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Abstract: Microorganisms have developed a resistance against some of the most conventional antibi-
otics. These microorganisms can be self-assembled, forming a microbial biofilm. A microbial biofilm
formation is an inherent event on almost any surface, causing countless side effects on human health
and the environment. Therefore, multiple scientific proposals have been developed based on renew-
able sources such as natural polymers. Natural polymers or biopolymers include cellulose, chitosan,
starch, collagen, gelatin, hyaluronic acid, alginates, fibrin, and pectin, which are widely found in
nature. The biopolymers have displayed many interesting properties, including biocompatibility
and biodegradability. Nonetheless, these materials usually have no antimicrobial properties (except
for the chitosan) by themselves. Therefore, antimicrobial agents have been incorporated into the
natural polymeric matrix, providing an antimicrobial property to the biocomposite. Biocomposites
consist of two different materials (one of natural origin) studied as biocompatible and biodegradable
drug carriers of antimicrobial agents. In addition, due to the incorporation of antimicrobial agents,
biocomposites can inhibit biofilm formation and bacteria proliferation on many surfaces. This review
describes this using natural polymers as a platform of antimicrobial agents to form a biocomposite to
eliminate or reduce biofilm formation on different surfaces.

Keywords: natural polymers; biocomposites; antimicrobial agents; antimicrobial activity; biofilm

1. Introduction

Microorganisms are clustered, forming a microbial biofilm on almost any surface.
Biofilms can develop from one or many microbial species [1,2]. Mixed biofilms guarantee
prolonged survival due to their high resistance to common antibiotics, oxidative stress
and lack of nutrients, denser and thicker mature biofilms, and even cooperation and
competition between species [1,3,4]. Staphylococcus aureus (S. aureus) is a primary reason for
chronic biofilm formation in surgical settings, impacting cardiology and orthopedics [5]. In
addition, the microbial organisms have somehow developed antibiotic microbial resistance
(AMR). If not addressed, AMR will become a major global challenge as it constitutes a
severe threat to global public health [6] and the economy [7]. Since the presence of harmful
microorganisms is humanity’s central concern nowadays, scientists are working hard to
develop antimicrobial biocomposites [8]. A new kind of antimicrobial must not only be
effective against bacteria but also resist the possible development of bacterial resistance [9].

A biocomposite is a material composed of two or more distinct constituent materials
(one being naturally derived) combined to yield new materials with improved performance
over individual constituent materials [10]. Natural polymers or biopolymers are the first
biodegradable biomaterials to develop biocompatible biomaterials with tuned degradability
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and specific structure–function relationships [11]. Naturally occurring biopolymers films
have attracted more attention for multiple applications due to their versatile properties,
such as nontoxicity, biocompatibility, and biodegradability, along with their abundance
and sustainability [12–15]. Polymers usually do not have intrinsic antibacterial properties,
except chitosan, which has been proven to present antibacterial effects [16] due to the
positively charged amine groups in its structure. Positively charged moieties are critical in
defining antibacterial activity [17].

Therefore, natural polymers have been studied as polymeric matrices for incorporat-
ing antimicrobial agents [18]. In this case, the characteristics of the polymer, such as its
hydrophilicity or its molecular weight, greatly influence the final antimicrobial activity
concerning aspects from the rate of biocide release to even conferring synergistic activ-
ities [19]. An antimicrobial agent can be defined as an agent that kills microorganisms
or inhibits their growth [20]. Antimicrobial agents emerge as a possible alternative to
eliminate or reduce possible microorganisms [21], improving material performance. The
slow release of the antimicrobial agents added to the biocomposites can be used to inhibit
or kill biofilms [22]. These new families of composites exhibit remarkable improvements in
mechanical and material properties when compared with virgin polymers or conventional
micro-and macro-composites [23].

The study and understanding of new composite materials with antibacterial features
to inhibit bacterial growth and reduce bacterial adhesion is fundamental [7]. It is essential to
understand how biofilms are formed to develop materials that can effectively kill microbes
or inhibit microbial growth and biofilm formation [24]. In this paper review, we describe
the process of biofilm formation. In addition, the main natural polymers for fabricating
antimicrobial biocomposites to inhibit bacterial growth are detailed.

2. Biofilm Formation

A biofilm is a community of bacteria enclosed in a self-produced exopolysaccharide
matrix that adheres to a biotic or abiotic surface [25]. There are two forms of micro-
bial life in the environment: (a) planktonic microbial cells (independent and free-living)
and (b) microbial biofilms, which is an aggregate of sessile microorganisms developed in a
dense extracellular matrix [26]. Changing from a planktonic state to a biofilm state confers
various advantages to microorganisms, such as antimicrobial resistance, evasion of host im-
mune response, resistance to oxidative stress, and compensation for lack of nutrients [26–31].
Several genetic studies have shown that the formation of biofilms depends on factors such
as the mobility of microorganisms [31–33], the synthesis of exopolysaccharides [33–35],
environmental conditions: temperature, pH, oxygen availability [36,37], and nutrient avail-
ability [38]. Several steps detail the process of biofilm formation. Figure 1 illustrates the
biofilm formation.
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(1) The appropriate conditions must provide a favorable deposition of the microor-
ganisms onto the surface substrate [39]. It has been determined that there is a greater
binding affinity between microbial cells and the surfaces of non-polar hydrophobic materi-
als (e.g., Teflon) compared to hydrophilic surfaces (e.g., metals, glass) [40,41]. Bacterial cells
with structures such as type IV flagella and pili can move across the surface of the substrate
to associate with other bacteria and form microcolonies [32,33,42]. Cells that do not have
flagella and pili use Brownian motion (random, uncontrolled movement of particles in a
fluid) to move on the surface [43]. During initial adhesion, microbial cells attach to the
substrate surface through membrane proteins called adhesins [31,33].

(2) The union of the microbial cells and the substrate’s surface activate the genes to syn-
thesize extracellular polysaccharides and form the extracellular matrix (EPS). This matrix
traps other microbial cells due to its viscous consistency [44]. The EPS matrix also contains
eDNA (extracellular DNA), proteins, nutrients, and other components that circulate in-
ternally through a complex of diffusion channels; with this system, the microorganisms
develop, grow, and eliminate waste [29]. After the recruitment and production of the initial
EPS matrix, the microbial community begins to produce an adhesive matrix that facilitates
other external cells to adhere to each other and form a differentiated multilayer biofilm.
This thick biofilm that protects microorganisms is called a mature biofilm matrix [45,46].

(3) Several causes can generate the dispersion of biofilm cells: detachment of daughter
cells from active cells, detachment due to nutrient scarcity, or shearing of biofilm por-
tions [39,47]. The cells return to a planktonic state and detach from the surface to disperse
in their surrounding environment. When the planktonic cell is in contact with the contact
surface, it is ready to recolonize and start the biofilm formation process again.

Several strategies to control biofilm growth on any surface have been suggested in the
last decade. Due to the easy self-aggregation of multiple bacteria to the surface, natural
polymers have been studied to prevent biofilm formation or inhibit the cell growth of many
microorganisms. In addition, additional agents such as drugs or nanoparticles (NPs) hinder
cell-reproduction and prevent biofilm formation [24].

3. Natural Polymers

Natural polymers are essential to daily life as our human forms are based on them [48].
These polymers, also known as biopolymers, are found widely in nature or extracted from
plants or animals [49]. Some examples of the chemical structure of biopolymers are shown
in Figure 2. Natural polymers exhibit high biocompatibility, biodegradability, accessibility,
stability, lack of toxicity, and low cost [48]. These polymers produce fewer toxic effects when
compared with synthetic polymers [50]. In addition, these biopolymers are recognized as
safe materials for food coatings in air contact [51]. Biopolymers are helpful for their excellent
retention and release properties, but the main character is their higher WVP related to
their hydrophilic nature [52]. Despite these advantages, biopolymers possess low stability
in vitro and in vivo, poor mechanical properties, and disintegrate rapidly [53], which
could be improved through cross-linking strategies [54]. These limitations are somewhat
resolvable by their surface modification, and combination with other materials [55]. A
cross-linking polymer can serve as a matrix to incorporate functional materials to enhance
both properties synergistically. Generally, natural polymers incorporate antimicrobial
agents and are used as drug carriers [56]. However, using natural polymers as drug carriers
is challenging because of their broad molecular weight distributions and batch-to-batch
variability [57].



Macromol 2022, 2 261Macromol 2022, 2, FOR PEER REVIEW 4 
 

 

 
Figure 2. Chemical structure of biopolymers. 

4. Biocomposite-Based on Natural Polymers 
Biopolymers are materials obtained from renewable resources [58,59]. Despite the 

exciting properties of biopolymers, such as biocompatibility and environmental sustaina-
bility, they do not present antimicrobial properties (except chitosan). However, this lack 
of antimicrobial properties can be solved by incorporating or encapsulating antimicrobial 

Figure 2. Chemical structure of biopolymers.

4. Biocomposite-Based on Natural Polymers

Biopolymers are materials obtained from renewable resources [58,59]. Despite the
exciting properties of biopolymers, such as biocompatibility and environmental sustain-
ability, they do not present antimicrobial properties (except chitosan). However, this lack
of antimicrobial properties can be solved by incorporating or encapsulating antimicrobial
agents [60]. Antimicrobial agents must fulfill several requirements, such as a broad antimi-
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crobial spectrum at a short contact time, ease of preparation at low cost; high stability at
the intended applications and storage; and regeneration after the loss of activity [61].

In addition, biopolymers have been extensively studied as carriers of antimicrobial
agents. The most common fillers with antimicrobial activity are metals, chemicals, essential
oils (EOs), natural extracts, and NPs. The synergic union between antimicrobial agents
and polymers can form new materials known as composites [62]. Natural fibers comprise
several biopolymers and polysaccharides, making the fiber a composite [63]. They are
highly used for promising characteristics such as nontoxic, nonabrasive, higher specific
strength, lower density, minimal environmental impact, and biodegradability [64]. Natural
polymers and hydrogels are cross-linked networks that absorb large amounts of water
without dissolving [65].

Natural polymers possess low stability in aqueous media and limited mechanical
strength, which could be improved through cross-linking strategies [55]. Hydrogels are
biocompatible materials that can be synthesized from natural polymers, forming a cross-
linking material. Alginate, collagen, fibrin, chitosan, gelatin, and hyaluronic acid are some
natural polymers used to synthesize hydrogels [66]. Hydrogels are three-dimensional
(3D) cross-linked polymer networks that can absorb and retain a large amount of wa-
ter [67]. These materials usually present interesting properties such as mechanical strength,
biocompatibility, biodegradability, swellability, and stimuli sensitivity [68]. Hydrophilic
polymers might be considered as those polymers that contain polar functional groups
such as hydroxyl (-OH), carboxyl (-COOH), and amino (-NH2) groups that make them
soluble or swelled by water [69]. Despite lacking in mechanical properties, natural poly-
mers remain attractive for their inherent biocompatibility, encouraging greater cellular
attachment and matrix deposition than any other material class [65]. Different materials
have been deposited in the polymeric matrix. Table 1 summarizes the content related to the
biocomposites employed to inhibit many different bacteria.

Table 1. Summary of natural polymers used to inhibit bacteria growth.

Natural Polymer Source Antimicrobial Agents
Incorporated

Bacterial Inhibited Applications

Cellulose Plants cell wall [70,71] • Silver nanoparticles and
Ionic silver [72]

• Chitosan capsules [73]
• Graphene oxide/silver

nanocomposites and
curcumin [74]

• Cinnamon [75]
• Glycidyl

trimethylammonium
chloride and glycidyl
hexadecyl ether [76]

• Hydroxypropyl-γ-
cyclodextrin [77]

E. faecalis [72]
P. aeruginosa [72]
E. coli [72,75,76]
S. aureus [72,75,76]
Campylobacter coli [77]

Wound infection [78].
Wound dressing [76]
Drug delivery
Food packaging

Chitosan Shrimps shell wastes [79]
Crab peritrophic
membranes [79]
Lobsters [79] Cocoons of
insects [79]

• Nisin, antimicrobial
peptide temporin B, and
Cinnamaldehyde [80]

• Montmorillonite
nano-clay and rosemary
essential oil [81]

• Graphene oxide [82]
• Hydroxypropyltrimethyl

ammonium chloride
chitosan [83]

L. monocytogenes and
Streptococcus agalactiae [81].
E. coli [82]
S. aureus [82,83]
MRSA and MRSE [83]

Food packaging [84]
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Table 1. Cont.

Natural Polymer Source Antimicrobial Agents
Incorporated

Bacterial Inhibited Applications

Starch Botanical origin [85]
Genetic [85]

• Tea polyphenol [86]
• Poly-hexamethylene

guanidine
hydrochloride [87]

• Curcumin [88]
• Silver

nanoparticles [89,90]
• Chitosan

nanoparticle [91]
• Citrus sinensis [92]

S. aureus [86,90–92]
E. coli [86,87,90,91]
B. subtilis [87]
Steptococcus mutants [88]
B. cereus and Salmonella
tryphimurium [91]
L. monocytogenes [92]

Food packaging [86]
Dental health [88]

Collagen Connective tissue [93] • Silver nanoparticles
[94–96]

• Gentamicin and
rifamycin [97]

• Silver/Reduced
Graphene Oxide and
Silver/Reduced
Graphene
Oxide/Silicium
oxide [98]

• Thymol [99]

E. coli [95,98,99]
S. aureus [95,97,99]
Candida albicans [95,99]
P. aeruginosa [97]
S. epidermidis, B. cereus C.
Lusistaniae [98]
B. subtilis, Enterobacter
aerogenes [99]

Biomedical
Drug delivery [100]
Tissue engineering [100]
Wound dressing [95]

Gelatin Hydrolysis of
collagen [101]

• Tannic acid and cellulose
nanocrystals [102]

• Cooper peroxide [103]
• Chitosan [104]
• Cinnamaldehyde [105]
• Cupper sulfide [106]

S. aureus [102,103,105]
E. coli [102–106]
P. aeruginosa [103]
L. monocytogenes [106]

Food packaging [102,106]
Wound dressing [107]
Pharmaceutical
Photographic industry

Hyaluronic acid Mammalian connective
tissues

• Quaternary ammonium
compounds [108]

• Ciprofloxacin and
vancomycin [109]

• Oleylamine [110]
• Nisin [111,112]

MRSA [110]
P. aeruginosa [111,112]
S. epidermis [112]
S. aureus [113,114]

Orthopedic applications
[113]
Food packaging
Ophthalmic treatment

Alginate Brown seaweed [115] • Ciprofloxacin [116]
• Zinc Nanoparticles and

citronella [117]
• Silver

nanoparticles [113]
• Carbon nanofibers [114]
• Zinc ions [115]
• Oligosaccharides [116]

E. coli [116,117]
S. aureus [116–119]
P. aeruginosa [116]
Salmonella Typhi [117]
B. cereus [117]
Streptococcus agalactiae
[119]

Tissue Engineering [116]
Food packaging [117]
Biomedical
applications [118]
Wound dressing [120]

Fibrin Blood clot [120,121] • Digluconate
chlorhexidine and
Punica granatum
alcoholic extract [122]

• Teicoplanin [123]
• Vancomycin [124]
• Silver

nanoparticles [125]

C. albicans [122]
Prevotella intermedia [126]
Fusobacterium
nucleatum [126]

Aggregatibacter
actinomycetemcomitans
[126]
Porphyromonas
gingivalis [126]
E. coli [125]
S. aureus [125]

Cell regeneration [127]
Dental health [122]
Control infections [123]
Drug delivery system
[124]
Wound healing [125]

Pectin Plants cell walls [128] • Zinc ions [129]
• Zinc nanoparticles [130]
• Cinnamaldehyde [131]
• Oleate and

palmitate [132]

S. aureus [130–134]
E. coli [130–132,134]
Salmonella entérica [131]
L. monocytogenes [131,134]

Food packaging
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4.1. Cellulose-Based Composites

Cellulose is the most common polymer on earth because it can be easily obtained from
the cell wall of plants and is even produced by some bacteria [70]. There is a 9–25% cellulose
content in primary cell walls and 40–80% in secondary cell walls [71]. Therefore, cellulose
is considered a renewable polymer [72] and semi-crystal material with high molecular
weight homopolymer β-D-glucopyranose units, with a dimer of glucose (cellobiose) as a
repeat unit [135,136]. It could be obtained as different derivatives such as Ethyl cellulose
(EC), methylcellulose (ME), Cellulose acetate (CA), Cellulose sulfate (CS), Cellulose nitrate
(CN) [73], and nanocellulose [137]. Cellulose and its derivatives could present high thermal
resistance, protection against ultraviolet agents, low cost, biodegradability, and non-toxicity.
However, cellulose has limitations such as high-water absorption capacity and insufficient
interfacial adhesion [138]. Besides, cellulose has been studied as a carrier of antimicrobial
agents, either as nanocapsules or nanofiber, as shown in Figure 3. Antimicrobial activity is
one of cellulose fibers’ most critical functional properties [139–143].
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The nanocelluloses combine important cellulose properties such as high specific
strength, modulus, hydrophilicity [144], biodegradability, nontoxic, extremely high surface
area, and tunable surface chemistry [145]. Nanocellulose-based antimicrobial materials
can be synthesized through surface modification with biocidal agents, making them ef-
fective against wound infection [78]. The antibacterial assays have confirmed the efficient
antibacterial activity of several nanocellulose-based to inhibit bacterial growth (in both
liquid medium and agar plates). They can kill several logs of microbial cells [146].

Nanofibrillated cellulose has been used to carry chitosan capsules [73]. Its high an-
timicrobial activity studied nanofibrillated cellulose (NFC) against gram-positive and
gram-negative bacteria. It presents the ability of the polymeric grafts to penetrate the thick
cell wall and destabilize the cellular membrane [147]. Nanofibrous scaffolds were prepared
from polyurethane and CA and could contain reduced graphene oxide/silver nanocom-
posites (rGO/Ag), curcumin, or both, which can present antimicrobial properties [74].
Good antimicrobial properties were obtained from the composite of cellulose/keratin,
where there was a comparison between silver nanoparticles (AgNPs) and ionic silver as
an active agent. AgNPs present a higher activity against Escherichia coli (E. coli), S. aureus,
Enterococcus faecalis, and Pseudomonas aeruginosa (P. aeruginosa) [72].

Cinnamon essential oil has been studied as an antimicrobial agent in a cellulose
polymeric matrix. Cinnamon was more effective against S. aureus than E. coli due to
protecting outer membrane proteins or cell walls, which are more resistant to lipophilic
substances of gram-negative bacteria [75]. Orlando et al. proposed the functionalization
of cellulose with glycidyl trimethylammonium chloride and glycidyl hexadecyl ether for
antibacterial wound dressing. These active agents were used for the covalent derivatization
of the hydroxyl groups of glucose through a heterogeneous reaction in basic aqueous
conditions. The resulting material reduces S. aureus and E. coli by 53 and 43%, respectively,
within the first 24 h [76]. Silva et al. reported the casting method’s synthesis of an active
film based on cellulose derivatives (hydroxyethylcellulose and CA), using hydroxypropyl-
γ-cyclodextrin as active agents. The antimicrobial activity of these films was evaluated
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against Campylobacter jejuni, Campylobacter coli, and Arcobacter butzleri. The results indicated
that this system is a good approach for Campylobacter coli reduction [77].

4.2. Chitosan-Based Composites

Chitosan is the second polysaccharide more abundant in nature. It is structurally
a linear polysaccharide made up of arbitrarily distributed β-(1–4)-linked d-glucosamine
(deacetylated) and N-acetyl-d-glucosamine (acetylated) [148]. The principal source is
shrimps shell wastes, crab peritrophic membranes, lobsters, and cocoons of insects [79].
Chitosan has a great potential for a wide range of applications due to its biodegradability,
biocompatibility, antimicrobial activity, non-toxicity, and versatile chemical and physical
properties [149]. Nonetheless, chitosan is insoluble at neutral pH or above. Therefore, it is
necessary to modify natural polymers such as chitosan to become partially water solubility
and enhance their antimicrobial activity [150]. The presence of amino and hydroxyl groups
on the structure makes the chemical modification of chitosan possible to improve its
solubility and electric change [151,152].

Chitosan exhibits an intrinsic antibacterial activity, inhibiting bacteria and fungi
growth [153]. A significant number of amino groups on the surface of chitosan aid in
generating positive zeta potentials [154]. Protonation of these amine groups on chitosan
glucosamine monomers is facilitated at pH below 6.5 (pKa of chitosan), thus conferring
cationic properties on chitosan [155]. Therefore, chitosan can interact with negatively
charged cell wall bacteria [156]. This interaction reduces microbial cell membranes’ per-
meability [157]. In addition, another mechanism has been proposed in which the chitosan
selectively binds with metals, inhibiting various metabolic enzymes of microbial cells by
blocking their active centers and reducing microbial growth [158]. It has been determined
that small-sized chitosan can block RNA and protein synthesis, thus inhibiting bacterial
growth [159]. Characteristics such as molecular weight, degree of deacetylation, and envi-
ronmental conditions of experimentation, such as pH, temperature, and ionic strength, also
influence the antimicrobial capacity of chitosan [160–163].

Chitosan can serve as a matrix for the deposition of antibacterial agents. For instance,
including oil compounds could improve the surface adhesive properties and prolong the
safety of foods [84]. EOs have been used as antimicrobial agents in a biopolymeric matrix
based on chitosan NPs. The antimicrobial activity depends on the volatility, the release
rate of EOs, and the matrix. The incorporation of EOs can be directly or by encapsulation.
Different EOs such as rosemary, tea, tree, clove, oregano, and eucalypt have been evaluated
for food packaging and showed improved functional properties [164], as described in
Figure 4. Chitosan NPs and nanofibers were studied as nanocarriers in conjunction with
nisin, antimicrobial peptide temporin B, and Cinnamaldehyde as antimicrobial agents [80].
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Similarly, montmorillonite and rosemary essential oil were incorporated in a chitosan
matrix to enhance the antimicrobial properties against Listeria monocytogenes (L. monocytogenes)
and Streptococcus agalactiae. The results showed that the antimicrobial films improved by
rosemary essential oil incorporation [81]. In general, adding EOs into chitosan improves
chitosan’s effectiveness against some bacteria commonly found in food.

A higher antimicrobial effect was reported in chitosan films with grape seed extract
and carvacrol microcapsules (CMF) than in control samples (CS) or just the chitosan
control film (CCF). These samples were tested in salmon packed to increase the shelf-
life of refrigerated salmon to 4–7 days of storage [165]. Another research conducted the
antimicrobial activity evaluated in bio-nanocomposites based on graphene oxide (GO) and
chitosan. The studied material decreases the growth of S aureus and E. coli. The composite
release reactive oxygen species (ROS), which increase the bactericidal properties of the bio-
nanocomposites [82]. Ao et al. reported the hydroxypropyltrimethyl ammonium chloride
chitosan (HACC) based multilayer modified plasma-sprayed porous titanium coating
generated via the layer-by-layer covalent-immobilized method. They determined the
inhibition of the colonization and biofilm formation of several bacterial strains, including
S. aureus, methicillin-resistant S. aureus (MSRA), and clinical isolates of methicillin-resistant
S. epidermidis (MRSE), in vitro [83].

4.3. Starch-Based Composites

Starch is a semi-crystalline polysaccharide natural polymer with a complex structure
that consists of two-component polymers: amylose (AM) and amylopectin (AP) [166]. Since
most plants contain around 25% amylose and 75% amylopectin, and the ratio of these
two related polymers directly influences solution, and structural properties, control of
this ratio has a tremendous impact on the properties of starches [167]. Depending on its
botanical origin (potato, maize, rice, etc.) and genetic background, starch has different
chemical structures and functional groups, making it a useful natural polymer for different
applications [85]. However, starch does not present inherent antimicrobial properties and
is commonly used as a carrier [80].

The interest in starch is accrued from its high molecular weight and film-forming
properties. Using a high molecular weight (37,000 kg mol−1) [168] polymer as a carrier
of antimicrobial polymer eliminates the problem of leaching via entanglement and other
interactions with the baseline polymer [169]. The starch polymer was studied with tea
polyphenol (TP) for active food packaging, which presents inhibition efficiency against
S. aureus and E. coli [86]. Biopolymer composite based on starch and carboxymethylcellulose
(CMC) was used as an antimicrobial agent polymeric matrix of turmeric oil. It was reported
that the increase in the film thickness increases the release of antimicrobial agents for
low volumes of turmeric oil [170]. Starch has been reported in conjunction with poly-
hexamethylene guanidine hydrochloride (PHGH). The composite studied showed surfaces
with high antimicrobial potency against Bacillus subtilis (B. subtilis) and E. coli [87].

Another area of study is dental health. Starch NPs are used as carriers for curcumin,
which has antimicrobial characteristics. Their interactions were studied through molecular
dynamics simulation software with which molecular docking was obtained. The exper-
imental and simulated studies reported a minimum inhibitory concentration (MIC) of
curcumin against Streptococcus mutans [88]. Starch encapsulated biogenic AgNPs were
tested to study the starch encapsulation effect. Results showed that encapsulation increases
antimicrobial activity and reduces the toxicity of the NPs [89]. Chitosan NPs were syn-
thesized via ionic gelation and used to prepare starch-based nanocomposite films. The
antimicrobial properties of starch/chitosan NPs films were evaluated in vitro and in vivo
against B. cereus, S. aureus, E. coli, and Salmonella typhimurium. Those films containing
chitosan NPs were more effective than those with starch-based films [91]. Do Evangelho
and coworkers reported corn starch films containing orange (Citrus sinensis) essential oil
through the casting method. These films showed higher antibacterial activity against
S. aureus and L. monocytogenes [92].
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On the other hand, Li et al. [90] reported synthesizing ultrafine composites starch/polyvinyl
alcohol, using glutaraldehyde as a cross-linking agent. AgNPs were loaded to the composites
to provide a better mechanical and antimicrobial performance against E. coli and S. aureus. The
development of this composite suggests a new route for producing less costly antibacterial
fiber materials.

4.4. Collagen-Based Composites

Collagen is a naturally occurring matrix polymer highly conserved across species [171].
Collagen is a protein with biological properties that make it a suitable biomaterial for
biomedical applications. It is the most abundant animal protein, providing mechani-
cal strength to the tissues. At least 29 types of collagen have been identified in verte-
brates [172]. Based on the structure, collagens can be classified into different groups such
as fibrils, beaded filaments, networks, anchoring fibrils, and fibril-associated collagen [173].
Collagen I is the most abundant structural protein of connective tissues such as skin, bone,
and tendon [93], assembled into fibrils.

Collagen-based materials have received significant attention in medical applications
ranging from drug/gene delivery to tissue engineering [100] because it possesses out-
standing properties such as tensile stiffness to resist plastic deformation and rupture,
biocompatibility, biodegradability, and cell growth potential [173,174]. In addition, colla-
gen can be prepared into cross-linked compacted solids or lattice-like gels [175]. Collagen
gels are flowable, suggesting the possibility of an easily injectable, biocompatible drug
delivery matrix [100]. However, collagen has no antimicrobial properties despite its proper-
ties [99]. Therefore, it is necessary to incorporate antimicrobial agents to obtain the desired
antibacterial. For instance, AgNPs present interesting antimicrobial effects. Therefore,
AgNPs can be incorporated into a collagen matrix providing bactericidal effects [94].

The antibacterial activity can also be bestowed to the collagen by adding NPs such
as AgNPs. Recently, the development of a collagen-carboxymethylcellulose biocompos-
ite containing AgNPs for wound dressings was proposed by Neacsu et al. [95]. During
this experiment, the antimicrobial assessments showed the antimicrobial potential against
gram-negative (E. coli), gram-positive (S. aureus) bacteria, and yeast (Candida albicans).
These results agreed well with the literature that reports the potential of AgNPs as an
antimicrobial agent [96]. Alvarez et al. developed silica–collagen type I biocomposite
hydrogels loaded with gentamicin and rifamycin to prevent infection in chronic wounds.
The biocomposites were evaluated against P. aeruginosa and S. aureus. Nonetheless, only
gentamycin-loaded hydrogels showed bactericidal activity [97]. Vladkova et al. performed
new collagen composites, Collagen/(Silver (Ag)/Reduced Graphene Oxide (RGO)) and
Collagen/(Ag/RGO/Silicium oxide (SiO2)). These composites were tested against E. coli,
S. epidermidis, B. cereus, and a fungus C. Lusistaniae. The biological activity found for the
Collagen/(Ag/RGO/SiO2) composites is better expressed than that of Collagen/(Ag/RGO)
composites with the same level of antimicrobial agent loading [98]. Thymol is an antimi-
crobial compound in the composition of thyme and oregano EOs [176]. The antimicro-
bial activity of collagen/thymol films was studied for wound dressing applications by
Michalska-Sionkowska et al. The bacterial tests showed the antimicrobial efficiency against
E. coli, B. subtilis, Enterobacter aerogenes, Candida albicans, and S. aureus, the latter being the
most sensitive microorganisms to thymol action [99].

4.5. Gelatin-Based Composites

Gelatin is a nontoxic natural biomacromolecule comprised of bioactive polypeptides
derived from collagen in animal skin, bones, and connective tissues [177]. It is a protein
obtained through controlled partial hydrolysis of collagen [101]. Gelatin has many glycine,
proline, and 4-hydroxy proline residues [178]. Depending on the process employed, two
types of gelatin can be obtained: type A gelatin produced by acid hydrolysis and type B
obtained by an alkaline or lime process [101].
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Gelatin has long attracted interest in food, packaging, pharmaceutical, and photo-
graphic industries, because of its physical and functional properties such as the reversible
gel-to-sol transition of aqueous solution; viscosity behavior; protective colloid function,
biodegradability, and solubility in hot water but insolubility in cold water. The gelatin-
based film has a suitable matrix and compatibility that allows it to act as a medium for
incorporating antimicrobial and antioxidant agents [179]. There is a considerable number
of publications on the preparation of gelatin-based films with antimicrobial activity by
incorporating naturally occurring and synthetic antimicrobials such as organic acids [180],
proteins [181], enzymes [182], chelating agents [183], and EOs [184]. For instance, the
effect of incorporating tannic acid (TA) and cellulose nanocrystals (CNC) on gelatin films
was evaluated by Leite et al. [102]. The gelatin films containing nonoxidized TA and
CNC (G-nTA-CNC) exhibited antimicrobial activity against S. aureus and E. coli due to
the incorporation of TA. Moreover, G-nTA-CNC films showed an improvement in the
gelatin’s antioxidant capacity antioxidant capacity, UV barrier, tensile strength, and water
vapor barrier properties. Thus, the resulting approach is suitable for different applications,
particularly food packaging.

Developing wound dressing loaded with antimicrobial agents has also received much
interest in reducing wound bacterial colonization [107]. Figure 5 shows a schematic illus-
tration for the design of bioactive agent-loaded gelatin-based materials by electrospinning
for the wound healing process. Recently, the design of a copper peroxide-loaded gelatin
sponge with pH-controllable •OH delivery and effective antimicrobial activity for wound
healing was reported. The experiments showed that the as-prepared wound dressing could
release •OH, specifically in the bacterial-infected skin wound. In addition, in vitro experi-
ments revealed that the wound dressing has good bactericidal properties against E. coli,
S. aureus, and P. aeruginosa [103]. Pereda et al. reported the synthesis of biodegradable
composite films based on gelatin and chitosan. Composite obtained showed a uniformity
due to a compact structure indicating good compatibility between components, which
could interact by strong hydrogen bonding. The researchers tested these films against
E. coli and L. monocytogenes strains. However, only E. coli resulted be sensitive to the
gelatin-chitosan composite [104]. Thongsrikhem and coworkers developed an antibac-
terial gelatin-bacterial cellulose nanocomposite (GCB) film using cinnamaldehyde as a
crosslinker and an antibacterial additive. These films were evaluated using S. aureus and
E. coli, resulting in a vigorous antibacterial activity against both bacteria strains [105]. In
addition, Roy et al. synthesized Gelatin-based multifunctional composite films reinforcing
various amounts of copper sulfide nanoparticles (CuSNPs). The gelatin/CuSNP compos-
ite film presented effective antibacterial activity against E. coli and some activity against
L. monocytogenes, suggesting their use in food packaging [106].
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4.6. Hyaluronic Acid-Based Composites

Hyaluronic acid (HA) is a natural polymeric polysaccharide that contains N-acetyl
glucosamine and glucuronic acid groups [185]. It is present in nature, mainly in mammalian
connective tissues. HA is a highly reactive, biocompatible, biodegradable, no-inflammatory,
and non-toxic polymer. However, HA has poor biomechanical properties in its native
form, and various chemical modifications have been devised to provide mechanically
and chemically robust materials [186]. HA can be cross-linked or conjugated with as-
sorted biomacromolecules, and it is optimal to encapsulate different active agents [187].
Hyaluronic acid hydrogels are readily fabricated as microspheres, sponges, and fibers de-
pending on the intended application [188]. However, unmodified HA has a poor residence
time in vivo, which can be tailored via cross-linking reactions [189].

Among various polymers tested as antibacterial coatings, HA and some of its compos-
ites offer a well-established long-term safety profile and a proven ability to reduce bacterial
adhesion and biofilm formation [190]. HA can interfere with bacterial adhesion to a cellular
substrate concentration-dependent [191]. HA is bacteriostatic but not bactericidal and
exhibits dose-dependent effects on different microorganisms in the planktonic phase [189].
HA and its derivate may offer a solution and long-term safety with a known ability to
retard bacterial adhesion and biofilm formation [192]. However, some studies have shown
that the bacteriostatic effect of soluble HA in vitro may be attributed to the saturation of
the bacterial hyaluronidase by an excess of HA in the medium [193].

To impart antimicrobial properties, the polymeric matrix is commonly functional-
ized with antimicrobial agents such as quaternary ammonium compounds (QACs), im-
proving antimicrobial efficiency through a contact killing mechanism [108]. The surface-
functionalized scheme is present in Figure 6. HA carboxylic acid groups are modi-
fied by ester formation, while hydroxyl groups can be modified utilizing glutaralde-
hyde [194]. It is applied in ophthalmic treatments as a visual carrier material in a long-term
antibiotic release.
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Multiple antimicrobial agents have been studied with HA as a composite to improve
antimicrobial activity. For instance, ciprofloxacin and vancomycin were used in HA par-
ticles against P. aeruginosa, S. aureus, and B. subtilis [109]. In addition, it is reported that
antimicrobial multilayers based on HA and chitosan developed onto the activated surface
of polyethylene terephthalate, obtain polyelectrolyte multilayers (PEMs). Triclosan (TRI)
and rifampicin (RIF) were used as bactericidal and antibiotic agents, respectively [195].
A composite of hyaluronic acid-oleylamine (HA-OLA) was studied as a promising nano-
carrier to delivery agents for the treatment of bacterial/Methicillin-resistant Staphylococ-
cus aureus (MRSA) infections [110]. D-α-tocopherol polyethylene glycol 1000 succinate
(TPGS)-poly(lactic-co-glycolic acid) (PLGA) with azithromycin are studied to improve the
antimicrobial activity against P. aeruginosa [111]. Nisin (an antimicrobial peptide) has been
attached to HA to obtain an antimicrobial biopolymer under solution or gel, showing a
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great activity against S. epidermidis, S., and P. aeruginosa bacteria [112]. Harris and Richard
coated titanium surfaces with HA for orthopedic applications, showing a decrease in
S. aureus attachment on the surface [113]. Felgueiras et al. use HA as an antifouling agent,
previously modified with thiol groups (HA-SH), using polydopamine as the binding agent.
The polyurethane films were coated with the HA. Octadecyl acrylate was subsequently
used to bind thiol groups to attract albumin, allowing the system to selectively bind albu-
min, a protein responsible for bacterial adhesion, thus granting an effective antimicrobial
activity. The results showed that these films decreased the S. aureus adhesion [114].

4.7. Alginates-Based Composites

Alginate (ALG) is a natural polymer comprising β-D-mannuronic acid and α-L- gu-
luronic acid extracted from brown seaweed [115]. This biomaterial exhibits several prop-
erties, including biocompatibility, gelation capability, low toxicity [196], mild gelation
conditions, and simple modifications to prepare alginate derivatives with new proper-
ties [197], suggesting its use in biomedical and food industry applications. Alginate can
absorb water and body fluids up to 20 times its weight, resulting in a hydrophilic gel [198].
The formed gel is weak, but it maintains a moist wound healing environment [198]. Lin-
ear Alginate polymer chains contain multiple carboxyl groups that can bind to divalent
cations (Ca2+, Ba2+) to promote the formation of cross-linked structures [199]. Applications
within biotechnology and medicine are mainly based on the temperature-independent
sol-gel transition in multivalent cations (e.g., Ca2+), making alginates highly suitable as an
immobilization matrix for living cells [200].

Several studies have investigated the effectiveness of incorporating antimicrobial
agents such as EOs and NPs into alginate-based materials to induce an antimicrobial
activity. Ahmed and Boateng reported the development of antimicrobial films for treating
bacterial infections [116]. The calcium alginate films were loaded with ciprofloxacin and
tested against E. coli, S. aureus, and P. aeruginosa. The results indicated a bacterial kill
within 24 h and were highly biocompatible with human keratinocyte cells. In another
study, biodegradable alginate films were prepared by adding zinc oxide nanoparticles
(ZnONPs) and citronella essential oil (CEO) for cheese packaging. The ZnONPs act as
a reinforcing agent and arrange the alginate polymer chains around them (Figure 7).
Microbiological studies revealed a synergic effect between antibacterial activities of ZnO
and CEO against two gram-negative (E. coli and Salmonella typhi) and two gram-positive
(B. cereus and S. aureus) bacterial strains. Moreover, alginate/ZnO/CEO films showed
better UV light barrier properties and lowered water vapor permeability (WVP) than
pure alginate film [117]. Very similar research was reported by using spherical AgNPs
and lemongrass essential oil (LGO) as antimicrobial agents, and the result indicated the
feasibility of using alginate/Ag NPs/LGO films as antibacterial packaging to preserve the
color, surface texture, and softness of cheese for 14 days [118].
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Furthermore, new and affordable alternatives have been proposed to prevent microbial
infections. In a recent study, incorporating a low percentage of carbon nanofibers enhanced
the antibacterial properties of alginate films against the Gram-positive bacterial model
S. aureus. In addition, the films showed no cytotoxicity, suggesting their potential use in
antimicrobial biomedical materials [119].
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Alginate fibers cross-linked with zinc ions have also been proposed for wound dress-
ings [185]. Zinc ions may generate immunomodulatory and antimicrobial effects, enhanced
keratinocyte migration, and increased endogenous growth factors [120]. Asadpoor et al.
developed films containing alginate oligosaccharides (AOS) as an alternative for antibiotic
treatment. AOS decreases the biofilm of Streptococcus agalactiae and S. aureus strains by
determining the MIC [121].

4.8. Fibrin-Based Composites

Fibrin, derived from critical proteins involved in blood clotting (fibrinogen and throm-
bin), is a self-assembling biopolymer [122]. Fibrin is a critical component of the blood
clot that accelerates wound healing, prevents hemorrhage, and protects against bacterial
infection [123]. Fibrin alone, or in combination with other biomaterials, was employed as a
biological scaffold to promote stem or primary cells to regenerate [129]. In comparison to
alginate-only gel-laden constructs, fibrin has an advantage in cytocompatibility due to cell
adhesion moieties within the fibrin structure [201].

Several studies have reported the antimicrobial effect of leukocyte- and platelet-
rich fibrin (L-PRF) against periodontal pathogens. Castro et al. assessed the antimicro-
bial properties of L-PRF against pathogens grown on agar plates and in planktonic cul-
tures. A potent inhibition was found against Prevotella intermedia, Fusobacterium nucleatum,
Aggregatibacter actinomycetemcomitans, and especially against Porphyromonas gingivalis [128].
The research conducted by Venante and co-workers [124] exhibited the effectiveness of
fibrin biopolymer incorporating antimicrobial agents such as digluconate chlorhexidine
and Punica granatum alcoholic extract to prevent the development of Candida albicans
biofilm. In vitro results displayed the inhibition of the growth of C. albicans biofilm on
poly(methyl methacrylate) (PMMA) substrates for up to 72 h, which suggests the excellent
performance of the modified fibrin biopolymer as a drug delivery system, preventing the
formation of denture biofilm.

Fibrin sealant was used as a matrix for teicoplanin as an antimicrobial carrier applied
externally to control infection sites [125]. Vancomycin impregnated fibrin sealant was
developed to measure antibacterial activity and antibiotic release. This study uses fibrin
sealant as a topical hemostat for post-operatory treatments in surgical fields [126]. AgNPs
were studied in metal/fibrin nanocomposites, recognized as suitable materials for wound
healing. AgNPs produce an antimicrobial effect related to the easy oxidation of silver. The
action over the bacteria occurs due to the interaction between AgNPs/Ag+ and the cell
membrane of the bacteria. The reaction was tested against E. coli and S. aureus [127]. A
bioartificial human dermis substitute was developed for the treatment of infected wounds.
It was based on a fibrin-agarose matrix with sodium colistimethate (SCM) and amikacin
(AMK) as antimicrobial agents [202].

4.9. Pectin-Based Composites

Pectin is a polymer with a linear structure in which a few hundred to thousand
galacturonic acid monomer units are linked via α-(1→4)-glycosidic bond-forming a back-
bone [203], with variations in composition, structure, and molecular weight [204]. Pectin
is one of the significant and more complex components of the primary cell walls of most
plants, with a structure rich in galacturonic acid units [205]. Many carboxyl groups are
esterified with methanol to form methoxy groups; these determine the gelling ability of the
pectin used in jam, marmalade, and jelly and preserve production [130].

The word ‘pectin’ comes from the Greek word pektos which means firm and hard,
reflecting pectin’s ability to form gels [206]. One of the most remarkable properties of pectin
is its ability to form gels, making it suitable for its use in food design and the pharmaceutical
industry [207,208]. In addition, the gelation ability, biocompatibility and nontoxicity make
pectin a suitable material for producing NPs, healing agents, edible coating, and bio-based
films. Pectin is semi-soluble in liquids, which can take up some liquid. This is especially
important in cooking fruits and vegetables because it softens them when cooked [209].
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Pectin has demonstrated antimicrobial activity against gram-positive and gram-negative
microorganisms [210]. Its antimicrobial activity likely involves the carboxylic acid groups’
binding action in the main pectin’s backbone [211]. In this regard, Presentato et al. reported
that pectin extracted via hydrodynamic cavitation in water only from waste lemon peel
and further isolated via freeze-drying displays significant antibacterial activity against
S. aureus at a pH of 6 [212]. Due to its exciting properties, pectin can be a suitable carrier
for antimicrobial agents.

The combination of different antimicrobial agents has gained increasing interest.
Therefore, a wide range of antimicrobial materials, including plant extracts [213,214],
NPs [215], lysozymes [216], salicylic acid [217], and others, have been tested to impart
antimicrobial properties in pectin derivatives. Moreover, employing ions with an antimi-
crobial character as a cross-linking agent, such as Zn ions, is also an exciting strategy
to impart antimicrobial activity to pectin [131]. For instance, Hari et al. [132] developed
pectin-based antibacterial bionanocomposite films and evaluated the effects of ZnONPs
at different concentrations (0.5%, 1%, and 1.5% w/w, based on pectin). The results re-
vealed that adding ZnONPs improved the UV barrier and the mechanical properties
of the bionanocomposite films. Moreover, the films incorporating 1.5% ZnONPs exhib-
ited intense antibacterial activity against food-borne pathogenic bacteria such as E. coli
and S. aureus inhibiting over 99% of the bacteria because of the inherent antimicrobial
activity of ZnONPs. Similarly, Otoni et al. reported the synthesis of pectin/papaya
puree/cinnamaldehyde nanoemulsion edible composite films. The cinnamaldehyde pro-
vided antimicrobial properties against E. coli, Salmonella enterica, L. monocytogenes, and
S. aureus [133]. In addition, pectin–linoleate, pectin–oleate, and pectin–palmitate com-
posites systems were evaluated against S. aureus and E. coli, inhibiting 50–70% of the
bacteria growth. The best results were obtained against S. aureus [134]. New materials
can be achieved based on natural sources for active food packaging. Based on this prin-
ciple, Trejo-Gonzáles et al. developed pectin-based films containing citrus pectin/gellan
gum/glycerol/calcium chloride and five mM/ethylenediaminetetraacetic acid (EDTA) and
an antimicrobial concentrated supernatant (ACS) from fermentation culture broths of the
lactic acid bacterium, Streptococcus infantarius. The functional films inhibited the growth of
L. monocytogenes, E. coli, and S. aureus in the “Barbacoa” medium in 7-day cultures at 35 ◦C,
attributed to the synergy between ACS, EDTA, and pectin [135].

5. Prospects, Challenges and Future Perspectives

Despite the advantages of the use of biopolymers, their commercialization is limited.
It is necessary to raise awareness about the impact of replacing polymers of fossil origin
with natural polymers. The use of biodegradable polymers in place of conventional plastics
is increasing due to environmental and economic concerns. As is known, polystyrene and
other conventional polymers cause land and water pollution. Therefore, scientists and
engineers have focused on biodegradable polymers of natural origin with antimicrobial
properties to address these problems. Biopolymers can be extracted from the most varied
natural sources; however, it is necessary to assure a green and sustainable extraction
for obtaining an environmentally friendlier product. In addition, more research and
development are required to improve its efficacy, production, and reproducibility and
ensure its safety during clinical trials.

In addition, many studies have searched for new methodologies to face the growth
of antibiotic-resistant bacteria. The use of natural biopolymers is considered a friendly
environmental route. To identify the microbial activity of biopolymers, agar diffusion
tests [159,218,219] and chitosan microdilution tests with the MIC method [159] have gen-
erally been used. Other studies have analyzed membrane integrity using ultraviolet
absorption, potential membrane assays, and flow cytometric analysis to assess the antimi-
crobial activity of biopolymers [220]. Nonetheless, the microbial action mechanisms of
biopolymers are not exactly clear so far. The method used to provide antimicrobial effects is
based on the insertion of active compounds in polymeric structures such as capsules, fibrils,
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foams, aerogels, or other solid materials containing closed assemblies. The mechanisms
of action are related to the change of permeability, disruption, change of the bacterial
water osmosis gradient, or destruction of bacterial cell membranes. The inhibition of ATP
production, DNA synthesis, DNA replication, and the respiratory system could conduce
to direct bacterial killing [146]. In the case of EOs, the mechanism of action is related to
the degradation of the cell membrane, leakage of cell components, damage of membrane
proteins, coagulations of cytoplasm, or the collapse of the proton motive force [164]. The
generation of ROS is another route principally caused by the release of metallic ions, which
disrupt cellular function and cell death. The biocompatibility characteristic of biopolymers
is related to their chemical structures, similar to extracellular matrix components. Poly-
meric surfaces are usually functionalized through covalent attachment. The action route is
usually through quaternary ammonium groups, which can interact hydrophobically with
the bacterial cell wall to provoke cell death [76]. A polymeric matrix has a cationic nature
due to the positive charge density, which can reduce the transmission of external nutrients
necessary for cell viability [59], or the matrix can diffuse into the nucleus to inhibit their
synthesis [79].

There is no consensus antimicrobial mechanism since the investigations are empha-
sized a specific polymer or application; most of the specific antimicrobial mechanisms of
each biopolymer have been postulated [136,221]. Such is the case of chitosan, whose most
accepted antimicrobial mechanism consists of electrostatic interactions between chitosan
with amino sites (positively charged) and microbial cell membranes (negatively charged).
This interaction changes the osmotic balance and affects the permeability of the microbial
cell, causing the release of intracellular material [163] or causing the formation of a surface
layer that prevents the entry of external nutrients [157]. HA has anti-adherent or antibacte-
rial biofilm activity because the negative charges of this biopolymer do not interact with the
microbial membranes [222,223]. Other biopolymers described in this review do not have an
inherent microbial action. Still, they can be supplemented with antimicrobial components
such as Zn ions [131], EOs [75], AgNPs [224], or used as vehicles such as this is the case
starch [86,131,221], cellulose [225], collagen, gelatin [179], alginates, fibrin, pectin and even
the chitosan [84] as well.

The unique properties of biopolymers, such as biocompatibility and biodegradability,
make them ideal for medical applications. Biopolymers play a relevant role in controlling
pathogenic microorganisms, which becomes a challenge for the pharmacological and physi-
ological industry. Their use in biomedicine is remarkable due to their high biocompatibility
associated with their chemical structure. One of the most important uses is related to
wound healing due to its capacity to promote the regeneration of new tissues. Moreover,
biopolymers can be tailored with predefined properties for applications such as drug re-
lease targeting, medicine regenerative, sterilization of medical devices, etc. In fact, most
of their uses are related to the controlled drug release, based on the improved solubility
in water medium. The combination of biopolymers with antimicrobial agents can mimic
the natural function of tissues and offer significant benefits for their use in the biomedical
field. Nonetheless, despite all the research, there are still some drawbacks to solve. Food
packaging is particularly interesting among all the potential applications of antimicrobial
biopolymers. Even though antimicrobial agents for the packaging industry have many
exceptional features, more comprehensive research is still required to maintain food quality,
meet consumer sensory preferences, and avoid the risk of serious health consequences.
However, there are a few obstacles to overcome to meet the packaging industry’s demand-
ing requirements. The relationship between various antimicrobial agents and polymeric
matrix must be fully comprehended. For instance, in the case of NPs embedded into
polymers, toxicological tests must be conducted to ensure long-term human and animal
safety without side effects or adverse events. Moreover, antimicrobial agents such as EOs
may present a high loss rate owing to their rapid volatilization.
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6. Conclusions

During the last two decades, the increase of antibiotic-resistant microorganisms has
prompted the interest in the development of new approaches and strategies for healthcare.
Materials based on natural polymers have attracted attention as promising alternatives
in various food and biomedical applications. Natural polymers are found in renewable
sources of natural origin. They have been extensively studied due to their biocompatibility
and biodegradability. Nonetheless, biopolymers have weak mechanical properties and
durability compared with synthetic polymers. In addition, except for chitosan, biopolymers
have no antimicrobial properties to face microorganism proliferation in their applications.
Chitosan is a natural positive-charged polymer, that can interact electrostatically with a
negative membrane of bacteria, reducing the permeability of the microbial cell membranes.
Recent research has demonstrated that using biopolymers combined with antimicrobial
agents has revolutionized composites manufacturing.

Using different techniques, these biopolymers can serve as a polymeric matrix for
incorporating antimicrobial agents. Natural polymers such as cellulose, chitosan, starch,
collagen, gelatin, HA, alginates, fibrin, and pectin showed dynamic structures capable
of containing antimicrobial compounds such as metals, chemicals, EOs, natural extracts,
or NPs to inhibit bacterial growth and improve mechanical material properties. Those
antimicrobial agents have shown a suitable combination with natural polymers to form
biocomposites, providing an antimicrobial property to the polymeric system. Therefore,
antimicrobial biocomposite acts as a drug carrier of antimicrobial agents as a great solution
to reduce or eradicate the biofilms produced by many microbial species. The obtained
characteristics of these biocomposites are helpful for application daily-use industries.
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Fiber Blends with Incorporated ZnO. Materials 2019, 12, 3399. [CrossRef] [PubMed]
144. Gopakumar, D.A.; Thomas, S.; Grohens, Y. Nanocelluloses as Innovative Polymers for Membrane Applications. In Multifunctional

Polymeric Nanocomposites Based on Cellulosic Reinforcements, 1st ed.; Puglia, D., Fortunati, E., Kenny, J.M., Eds.; William Andrew
Publishing: Norwich, NY, USA, 2016; pp. 253–275. ISBN 9780323417396.

145. Kumar, R.; Kumar, G. Nanocellulose: Fascinating and sustainable nanomaterial for papermaking. In Nanotechnology in Paper
and Wood Engineering, 1st ed.; Bhat, R., Kumar, A., Nguyen, T.A., Sharma, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2022;
pp. 389–407. ISBN 9780323859639.

146. Rashki, S.; Shakour, N.; Yousefi, Z.; Rezaei, M.; Homayoonfal, M.; Khabazian, E.; Atyabi, F.; Aslanbeigi, F.; Safaei Lapavandani,
R.; Mazaheri, S.; et al. Cellulose-Based Nanofibril Composite Materials as a New Approach to Fight Bacterial Infections. Front.
Bioeng. Biotechnol. 2021, 9, 732461. [CrossRef] [PubMed]

147. Littunen, K.; Snoei de Castro, J.; Samoylenko, A.; Xu, Q.; Quaggin, S.; Vainio, S.; Seppälä, J. Synthesis of cationized nanofibrillated
cellulose and its antimicrobial properties. Eur. Polym. J. 2016, 75, 116–124. [CrossRef]

148. Arakere, U.; Jagannath, S.; Krishnamurthy, S.; Chowdappa, S.; Konappa, N. Microbial bio-pesticide as sustainable solution for
management of pests. In Biopesticides, 1st ed.; Rakshit, A., Meena, V.S., Abhilash, P.C., Sarma, B.K., Singh, H.B., Fraceto, L., Parihar,
M., Kumar, A., Eds.; Woodhead Publishing: Cambridge, UK, 2022; pp. 183–200. ISBN 9780128236147.

149. Dutta, P.; Tripathi, S.; Mehrotra, G.; Dutta, J. Perspectives for chitosan based antimicrobial films in food applications. Food Chem.
2009, 114, 1173–1182. [CrossRef]

150. Panda, P.; Yang, J.; Chang, Y.; Su, W. Modification of different molecular weights of chitosan by p-Coumaric acid: Preparation,
characterization and effect of molecular weight on its water solubility and antioxidant property. Int. J. Biol. Macromol. 2019, 136,
661–667. [CrossRef]

151. Samadi, F.; Mohammadi, Z.; Yousefi, M.; Majdejabbari, S. Synthesis of raloxifene–chitosan conjugate: A novel chitosan derivative
as a potential targeting vehicle. Int. J. Biol. Macromol. 2016, 82, 599–606. [CrossRef]

152. Liakos, E.V.; Lazaridou, M.; Michailidou, G.; Koumentakou, I.; Lambropoulou, D.A.; Bikiaris, D.N.; Kyzas, G.Z. Chitosan
Adsorbent Derivatives for Pharmaceuticals Removal from Effluents: A Review. Macromol 2021, 1, 130–154. [CrossRef]

153. Barbosa, M.; Pêgo, A.; Amaral, I. Chitosan. Compr. Biomater. 2011, 2, 221–237. [CrossRef]
154. Nurunnabi, M.; Revuri, V.; Huh, K.; Lee, Y. Polysaccharide based nano/microformulation: An effective and versatile oral drug

delivery system. In Nanostructures for Oral Medicine, 1st ed.; Andronescu, E., Grumezescu, A.M., Eds.; Elsevier: Amsterdam, The
Netherlands, 2017; pp. 409–433. ISBN 9780323477215.

155. Jean, M.; Alameh, M.; De Jesus, D.; Thibault, M.; Lavertu, M.; Darras, V.; Nelea, M.; Buschmann, M.; Merzouki, A. Chitosan-based
therapeutic nanoparticles for combination gene therapy and gene silencing of in vitro cell lines relevant to type 2 diabetes. Eur. J.
Pharm. Sci. 2012, 45, 138–149. [CrossRef]

156. Das, B.; Patra, S. Antimicrobials. In Nanostructures for Antimicrobial Therapy, 1st ed.; Ficai, A., Grumezescu, A.M., Eds.; Elsevier:
Amsterdam, The Netherlands, 2017; pp. 1–22. ISBN 9780323461511.
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