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Simple Summary: Since modern positron-emission tomography images are reconstructed with many
nonlinear corrections, there is a need for a comprehensive evaluation method based on human vision
instead of the conventional method using the count number. Image quality evaluation metrics related
to human vision have been actively studied in the field of natural imaging, but there have been
few reports in the field of nuclear medicine. This study’s aim was to verify the appropriateness
of an image quality assessment using a saliency map by comparing it with the gaze data obtained
during evaluation. We calculated the Pearson’s correlation coefficient between the gaze data and the
saliency map. The correlation between the two was high, indicating that saliency mapping is a valid
evaluation method.

Abstract: Recently, the use of saliency maps to evaluate the image quality of nuclear medicine
images has been reported. However, that study only compared qualitative visual evaluations and
did not perform a quantitative assessment. The study’s aim was to demonstrate the possibility of
using saliency maps (calculated from intensity and flicker) to assess nuclear medicine image quality
by comparison with the evaluator’s gaze data obtained from an eye-tracking device. We created
972 positron emission tomography images by changing the position of the hot sphere, imaging time,
and number of iterations in the iterative reconstructions. Pearson’s correlation coefficient between the
saliency map calculated from each image and the evaluator’s gaze data during image presentation
was calculated. A strong correlation (r ≥ 0.94) was observed between the saliency map (intensity)
and the evaluator’s gaze data. This trend was also observed in images obtained from a clinical
device. For short acquisition times, the gaze to the hot sphere position was higher for images with
fewer iterations during the iterative reconstruction. However, no differences in iterations were found
when the acquisition time increased. Saliency by flicker could be applied to clinical images without
preprocessing, although compared with the gaze image, it increased slowly.

Keywords: PET; image quality assessment; saliency; eye-tracking; Monte Carlo simulation

1. Introduction

Image quality evaluation in the field of nuclear medicine is based on objective physical
and subjective visual evaluations. There are advantages and disadvantages to both eval-
uation methods, and the information obtained from each is different. In some cases, it is
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impossible to obtain a high correlation between physical and visual evaluations [1], which
may be because the evaluation criteria and tasks are different, and human visual charac-
teristics are nonlinear [2]. The visual evaluation of medical image quality is important
because diagnosis is based on the subjective judgment of the physician. However, since
the visual evaluation depends on the evaluator, it is often hard to construct an evaluation
environment to obtain accurate results. Therefore, the benefits of establishing a physical
evaluation method that correlates well with the visual evaluation would be significant.
Many human vision-based image quality metrics have been proposed, and saliency, which
represents the ease of causing human visual attention, is one metric [3]. Although there
are many applications of saliency maps in the medical field, such as lesion detection [4,5]
and segmentation [6,7], there are few examples of their use for image quality evaluation in
nuclear medicine, such as Hosokawa’s study [8]. Hosokawa et al. showed that image qual-
ity evaluation using saliency maps can provide an objective evaluation close to subjective
assessments. However, since that was a basic study that used a rectangular phantom in
which cold signals were placed, whether the same results can be obtained under clinical
conditions, such as using an anthropomorphic phantom or actual device, has not been
verified. Additionally, the validity of the evaluation method using the saliency map was
performed by comparing it with a qualitative visual evaluation (three-point scale), and no
quantitative evaluation was performed.

To obtain subconscious information that cannot be verbalized, various biometric data,
such as heartbeat, sweating, and brain measurements, have been used. Gaze measurements
reveal attention and interest. Therefore, comparing the gaze data with saliency mapping is
commonly used for validation [9,10]. Information on potential visual attention is widely
used in marketing [11], sports [12], and the diagnosis of cognitive disorders [13]. A recently
reported application in the field of radiological technology is the analysis of gazing during
mammography between skilled and novice users [14]. We believe that the degrees of
interest shown by visual attention to the target signals in a uniform phantom from medical
images reflect the image quality and do not depend on experience or knowledge.

This study’s aim was to assess the validity of using saliency maps to evaluate the image
quality of positron emission tomography (PET) images obtained by imaging a phantom
simulating a human body. We compared the saliency maps with the gaze data of the
evaluator obtained from an eye-tracking device.

2. Materials and Methods

First, we obtained PET images obtained by a Monte Carlo simulation. We used GATE
version 8.2 (OpenGATE collaboration, http://www.opengatecollaboration.org, accessed
on 30 June 2022) [15] for the simulation code. The simulated PET system was the Discovery
ST Elite (GE Healthcare). The imaging object was a NEMA/IEC body phantom, and one
hot sphere with a diameter of 10 mm was placed in it. The hot spheres were placed in
18 patterns at different distances from the phantom center (Figure 1). The background
radioactivity concentration was set to 2.65 kBq/mL, and the hot sphere was set to four times
that concentration. The acquisition time ranged from 10 to 180 s. The obtained sinograms
were reconstructed by the three-dimensional ordered-subset expectation maximization
(3D-OSEM) method using Customizable and Advanced Software for Tomographic Re-
construction (CASToR, open-source, https://castor-project.org, accessed on 30 June 2022)
version 3.0.1 [16]. For the number of OSEM updates, the subset was fixed at 20, and the
iteration was set from 1 to 3. Scattering and attenuation corrections were applied, but
time-of-flight or point spread function corrections were not applied. The field of view
(FOV) of the reconstructed image was 320 × 320 mm, and the matrix size was 128 × 128.
Gaussian filters with a full width at half maximum (FWHM) of 4 mm were applied in
the axial and trans-axial directions. The imaging was limited to one bed position where
the hot sphere was located at the axial center. We acquired 972 data points with a com-
bination of an imaging time increasing every 10 s (18 patterns), the hot sphere positions
(18 patterns), and the iteration number (3 patterns). Each PET dataset had 47 slice images

http://www.opengatecollaboration.org
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with a thickness of 3.27 mm. We also obtained actual PET images by Discovery ST Elite
(GE Healthcare, Milwaukee, WI, USA). The acquisition time was set to 18 types, ranging
from 10 to 1800 s. The PET images were reconstructed by 3D-OSEM (iteration 2, subset 20).
The FOV was 320 mm × 320 mm, and the matrix size was 128 × 128. Gaussian filters with
a 2-mm FWHM were used.
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Figure 1. Hot sphere placement in the body phantom. A hot sphere with a diameter of 10 mm was
placed at 18 different positions in each image. The hot spheres were placed at radii (r) of 28.6 mm,
57.2 mm, and 85.8 mm from the center of the body phantom. The radioactivity concentration was set
to four times that of the background region.

For the physical evaluation, the percent of contrast (Q10 mm), percent of background
variability (N10 mm), and the ratio of the two (Q10 mm/ N10 mm) were calculated [17]. These
indices were calculated using Equations (1) and (2):

N10 mm =

(
SD10 mm
CB,10 mm

)
× 100 (%) (1)

Q10 mm =

(
CH,10 mm/CB,10 mm − 1

aH/aB − 1

)
× 100 (%) (2)

where SD10 mm is the standard deviation of the background area, CB, 10 mm is the average
pixel value of the background area, and CH, 10 mm is the average pixel value of the hot
sphere placement position. The ratio of aH to aB (aH/aB) is the ratio of the radioactivity
concentration in the hot sphere to the radioactivity concentration in the background region,
which was set to four in this study.

The iLab C++ Neuromorphic Vision Toolkit (iNVT) version 3.1 was used to calculate
the saliency map [18]. The input formats available in iNVT are limited; therefore, the
matrix size of the PET images was changed to 256 × 256 and converted to an 8-bit JPEG
format by ImageJ (National Institutes of Health, Bethesda, MD, USA) [19] version 1.52a
software to be used as the input for the iNVT. The calculation of the saliency map is based
on several features, but in the simulation study, the features of intensity and flicker were
used. Since the salience by intensity increases where the change in pixel values is large,
we preprocessed the body phantom by filling its periphery with the pixel values of the
background region (Figure 2). The pixel values of the background region were obtained
from the slices before and after the slice in which the hot sphere was clearly depicted. The
processed PET image was used as the input, and the pixel values of the hot sphere position
in the saliency map were used. The feature of flicker is used to compute the saliency of
the video and respond to the change in intensity from the previous frame [20]. Therefore,
the process of filling the outside of the phantom was not necessary. The calculation was
performed by considering a series of 2D images as a video. Salience by intensity indicates
prominence within a slice, whereas evaluation by flicker implies prominence in the slice
direction. The PET images obtained from the actual device were processed in the same way.
However, only the intensity features were used to calculate the salience.
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Figure 2. Preprocessing to calculate saliency. Since the salience was calculated to be higher in the
area when the change in pixel value in the image was large, the blank area around the body phantom
was preprocessed to be filled with the pixel value of the background area. Four slices before and
after the slice in which the hot sphere was depicted were used as the background region pixel values.
A binarized mask image (mask image) was used to combine the slices in which the hot sphere
was depicted (processed image). Longdash lines were used to prevent misinterpretation of where
lines intersect.

A Tobii Eye Tracker 4C (Tobii, Sweden) was used as the eye-tracking device. Six
radiographers with 1–15 years of experience working in the nuclear medicine department
were asked to participate in this study, and the method of acquiring gaze data was explained
to them. The evaluator was instructed to find and gaze at the hot sphere, and the training
was conducted with 10 images. The evaluator calibrated the test before the evaluation
to ensure that the gazing location was within the circle of the estimated gazing area,
which corresponded to a size of 55 mm in diameter in the PET image. The estimated
gazing area was hidden during the image quality evaluation. The images presented to the
evaluator contained equal proportions of slices containing hot spheres and slices without
hot spheres for a total of 1944 images. Each image was displayed on a full screen for 0.5 s
in a random order. In consideration of the evaluator’s fatigue, the evaluation was divided
into 36 sessions, and 54 images were continuously displayed per session. The study using
clinical images was conducted in one session due to the small number of images. The
gaze data were acquired at intervals of about 10 ms, and the acquisition time and X and
Y coordinates of the gazing point were recorded. The program used to acquire the raw
data of the gazing points was written in Python 3.6 using the software development kit
provided by Tobii. A 128 × 128 matrix of gaze images was created from the frequency of
the gazing points at each coordinate. The pixel values were displayed as Z-scores. Regions
of interest (ROIs) with a diameter of 55 mm were placed on the gaze image (320 × 320 mm)
centered on the coordinates where the hot sphere was placed, and the average Z-score
was calculated.

R (open-source, http://www.R-project.org, accessed on 30 June 2022) version 4.1.1 [21]
was used for statistical processing to obtain Pearson’s product-moment correlation coeffi-
cient between each indicator. The significance level for all statistical tests was considered to
be 5%.

http://www.R-project.org


Radiation 2022, 2 252

3. Results

Some of the reconstructed PET images, saliency maps (intensity), and black and white
inverted gaze images are shown in Figure 3. The pixel values of the hot sphere location in
the saliency map and gaze image were low at an acquisition time of 10 s but became higher
as the acquisition time increased to 30 s and 180 s. Q10 mm, N10 mm, and Q10 mm/N10 mm, as
well as the max pixel values (intensity and flicker) at the hot sphere position in the saliency
map and the average Z-scores in the ROIs of the gaze image, are shown in Figure 4. The
respective correlation coefficients are presented in Table 1. The Q10 mm value was higher for
images with larger iterations but was almost independent of the acquisition time. However,
the standard deviation tended to decrease as the acquisition time increased. The N10 mm
value was lower in the PET images reconstructed with smaller iterations and decreased
with an increasing acquisition time. The Q10 mm/N10 mm values were higher in the images
reconstructed with iterations 2 and 3 than in the images reconstructed with iteration 1. The
pixel value of the hot sphere position in the saliency map (intensity) showed high values
in the images with small iterations when the acquisition time was short and tended to
increase and saturate when sufficient counts were obtained. The salience by flicker was
higher for smaller iterations and increased with an increasing acquisition time. The error
bars are not shown in Figure 4 because the standard deviation of the gaze images was
large due to large individual differences. The average Z-score within the ROI increased
with the smaller number of iterations when the acquisition time of the PET image was
short (≤90 s). When the acquisition time was >90 s, the Z-score was constant regardless
of the number of iterations. In the correlation between the mean Z-score of the gaze
images and each evaluation indicator, only Q10 mm did not show a significant correlation
in iterations 2 and 3, and N10 mm was the highest. The results of the study are shown in
Figure 5 and Table 2 using clinical images. The trend was similar to that in the simulation
study, although the number of images was small and thus varied widely. In the study using
the actual device, the gaze data and saliency showed a high correlation.
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are calculated from processed PET images, as shown in Figure 2. The longer the acquisition time, the
higher the pixel values of the gaze image and salience map.
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Figure 4. Relationship between imaging time and image quality index. The horizontal axis displays
the imaging time. For each graph, the vertical axis represents the following: (a) percent of contrast
(Q10 mm), (b) percent of background variability (N10 mm), (c) ratio of the percent of background
variability to the percent of contrast (Q10 mm/N10 mm), (d) the pixel value of the saliency map cal-
culated from the intensity (e) and flicker in the hot sphere position, and (f) the Z-score of the gaze
image (Gaze). Each figure shows the results of iterations 1–3 of the ordered-subset expectation
maximization reconstruction.

Table 1. Correlation coefficient and 95% confidence interval between each image quality index. There
is a significant correlation between gaze data and all image quality indices except Q10 mm. The
saliency map and Q10 mm/N10 mm show correlations of similar strengths with the gaze data.

Iteration Indicator
Correlation Coefficient (95% Confidence Interval)

Saliency
(Intensity)

Saliency
(Flicker) Q10 mm N10 mm Q10 mm/N10 mm

1

Gaze 0.942
(0.849, 0.979)

0.802
(0.537, 0.923)

−0.599
(−0.833, −0.184)

−0.959
(−0.985, −0.890)

0.837
(0.608, 0.938)

Saliency (Intensity) 0.947
(0.860, 0.980)

−0.773
(−0.911, −0.478)

−0.994
(−0.998, −0.982)

0.967
(0.912, 0.988)

Saliency (Flicker) −0.888
(−0.958, −0.719)

−0.920
(−0.970, −0.795)

0.991
(0.976, 0.997)

Q10 mm
0.757

(0.449, 0.904)
−0.883

(−0.956, −0.708)

N10 mm
−0.947

(−0.981, −0.861)
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Table 1. Cont.

Iteration Indicator
Correlation Coefficient (95% Confidence Interval)

Saliency
(Intensity)

Saliency
(Flicker) Q10 mm N10 mm Q10 mm/N10 mm

2

Gaze 0.942
(0.847, 0.978)

0.790
(0.511, 0.918)

−0.195 (n.s.)
(−0.607, 0.299)

−0.967
(−0.988, −0.912)

0.835
(0.603, 0.937)

Saliency (Intensity) 0.940
(0.844, 0.978)

−0.436 (n.s.)
(−0.750, 0.039)

−0.991
(−0.997, −0.976)

0.966
(0.909, 0.987)

Saliency (Flicker) −0.645
(−0.855, −0.255)

−0.908
(−0.966, −0.766)

0.985
(0.959, 0.994)

Q10 mm
0.410 (n.s.)

(−0.071, 0.736)
−0.609

(−0.838, −0.199)

N10 mm
−0.943

(−0.979, −0.849)

3

Gaze 0.964
(0.905, 0.987)

0.835
(0.603, 0.937)

0.157 (n.s.)
(−0.334, 0.582)

−0.978
(−0.992, −0.940)

0.890
(0.725, 0.959)

Saliency (Intensity) 0.942
(0.848, 0.979)

−0.010 (n.s.)
(−0.474, 0.459)

−0.982
(−0.993, −0.950)

0.974
(0.929, 0.990)

Saliency (Flicker) −0.244 (n.s.)
(−0.638, 0.252)

−0.888
(−0.958, −0.720)

0.983
(0.955, 0.994)

Q10 mm
−0.022 (n.s.)

(−0.484, 0.449)
−0.173 (n.s.)

(−0.592, 0.320)

N10 mm
−0.936

(−0.976, −0.834)

n.s. = not significant.
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Figure 5. Results obtained from use of the actual device. The relationship between the imaging
time and image quality index is shown. The horizontal axis displays the imaging time. For each
graph, the vertical axis represents the following: (a) percent of contrast (Q10 mm), (b) percent of
background variability (N10 mm), (c) ratio of percent of background variability to percent of contrast
(Q10 mm/N10 mm), (d) pixel value of the saliency map calculated from the intensity, and (e) Z-score of
the gaze image (Gaze).
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Table 2. Correlation coefficient and 95% confidence interval between each image quality index. A
significant correlation is shown between gaze data and saliency, similar to the simulation study.

Indicator
Correlation Coefficient (95% Confidence Interval)

Saliency
(Intensity) Q10 mm N10 mm Q10 mm/N10 mm

Gaze 0.848
(0.630, 0.942)

0.516
(0.065, 0.792)

−0.801
(−0.923, −0.534)

0.832
(0.597, 0.935)

Saliency (Intensity) 0.352 (n.s.)
(−0.137, 0.703)

−0.710
(−0.884, −0.364)

0.910
(0.771, 0.966)

Q10 mm
−0.822

(−0.932, −0.577)
0.517

(0.066, 0.793)

N10 mm
−0.870

(−0.951, −0.679)
n.s. = not significant.

4. Discussion

This study differs from the work by Hosokawa et al. in the following respects [8].
In the current study, the phantom used was not a rectangular phantom but instead a
NEMA/IEC body phantom that simulated the human body. In addition to the simulation
study, PET images obtained from the actual device were used. Flicker was used in addition
to the intensity as features to calculate the saliency map. To demonstrate the validity of the
quality evaluation of the image using the saliency map, we compared it with the evaluator’s
gaze data. The human viewpoint is not fixed to a single point but instead moves slightly.
Therefore, there is no repeatability in the maximum pixel value of the gazing point in the
gaze image. In addition, the gaze data decreased with the duration of blinking during
the evaluation. We adopted the average Z-score in the hot sphere position calculated by
the number of fixations at each position as our evaluation indicator. The results from the
simulation study showed that the correlation between the gaze image and saliency map
(intensity) was >0.94, indicating that they were excellent indicators.

To reduce the influence of individual differences in the pixel values of the gaze image,
it was necessary to obtain the average of many samples, so a Monte Carlo simulation was
used to create the PET images. Those images had better reproducibility than those from
a phantom study using clinical equipment and were less likely to contain errors due to
procedural errors. Alternatively, the problem with that approach is that it does not take the
patient table into account, and the scattered radiation correction is different from that of
the clinical machine. The results obtained from the actual device showed a similar trend to
the results of the simulation experiment.

The PET images were displayed for only 0.5 s to minimize the influence of various
factors, such as experience and knowledge. Reportedly, the initial gaze position immedi-
ately after image presentation follows bottom-up attention [22]. Furthermore, the gaze
immediately after image presentation has been shown to correlate with a saliency map
calculated from the bottom-up in mammographic lesion detection [23]. Our study results
also support that finding.

The saliency map through intensity was created by filling the area outside the body
phantom with background pixel values. We also proposed a method of using the saliency
calculated by flicker that did not require this preprocessing. However, the correlation
between saliency by flicker and the gaze information was lower than the correlation
between saliency by intensity and the gaze information. The process of filling in the
outside body is difficult in the evaluation of clinical images. Although some studies
have used saliency mapping in clinical imaging, the most prominent location in many
clinical PET images is not necessarily the lesion [24]. Normal tissue, inflammation, and
benign lesions may also accumulate FDG and affect its saliency. Not only is quantitative
evaluation difficult, but the salience of the lesion may disappear if the normal areas are
very prominent. Therefore, it is difficult to evaluate the ability of the saliency maps
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calculated from the intensity features in this software to depict lesions present on clinical
images. A method to compute saliency maps from flicker features may solve this problem,
but further improvement is needed. To solve this problem, top-down attention needs
to be considered. However, the method using top-down attention involves a field of
computer-aided detection (CADe). Recently, CADe using a deep convolutional neural
network (DCNN) has been actively studied [25]. Models trained with the evaluator’s eye
data reportedly are more accurate than the general-purpose models proposed for natural
images [26]. Unless the algorithm used is fixed, however, it is impossible to determine
whether the change in results is due to a difference in image quality or in the algorithm.
CADe using a DCNN is in its infancy and changes quickly. We preprocessed the input
images and did not make any changes to the established algorithms.

In this study, conventionally used image quality evaluation indices were also calcu-
lated for comparison. N10 mm had a high negative correlation with the average Z-score of
the gaze target image, but the evaluation was based on the amount of noise in the back-
ground region and did not consider the visibility of the hot sphere. Therefore, changing the
radioactivity concentration of the hot sphere did not change the value. The value of Q10 mm
was constant regardless of the acquisition time, and hence the image quality could not
be evaluated by Q10 mm itself. The explanation for why Q10 mm/N10 mm showed different
changes from the average Z-score and saliency of the gaze image is thought to be that the
gaze image and saliency map were obtained from 8-bit images, whereas Q10 mm/N10 mm
was calculated from 32-bit float images. Since saliency maps have been actively researched
using natural images, algorithms that use 8-bit images as their input are common. Even
though high dynamic range images have been used as input in studies [27,28], 8-bit images
are still commonly used [6,7].

It is unclear if the Q10 mm/N10 mm calculated from a 32-bit image represents the quality
of the medical images a doctor sees.

Recently, the no-reference image quality assessment (NR-IQA) concept has been
extensively studied. Unlike full-reference IQAs, such as the normalized mean squared
error, the NR-IQA is characterized by its ability to perform absolute evaluations. Initially,
the NR-IQA was studied in the field of natural imaging and subsequently applied to many
medical magnetic resonance imaging situations [29,30]. Moreover, applications in the field
of PET are expected. However, it is the noise and distortion of the entire image that is
evaluated and not the ability to accurately describe the lesion. That purpose is different
from the purpose of our study. The most primitive method of Itti’s model was used in this
study, but other established algorithms are also worth a try [31].

5. Conclusions

In this study, we used the saliency map calculated by Itti’s algorithm for image quality
evaluation in nuclear medicine. Itti’s algorithm is an established algorithm and has a clear
calculation method. The validity of the proposed method was demonstrated by comparing
it with the gaze data of the evaluator. Even though the algorithm was designed to calculate
the saliency of the natural images, the low-resolution gray-scale nuclear medicine images
showed the same trend as the gaze images. A strong correlation was observed between the
two, suggesting that salience can be used to evaluate the image quality when a uniform
phantom is used. When attempting to apply this approach to clinical images, although
further work must be performed, its potential is evident in the flicker feature.
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