# Modulational Instability of Ion-Acoustic Waves and Associated Envelope Solitons in a Multi-Component Plasma

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Governing Equations

## 3. Derivation of the NLSE

## 4. Modulational Instability and Envelope Solitons

## 5. Numerical Analysis

## 6. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Ergun, R.E.; Carlson, C.W.; McFadden, J.P.; Mozer, F.S.; Delory, G.T.; Peria, W.; Chaston, C.C.; Temerin, M.; Elphic, R.; Strangeway, R.; et al. FAST satellite wave observations in the AKR source region. Geophy. Res. Lett.
**1998**, 25, 2061. [Google Scholar] [CrossRef] - Temerin, M.; Cerny, K.; Lotko, W.; Mozer, F.S. Observations of double layers and solitary waves in the auroral plasma. Phys. Rev. Lett.
**1982**, 48, 1175. [Google Scholar] [CrossRef] - Shahmansouri, M.; Alinejad, H. Electrostatic wave structures in a magnetized superthermal plasma with two-temperature electrons. Phys. Plasmas
**2013**, 20, 082130. [Google Scholar] [CrossRef] - Rehman, M.A.; Mishra, M.K. Ion-acoustic Gardner solitons in electron-positron-ion plasma with two-electron temperature distributions. Phys. Plasmas
**2016**, 23, 012302. [Google Scholar] [CrossRef] - Kourakis, I.; Shukla, P.K. Ion-acoustic waves in a two-electron-temperature plasma: Oblique modulation and envelope excitations. J. Phys. A Math. Gen.
**2003**, 36, 11901. [Google Scholar] [CrossRef][Green Version] - Alinejad, H.; Mahdavi, M.; Shahmansouri, M. Modulational instability of ion-acoustic waves in a plasma with two-temperature kappa-distributed electrons. Astrophys. Space Sci.
**2014**, 352, 0571. [Google Scholar] [CrossRef] - Ali, R.; Saha, A.; Chatterjee, P. Dynamics of the positron acoustic waves in electron-positron-ion magnetoplasmas. Indian J. Phys.
**2017**, 91, 689. [Google Scholar] [CrossRef] - Panwar, A.; Ryu, C.M.; Bains, A.S. Oblique ion-acoustic cnoidal waves in two temperature superthermal electrons magnetized plasma. Phys. Plasmas
**2014**, 21, 0122105. [Google Scholar] [CrossRef][Green Version] - Shalini; Saini, N.S.; Misra, A.P. Modulation of ion-acoustic waves in a nonextensive plasma with two-temperature electrons. Phys. Plasmas
**2015**, 22, 092124. [Google Scholar] [CrossRef][Green Version] - Baluku, T.K.; Hellberg, M.A. Ion acoustic solitons in a plasma with two-temperature kappa-distributed electrons. Phys. Plasmas
**2012**, 19, 012106. [Google Scholar] [CrossRef] - Baluku, T.K.; Hellberg, M.A.; Mace, R.L. Electron acoustic waves in double–kappa plasmas: Application to Saturn’s magnetosphere. J. Geophys. Res.
**2011**, 116, A04227. [Google Scholar] [CrossRef][Green Version] - Chen, F.F. Introduction to Plasma Physics and Controlled Fusion, 3rd ed.; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Chowdhury, N.A.; Mannan, A.; Hasan, M.M.; Mamun, A.A. Heavy ion-acoustic rogue waves in electron-positron multi-ion plasmas. Chaos
**2017**, 27, 093105. [Google Scholar] [CrossRef] - Chowdhury, N.A.; Hasan, M.M.; Mannan, A.; Mamun, A.A. Nucleus-acoustic envelope solitons and their modulational instability in a degenerate quantum plasma system. Vacuum
**2018**, 147, 31. [Google Scholar] [CrossRef][Green Version] - Jahan, S.; Haque, M.N.; Chowdhury, N.A.; Mannan, A.; Mamun, A.A. Ion-acoustic rogue waves in double pair plasma having non-extensive particles. Universe
**2021**, 7, 63. [Google Scholar] [CrossRef] - Paul, S.N.; Chowdhury, A.R.; Paul, I. Modulation instability of bright envelope soliton and rogue waves in ultra-relativistic degenerate dense electron-ion-positron plasma. Plasma Phys. Rep.
**2019**, 45, 1011. [Google Scholar] [CrossRef] - Sittler, E.C.; Ogilvie, K.W.; Scudder, J.D. Survey of low-energy plasma electrons in Saturn’s magnetosphere: Voyagers 1 and 2. J. Geophys. Res.
**1983**, 88, 8847. [Google Scholar] [CrossRef][Green Version] - Young, D.T.; Berthelier, J.-J.; Blanc, M.; Burch, J.L.; Bolton, S.; Coates, A.J.; Crary, F.J.; Goldstein, R.; Grande, M.; Hill, T.W.; et al. Composition and dynamics of plasma in Saturn’s magnetosphere. Science
**2005**, 307, 1262. [Google Scholar] [CrossRef][Green Version] - Pottelette, R.; Ergun, R.E.; Treumann, R.A.; Treumann, R.A.; Berthomier, T.M.; Carlson, C.W.; McFadden, J.P.; Roth, I. Modulated electron-acoustic waves in auroral density cavities: FAST observations. Geophys. Res. Lett.
**1999**, 26, 2629. [Google Scholar] [CrossRef] - Vasyliunas, V.M. A survey of low-energy electrons in the evening sector of the magnetosphere with OGO 1 and OGO 3. J. Geophys. Res.
**1968**, 73, 2839. [Google Scholar] [CrossRef] - Ahmed, N.; Mannan, A.; Chowdhury, N.A.; Mamun, A.A. Electrostatic rogue waves in double pair plasmas. Chaos
**2018**, 28, 123107. [Google Scholar] [CrossRef][Green Version] - Noman, A.A.; Islam, M.K.; Hassan, M.; Banik, S.; Chowdhury, N.A.; Mannan, A.; Mamun, A.A. Dust-ion-acoustic rogue waves in a dusty plasma having super-thermal electrons. Gases
**2021**, 1, 106–116. [Google Scholar] [CrossRef] - Heera, N.M.; Akter, J.; Tamanna, N.K.; Chowdhury, N.A.; Rajib, T.I.; Sultana, S.; Mamun, A.A. Ion-acoustic shock waves in a magnetized plasma featuring super-thermal distribution. AIP Adv.
**2021**, 11, 055117. [Google Scholar] [CrossRef] - Kourakis, I.; Shukla, P.K. Exact theory for localized envelope modulated electrostatic wavepackets in space and dusty plasmas. Nonlinear Proc. Geophys.
**2005**, 12, 407. [Google Scholar] [CrossRef] - Sultana, S.; Kourakis, I. Electrostatic solitary waves in the presence of excess superthermal electrons: Modulational instability and envelope soliton modes. Plasma Phys. Control. Fusion
**2011**, 53, 045003. [Google Scholar] [CrossRef][Green Version] - Rahman, M.H.; Chowdhury, N.A.; Mannan, A.; Mamun, A.A. Dust-acoustic rogue waves in an electron-positron-ion-dust plasma medium. Galaxies
**2021**, 9, 31. [Google Scholar] [CrossRef] - Sikta, J.N.; Chowdhury, N.A.; Mannan, A.; Mamun, A.A. Electrostatic dust-acoustic rogue waves in an electron depleted dusty plasma. Plasma
**2021**, 4, 230–238. [Google Scholar] [CrossRef] - Schippers, P.; Blanc, M.; Andre, N.; Dandouras, I.; Lewis, G.R.; Gilbert, L.K.; Persoon, A.M.; Krupp, N.; Gurnett, D.A.; Coates, A.J.; et al. Multi-instrument analysis of electron populations in Saturn’s magnetosphere. J. Geophys. Res.
**2008**, 113, A07208. [Google Scholar] [CrossRef] - Gaffey, J.D.; LaQuey, R.E. Upper hybrid resonance in the magnetosphere. J. Geophys. Res.
**1976**, 81, 595. [Google Scholar] [CrossRef] - Bostrom, R.; Gustafsson, G.; Holback, B.; Holmgren, G.; Koskinen, H.; Kintner, P. Characteristics of solitary waves and weak double layers in the magnetospheric plasma. Phys. Rev. Lett.
**1988**, 61, 82. [Google Scholar] [CrossRef] - Nishida, Y.; Nagasawa, T. Excitation of ion-acoustic rarefactive solitons in a two-electron temperature plasma. Phys. Fluids
**1986**, 29, 345. [Google Scholar] [CrossRef] - Kenser, J. Axisymmetric, wall-stabilized tandem mirrors. Nucl. Fusion
**1985**, 25, 275. [Google Scholar] - Sheridan, T.E.; Goeckner, M.J.; Goree, J. Observation of two-temperature electrons in a sputtering magnetron plasma. J. Vac. Sci. Tech. A
**1991**, 9, 688. [Google Scholar] [CrossRef] - Baboolal, S.; Bharuthram, R.; Hellberg, M.A. Arbitrary-amplitude theory of ion-acoustic solitons in warm multi-fluid plasmas. J. Plasma Phys.
**1989**, 41, 341. [Google Scholar] [CrossRef] - Krall, N.A.; Trivelpiece, A.W. Principles of Plasma Physics; McGraw-Hill: New York, NY, USA, 1973. [Google Scholar]

**Figure 1.**The bright (left panel) and dark (right panel) envelope solitons for $k=1.6$ and $k=1.2$, respectively, along with $\eta =0.07$, $\rho =1.2$, $\varrho =1.5$, $\kappa =2$, ${\mu}_{1}=0.8$, ${\mu}_{2}=0.3$, $\tau =0$, ${\psi}_{0}=0.0005$, $U=0.2$, and ${\mathsf{\Omega}}_{0}=0.4$.

**Figure 2.**Plot of $P/Q$ vs. k for the change of $\eta $ (left panel) and ${\mu}_{1}$ (right panel) when $\rho =1.2$, $\varrho =1.5$, $\kappa =2$, and ${\mu}_{2}=0.5$.

**Figure 3.**Plot of $P/Q$ vs. k for the change of $\rho $ (left panel) and $\kappa $ (right panel) when $\eta =0.07$, $\varrho =1.5$, ${\mu}_{1}=0.7$, and ${\mu}_{2}=0.5$.

R (${\mathit{R}}_{\mathit{s}}$) | ${\mathit{T}}_{\mathit{e}2}$ (eV) | ${\mathit{T}}_{\mathit{e}1}$ (eV) | ${\mathit{n}}_{\mathit{e}2}$ (cm^{−3}) | ${\mathit{n}}_{\mathit{e}1}$ (cm^{−3}) |
---|---|---|---|---|

5.40 | 1.8 | 300 | 10.5 | 0.02 |

6.30 | 2.0 | 400 | 10.5 | 0.01 |

9.80 | 8.0 | 1100 | 2.5 | 0.07 |

12.0 | 6.0 | 1200 | 1.0 | 0.11 |

13.1 | 10.2 | 1000 | 0.21 | 0.18 |

14.0 | 30 | 900 | 0.15 | 0.10 |

15.2 | 70 | 900 | 0.25 | 0.10 |

17.8 | 28 | 1000 | 0.15 | 0.07 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Banik, S.; Heera, N.M.; Yeashna, T.; Hassan, M.R.; Shikha, R.K.; Chowdhury, N.A.; Mannan, A.; Mamun, A.A.
Modulational Instability of Ion-Acoustic Waves and Associated Envelope Solitons in a Multi-Component Plasma. *Gases* **2021**, *1*, 148-155.
https://doi.org/10.3390/gases1030012

**AMA Style**

Banik S, Heera NM, Yeashna T, Hassan MR, Shikha RK, Chowdhury NA, Mannan A, Mamun AA.
Modulational Instability of Ion-Acoustic Waves and Associated Envelope Solitons in a Multi-Component Plasma. *Gases*. 2021; 1(3):148-155.
https://doi.org/10.3390/gases1030012

**Chicago/Turabian Style**

Banik, Subrata, Nadiya Mehzabeen Heera, Tasfia Yeashna, Md. Rakib Hassan, Rubaiya Khondoker Shikha, Nure Alam Chowdhury, Abdul Mannan, and A A Mamun.
2021. "Modulational Instability of Ion-Acoustic Waves and Associated Envelope Solitons in a Multi-Component Plasma" *Gases* 1, no. 3: 148-155.
https://doi.org/10.3390/gases1030012