-scale experimental approach enables to verify the impact of upscaling on thermal and mixing effects that are particularly important in this heterogeneous system, as also evidenced in previous works. The adopted experimental setups are designed in view of multiple data production, while paying specific attention in data reliability by eliminating the uncertainty related to sampling for analyses. At the same time, all the potential sources of uncertainty, such as the mass loss along the different steps of the process and the precision of the experimental equipment, are also carefully identified and monitored. The experimental results on both scales validate previously observed effects of GTR, benzoyl peroxide initiator and temperature on styrene conversion but, at the same time, reveal the need of an efficient design of the experimental procedure in terms of mixing and of monitoring uncertainties. Subsequently, the most reliable experimental data (i.e., 69 data from the 10 mL system) are used for the screening of a series of diverse supervised-learning regression ML models and the optimization of the hyperparameters of the best-performing ones. These are gradient boosting, multilayer perceptrons and random forest with, respectively, a test R2 of 0.91 ± 0.04, 0.90 ± 0.04 and 0.89 ± 0.05. Finally, the effect of additional parameters, such as the scaling method, the number of folds and the random partitioning of data in the train/test splits, as well as the integration of the experimental uncertainties in the learning procedure, are exploited as means to improve the performance of the developed models. Full article
Show Figures

Figure 1

14 pages, 2892 KiB  
Article
The Role of Coupling Agents in the Mechanical and Thermal Properties of Polypropylene/Wood Flour Composites
by Cecilia Zárate-Pérez, Rodrigo Ramírez-Aguilar, Edgar A. Franco-Urquiza and Carlos Sánchez-Alvarado
Macromol 2023, 3(1), 65-78; https://doi.org/10.3390/macromol3010006 - 03 Feb 2023
Cited by 3 | Viewed by 2507
Abstract
This work is a collaborative effort between academia and industry to promote the development of new sustainable and profitable materials for manufacturing products. Incorporating wood flour particles (WF) in polypropylene (PP) grants environmental advantages in developing products that use renewable resources to manufacture [...] Read more.
This work is a collaborative effort between academia and industry to promote the development of new sustainable and profitable materials for manufacturing products. Incorporating wood flour particles (WF) in polypropylene (PP) grants environmental advantages in developing products that use renewable resources to manufacture PP/WF composites using the melt intercalation process. However, the interaction between a hydrophilic strengthening phase (wood flour) with a nonpolar polymer matrix (PP) is poor, resulting in deficient mechanical performance. This investigation details the use of graft and masterbatch coupling agents to evaluate their effects on mechanical parameters. The low compatibility between the constituents favors increasing the composites’ thermal properties because the reinforcing phase acts as a nucleating agent. PP showed typical mechanical behavior, with a marked necking and a wide deformation capacity of approximately 180%. The mechanical behavior of the PP/WF composites revealed an elastic region followed by a termination after their yield point, shortening the stress–strain curves and reducing their ductility at strain values of approximately 2–4%. Graft coupling agents have better intermolecular performance with PP than masterbatch coupling agents. The modulus of elasticity of the composites increased to around 82% relative to PP. Processing methods influenced the thermal properties of the composites. The melt-blending process promoted molecular orientation, while injection molding erased the thermomechanical history of the extruded pellets. The melting temperature was similar in the composites, so there was no evidence of thermal degradation. The results showed that the coupling agents favor the crystallinity of the PP over tensile strength. SEM observations showed insufficient adhesion between the WF and PP, which promotes a reduction in stress transfer during tensile testing. The WF particles act as fillers that increase the stiffness and reduce the ductility of composites. Full article
Show Figures

Figure 1

11 pages, 5871 KiB  
Article
Experimental Studies on the Phase Separation Behavior of Molten Benzenesulfonate-Modified PET/PA6 Blends
by Xiao-Jun Ma, Qi-Yu Ye, Shao-Jie Zheng, Ji-Jiang Hu and Zhen Yao
Macromol 2023, 3(1), 54-64; https://doi.org/10.3390/macromol3010005 - 31 Jan 2023
Viewed by 1314
Abstract
In this work, nylon 6 (PA6) and cationic dyeable polyester (CDP) modified with benzenesulfonate groups were reactively blended in a twin-screw extruder. The well-mixed CDP/PA6 blends were re-molten and statically kept for various amounts of time. The morphology evolution caused by phase separation [...] Read more.
In this work, nylon 6 (PA6) and cationic dyeable polyester (CDP) modified with benzenesulfonate groups were reactively blended in a twin-screw extruder. The well-mixed CDP/PA6 blends were re-molten and statically kept for various amounts of time. The morphology evolution caused by phase separation was observed by a scanning electron microscope (SEM) and an atomic force microscopy-infrared (AFM-IR) technique. In the absence of shear force, the homogeneously mixed blends were found to separate rapidly into two phases because of the poor miscibility between polyester and polyamide. In the early stage, the dispersed phase was small in size and irregular in shape. With prolongation of the phase separation time, the dispersed phase turned into larger and spherical particles to minimize the interface between phases. The phase separation process typically lasted 2 to 7 min. This means that the effects of phase separation on the morphology of the blends cannot be ignored in injection molding, compression molding, or other processing processes short of shear force. The effects of the ratio between polyester and polyamide, the benzenesulfonate content, and the molecular weight of polymers on phase separation behavior were investigated. Full article
Show Figures

Figure 1

18 pages, 2953 KiB  
Article
Influence of Concentration of Thiol-Substituted Poly(dimethylsiloxane)s on the Properties, Phases, and Swelling Behaviors of Their Crosslinked Disulfides
by Danielle M. Beaupre, Alexander K. Goroncy and Richard G. Weiss
Macromol 2023, 3(1), 36-53; https://doi.org/10.3390/macromol3010004 - 28 Jan 2023
Cited by 1 | Viewed by 1975
Abstract
A simple, efficient procedure has been employed to effect intra- and inter-chain crosslinking of two commercially available thiolated poly(dimethylsiloxane) copolymers (T-PDMS) with 4–6% or 13–17% of mercaptopropyl side-chains. The thiol functional groups were converted to disulfides (D-PDMS) in chloroform solutions of I2 [...] Read more.
A simple, efficient procedure has been employed to effect intra- and inter-chain crosslinking of two commercially available thiolated poly(dimethylsiloxane) copolymers (T-PDMS) with 4–6% or 13–17% of mercaptopropyl side-chains. The thiol functional groups were converted to disulfides (D-PDMS) in chloroform solutions of I2. Importantly, the conditions employed avoid over-oxidation to other types of sulfur-containing species, and the concentration of T-PDMS during the crosslinking reaction dictated the rheological properties and liquid or solid nature of the D-PDMS. The procedure for obtaining the crosslinked copolymers is simpler than other approaches in the literature used to crosslink polysiloxane backbones and to modulate their properties. By changing the concentration of T-PDMS during the treatment with I2, the degree of intra- and inter-chain crosslinking can be controlled (as assessed qualitatively by the solid or liquid nature of the products and their viscoelastic properties). For each of the T-PDMS materials, there is a concentration threshold, above which products are solids, and below which they are oils. Liquid and solid materials were characterized using 1H and 13C solution-state and 13C solid-state NMR spectroscopy, respectively. They indicate greater than 90% conversion of thiols to disulfides in the presence of excess I2. The rheological behavior of the liquid products, solvent swelling ability of solid products, and the thermal stability of the reactants and products are described. Furthermore, the solid products exhibit some of the highest swelling values reported in the literature for poly(dimethylsiloxane) (PDMS) materials. As assessed by thermal gravimetric analyses, the disulfide-crosslinked materials are more stable thermally than the corresponding thiols. Full article
(This article belongs to the Special Issue Functionalization of Polymers for Advanced Applications)
Show Figures

Figure 1

2 pages, 154 KiB  
Editorial
Acknowledgment to the Reviewers of Macromol in 2022
by Macromol Editorial Office
Macromol 2023, 3(1), 34-35; https://doi.org/10.3390/macromol3010003 - 18 Jan 2023
Viewed by 860
Abstract
High-quality academic publishing is built on rigorous peer review [...] Full article
6 pages, 254 KiB  
Editorial
Hot Topics in 2022 and Future Perspectives of Macromolecular Science
by Ana M. Díez-Pascual
Macromol 2023, 3(1), 28-33; https://doi.org/10.3390/macromol3010002 - 16 Jan 2023
Cited by 1 | Viewed by 1135
Abstract
In 1920, Hermann Staudinger discovered that macromolecules consist of long chains of covalently linked building blocks and subsequently published the first paper on polymerization [...] Full article
27 pages, 5625 KiB  
Review
Active Agents Incorporated in Polymeric Substrates to Enhance Antibacterial and Antioxidant Properties in Food Packaging Applications
by Johan Stanley, Athira John, Klementina Pušnik Črešnar, Lidija Fras Zemljič, Dimitra A. Lambropoulou and Dimitrios N. Bikiaris
Macromol 2023, 3(1), 1-27; https://doi.org/10.3390/macromol3010001 - 23 Dec 2022
Cited by 13 | Viewed by 4532
Abstract
Active packaging has played a significant role in consumers’ health and green environment over the years. Synthetic polymers, such as poly(ethylene terephthalate) (PET), polyethylene (PE), polypropylene (PP), polystyrene, poly(vinyl chloride) (PVC), polycarbonate (PC), poly(lactic acid) (PLA), etc., and naturally derived ones, such as [...] Read more.
Active packaging has played a significant role in consumers’ health and green environment over the years. Synthetic polymers, such as poly(ethylene terephthalate) (PET), polyethylene (PE), polypropylene (PP), polystyrene, poly(vinyl chloride) (PVC), polycarbonate (PC), poly(lactic acid) (PLA), etc., and naturally derived ones, such as cellulose, starch, chitosan, etc., are extensively used as packaging materials due to their broad range of desired properties (transparence, processability, gas barrier properties, mechanical strength, etc.). In recent years, the food packaging field has been challenged to deliver food products free from microbes that cause health hazards. However, most of the used polymers lack such properties. Owing to this, active agents such as antimicrobial agents and antioxidants have been broadly used as potential additives in food packaging substrates, to increase the shelf life, the quality and the safety of food products. Both synthetic active agents, such as Ag, Cu, ZnO, TiO2, nanoclays, and natural active agents, such as essential oils, catechin, curcumin, tannin, gallic acid, etc., exhibit a broad spectrum of antimicrobial and antioxidant effects, while restricting the growth of harmful microbes. Various bulk processing techniques have been developed over the years to produce appropriate food packaging products and to add active agents on polymer matrices or on their surface. Among these techniques, extrusion molding is the most used method for mass production of food packaging with incorporated active agents into polymer substrates, while injection molding, thermoforming, blow molding, electrospinning, etc., are used to a lower extent. This review intends to study the antimicrobial and antioxidant effects of various active agents incorporated into polymeric substrates and their bulk processing technologies involved in the field of food packaging. Full article
(This article belongs to the Collection Advances in Biodegradable Polymers)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop