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Abstract: Resveratrol and its derivative piceid exhibit a wide spectrum of health-promoting bioactivi-
ties. A resveratrol-enriched variety of Dongjin rice (DJ526) has been developed by transfection of
a resveratrol biosynthesis gene, and increased resveratrol content has been confirmed in seeds fol-
lowing germination. In the current study, these resveratrol-enriched seeds were induced to produce
callus, and callus extracts were evaluated for in vitro anti-inflammatory activity. Callus cultures con-
tained greater amounts of resveratrol and piceid than DJ526 seeds, and treatment with DJ526 callus
extract significantly reduced the lipopolysaccharide (LPS)-induced production of proinflammatory
mediators nitric oxide and prostaglandin E2 by RAW264.7 macrophages. The inflammation-related
nuclear factor kappa B and mitogen-activated protein kinase pathways were also inhibited in DJ526
callus extract-treated RAW264.7 cells, resulting in downregulation of proinflammatory factor genes
COX-2, iNOS, IL-1β, IL-6, and TNF-α. Expression of the LPS-binding toll-like receptor-4 was also
markedly reduced in DJ526 callus extract-treated cells compared to DJ callus extract-treated cells.
These findings demonstrate increased resveratrol and piceid content by callus culture of DJ526 rice
seeds and the potent anti-inflammatory activity of resveratrol-enriched callus extract.
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1. Introduction

Inflammation is a protective immune response initiated by a host cell against harmful
stimuli such as pathogens, the contents of damaged cells, and various chemical and physical
irritants [1]. In most tissues, inflammation is initiated by resident macrophages, which
recognize various pathogen- and damage-associated molecular patterns, transition to
an activated phenotype, and subsequently secrete proinflammatory factors that drive
subsequent inflammatory pathways [2]. These responses are mediated by surface receptor
activation and downstream activation of the nuclear factor kappa B (NF-κB) and mitogen-
activated protein kinase (MAPK) pathways [3]. Bacterial lipopolysaccharide (LPS) is a
potent activator of macrophages [4,5] and is widely used for experimental activation of
inflammatory pathways [6–9]. Lipopolysaccharide binds to toll-like receptor-4 (TLR-4),
leading to the activation of NF-κB and MAPK [3,10], which in turn promotes the synthesis
and secretion of proinflammatory mediators (cytokines, chemokines, and enzymes) such as
prostaglandin E2 (PGE2), nitric oxide (NO), interleukin (IL)-1β, IL-6, tumor necrosis factor
(TNF)-α, and cyclooxygenase-2 (COX-2) [3,11,12].

Resveratrol is a natural polyphenol found in grapes [13], various berries [14],
peanuts [15], and plums [16]. Resveratrol and its derivative piceid have been demon-
strated to promote multiple processes beneficial to health, including antioxidant [17,18],
antifungal, antibacterial [19], anticancer [20,21], and anti-inflammatory activities [22–24].
Moreover, these effects contribute to the observed efficacy of these compounds in models
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of Alzheimer’s disease [25,26] and Parkinson’s disease [27]. Resveratrol has been demon-
strated to be in vitro and in vivo anti-inflammatory in several studies. Zhong et al. [28]
reported that treatments with resveratrol significantly decreased the production of NO and
PGE2 in LPS-stimulated BV-2 cells. In addition, the expression of inflammatory-associated
cytokines (iNOS, IL-1β, COX-2, and TNF-α) was also suppressed in LPS-stimulated BV-2
cells when supplemented with resveratrol [28]. In LPS-stimulated monocytes, treatment
with resveratrol led to inhibition of LPS-induced inflammatory mediators such as TNF-α,
IL-8, and monocyte chemoattractant protein-1 (MCP-1) [29]. Moreover, an in vivo mouse
model exhibited that the long-term treatment of resveratrol in aged mice is able to decrease
acute inflammatory stimuli by LPS [30]. In 2013, the resveratrol biosynthesis gene Arachis
hypogaea stilbene synthase (STS) from the pods of the peanut cultivar Palkwang was intro-
duced into Dongjin rice (DJ) to create resveratrol-enriched rice [31]. The AhSTS1 cDNA
was inserted between the BamHI and SacI sites under the control of the Ubi1 promoter
of the binary vector pSB22. The seed extract from this genetically modified rice (DJ526)
was subsequently demonstrated to exert potent and dose-dependent anti-inflammatory
activities in LPS-stimulated RAW264.7 macrophages [32]. In addition, increasing the resver-
atrol content in rice seed via germination enhanced anti-inflammatory activities compared
to nongerminated DJ526 rice seed [32]. Cho and Lim [33] reported that the change in
phenylalanine ammonia-lyase and cell wall peroxidase during the gemination of brown
rice led to an increase in phenolic acid composition. The increase in phenolic acid content
resulted in an enhancement in the antioxidant activity of brown rice. Interestingly, the
antioxidant activity of phenolic acid in the shoot fraction was significantly higher than the
remaining kernel fraction. From this information, we hypothesized that the resveratrol
content would increase in DJ526 rice callus in comparison to the DJ526 rice seed (both
germinated and nongerminated seeds). However, the anti-inflammatory activity of resvera-
trol from the DJ526 rice callus extract needs to be investigated. The increase in resveratrol
content in DJ526 rice callus must remain an inflammatory defense activity as well. The
resveratrol content of rice seeds may vary annually depending on the growing area or
growing environment (light conditions, temperature, rainfall, etc.). Therefore, we have
developed the DJ526 rice callus for plant factories to develop a biomaterial with a stable
resveratrol content. The current study aimed to further enhance the resveratrol content of
DJ526 rice seed by callus induction and evaluate the anti-inflammatory activity of callus
extracts on LPS-stimulated RAW264.7 cells.

2. Materials and Methods
2.1. Callus Culture

Wild-type DJ and DJ526 calluses were generated from the corresponding rice seeds
according to the method of Khan et al. [34]. Briefly, seeds were sterilized with 70% (v/v)
ethanol followed by 2% sodium hypochlorite, washed several times with sterilized distilled
water, and induced by inoculation in 2N6 medium at 25 ◦C for 3 weeks under darkness.
Calluses were then cultured in 2MS-NO3-free liquid medium for 10 days before collection.

2.2. Extraction of Resveratrol-Enrich Compound from Rice Callus

Dried calluses were ground, and a resveratrol-enriched extract was prepared as previ-
ously described [32,35]. Briefly, callus samples were incubated in 80% methanol, filtered
through 5 µm filter paper, concentrated by rotary evaporation, and lyophilized using a
freeze-dry system. The lysophilized samples were dissolved in dimethyl sulfoxide (DMSO)
at 10, 25, 50, and 100 mg/mL for experiments.

2.3. Quantification of Piceid and Resveratrol Content Using High-Performance Liquid
Chromatography (HPLC) Analysis

Piceid and resveratrol contents in rice callus extracts were determined according
to a previously described method [32,36]. Briefly, sample powder was mixed with 80%
methanol and sonicated at room temperature for 30 min. The mixture was then centrifuged
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at 10,000× g and 4 ◦C for 5 min, and the supernatant was collected, passed through
a 0.2 µm filter, and analyzed for piceid and resveratrol content using a Waters e2695
HPLC system (Waters, Milford, MA, USA). Contents were quantified by comparison to a
standard curve (Figure S1) generated from known concentrations using Empower software
(Empower® 3; Waters).

2.4. RAW264.7 Cell Culture

Macrophages of the RAW264.7 line were acquired from the Korean Cell Line Bank
(Seoul, Republic of Korea) and maintained at 37 ◦C in RPMI-1640 medium (Gibco™) sup-
plemented with phenol red, 10% fetal bovine serum (FBS; Gibco™, Thermo Fisher Scientific,
Inc., Waltham, MA, USA), and penicillin/streptomycin (1%; Hyclone Laboratories, Logan,
UT, USA) under a 5% CO2 atmosphere. For treatment, this medium was replaced with
RPMI-1640 medium (Gibco™) without phenol red and supplemented with 1% FBS and 1%
penicillin/streptomycin.

2.5. Cell Viability and Nitric Oxide Production Analysis

Cells were counted using a hemacytometer and seeded in 96-well plates at 105 cells/well,
then cultured at 37 ◦C under a 5% CO2 atmosphere for 24 h prior to treatment. Extracts
were prepared at the indicated concentrations (10, 25, 50, and 100 µg/mL) in the treatment
medium and applied to the indicated wells. Aspirin (Sigma-Aldrich, St. Louis, MO,
USA) was prepared in treatment medium at 200 µg/mL and applied as the positive
control [37,38]. After the indicated treatment for 1 h, the cells were stimulated with LPS
at the final concentration of 1 µg/mL (excluding the nontreatment group, which received
the same volume of treatment medium). The plate was incubated at 37 ◦C under a 5%
CO2 atmosphere for 24 h. The culture medium was collected, and nitric oxide (NO)
production was measured using the Griess reagent (Sigma-Aldrich), which was prepared in
the deionized water at a concentration of 40 mg/mL (working solution). Briefly, the culture
medium was mixed with Griess reagent working solution at 1:1 (v/v) in 96-well plates,
and the mixtures were incubated at room temperature for 15 min in the dark. Absorbance
at 540 nm was measured, and NO production was quantified using a standard curve for
sodium nitrite solution (Figure S2).

Viable cells were then counted by adding 110 µL of the EZ-Cytox Cell Viability Assay
Kit working solution (10-fold dilution in 1× PBS; DoGenBio, Seoul, Republic of Korea) to
each well. After 4 h of incubation at 37 ◦C, 100 µL of the solution was transferred to new
96-well plates, and absorbance was measured at 450 nm. Cell viability was calculated by
comparing the absorbance value of each treatment group to that of parallel control cultures
incubated in treatment medium without extract.

2.6. RNA Isolation, RNA Quantification, and cDNA Synthesis

Cells were seeded as described in 24-well plates at 500,000/well, incubated for 24 h
in maintenance medium, and then incubated in treatment medium with the indicated
concentration of extract for 1 h prior to stimulation with 1 µg/mL LPS (or vehicle as a
control). After 6 h of stimulation, cells were washed twice with 1× PBS and then treated
with TriZol reagent™ (Invitrogen, Waltham, MA, USA) at 500 µL/well for RNA extraction.
Chloroform (200 µL) was added to each tube. The tubes were centrifuged at 13,000 rpm at
4 ◦C for 10 min. The upper phrase of the solution was collected. Total RNA was precipitated
with 100% isopropanol at 4 ◦C for 30 min, and the pellet was washed three times with ice-
cold 70% ethanol. The RNA pellet was then dissolved in nuclease-free water and stored at
−80 ◦C until analysis. Total RNA was quantified using a SpectraMax® ABS Plus Microplate
Reader (Molecular Devices, San Jose, CA, USA) by measuring the 260 nm absorbance, and
quality was checked by measuring the 260 nm to 280 nm (A260:A280) absorbance ratio and
the A260:A230 ratio. Only samples with ratios of 1.800–2.000 for A260:A280 and A260:A230
were processed further (Table 1). First-strand cDNA was synthesized using 1000 ng of total
RNA and a Power cDNA Synthesis Kit (Intron Biotechnology, Seongnam-si, Republic of
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Korea). The cDNA was prepared at 5 ng/µL in nuclease-free water for measurement of
inflammation-related mRNA expression levels by real-time quantitative polymerase chain
reaction (RT-qPCR).

Table 1. The quantity and quality of extracted RNA from each treatment.

Treatment Concentration A260:A280 A260:A230 RNA Concentration (ng/µL) CV *

Nontreatment − 1.888 1.908 394.05 ± 9.55 2.42

DMSO 0.1% 1.966 1.877 547.81 ± 8.23 1.50

DJ 10 µg/mL 1.927 1.839 453.12 ± 11.64 2.57

DJ 25 µg/mL 1.997 1.955 521.39 ± 10.57 2.03

DJ 50 µg/mL 1.980 1.925 537.57 ± 12.12 2.26

DJ 100 µg/mL 1.912 1.990 1033.92 ± 44.85 4.34

DJ526 10 µg/mL 1.948 1.899 497.55 ± 11.60 2.33

DJ526 25 µg/mL 1.927 1.813 450.40 ± 12.55 2.79

DJ526 50 µg/mL 1.882 1.956 551.36 ± 19.13 3.47

DJ526 100 µg/mL 1.876 1.893 441.44 ± 14.03 3.18

Aspirin 200 µg/mL 1.992 1.930 548.85 ± 13.80 2.51

* The coefficient of variation (CV) is the ratio of the standard deviation to the mean. The lower the value of the
coefficient of variation, the more precise the estimate.

2.7. Measurement of mRNA from Inflammatory Genes by RT-qPCR

The mRNA levels of proinflammatory mediators COX-2 and iNOS, cytokines IL-1β,
IL-6, and TNF-α, and the LPS receptor toll-like receptor-4 (TLR-4) were measured using
RealMOD™ Green W2 2× qPCR Mix (Intron Biotechnology, Seongnam-si, Republic of
Korea) and a CFX Connect Real-Time PCR System (Bio-Rad, Hercules, CA, USA). Each
20-µL PCR reaction mixture consisted of 5 ng cDNA template and 0.375 M of each primer
(Table 2). The thermocycle conditions for PCR are presented in Table 3. β-actin was used as
the reference gene. Expression levels were calculated as fold-changes relative to parallel
control groups treated with treatment medium alone using CFX Maestro software (Bio-Rad
CFX Maestro 1.1).

Table 2. The primer sets used for RT-qPCR.

Gene Nucleotide Sequence (5′−3′) Accession Number Target Size (bp)

COX-2 Forward primer: 1409-AGAAGGAAATGGCTGCAGAA-1428
Reverse primer: 1602-GCTCGGCTTCCAGTATTGAG-1583 NM_011198.5 194

iNOS Forward primer: 185-TTCCAGAATCCCTGGACAAG-204
Reverse primer: 364-TGGTCAAACTCTTGGGGTTC-345 BC062378.1 180

IL-1β
Forward primer: 531-GGGCCTCAAAGGAAAGAATC-550
Reverse primer: 713-TACCAGTTGGGGAACTCTGC-694 NM_008361.4 183

IL-6 Forward primer: 33-AGTTGCCTTCTTGGGACTGA-52
Reverse primer: 223-CAGAATTGCCATTGCACAAC-204 NM_031168.2 191

TNF-α Forward primer: 1-ATGAGCACAGAAAGCATGATC-21
Reverse primer: 276-TACAGGCTTGTCACTCGAATT-256 D84199.2 276

TLR-4 Forward primer: 2281-CGCTCTGGCATCATCTTCAT-2300
Reverse primer: 2498-GTTGCCGTTTCTTGTTCTTCC-2478 NM_021297.3 218

β-actin Forward primer: 605-CCACAGCTGAGAGGGAAATC-624
Reverse primer: 797-AAGGAAGGCTGGAAAAGAGC-778 NM_007393.5 193

Based on the nucleotide position of coding sequences.
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Table 3. PCR conditions for estimating mRNA expression levels.

Process Temperature Time Cycle

Predenaturation 95 ◦C 10 min 1 cycle

Denaturation 95 ◦C 20 s

40 cyclesAnnealing 60 ◦C 20 s

Extension 72 ◦C 30 s

Final extension 72 ◦C 5 min 1 cycle

2.8. Prostaglandin E2 (PGE2) Production

The culture medium was collected following the indicated treatment and centrifuged
at 3000 rpm for 10 min at room temperature. The PGE2 concentration in the supernatant
was measured using an enzyme-linked immunosorbent assay kit (ADI900-001; Enzo Life
Sciences, Farmingdale, NY, USA), and PGE2 production was calculated using a standard
curve provided with the kit (Figure S3).

2.9. Western Blot Analysis

Protein was extracted from each treated culture using a radioimmunoprecipitation
assay (RIPA) buffer (Geneall Biotechnology, Seoul, Republic of Korea) supplemented with
1× Protease Inhibitor Cocktail Kit 5 (Bio-Medical Science Co., Ltd., Seoul, Republic of
Korea). Lysate samples were centrifuged at 13,000 rpm and 4 ◦C for 30 min, and the
total protein concentration in the supernatant was quantified using a Bradford reagent
(Sigma-Aldrich). Proteins (30 µg per treatment) were separated on 10% polyacrylamide gels
and transferred onto nitrocellulose membranes (Immobilon®-P Transfer Membrane; Merck
Millipore, Burlington, MA, USA). Membranes were stained with Ponceau solution for
5 min at room temperature, washed several times with tris-buffered saline containing 0.1%
tween® 20 detergent (TBST) until the TBST no longer changed the band color, and blocked
by incubation in TBST with 5% (w/v) skim milk at room temperature for 2 h. Membranes
were then incubated in a blocking solution with antibodies targeting p-ERK 1/2 (1:2000;
Cell Signaling Technology, Danvers, MA, USA), p-p38 MAPK (1:2000; Cell Signaling
Technology), p-NF-κB p65 (1:2000; Cell Signaling Technology), ERK 1/2 (1:1000; Santa Cruz
Biotechnology, Dallas, TX, USA), p38 MAPK (1:1000; Santa Cruz Biotechnology), NF-κB
p65 (1:1000; Santa Cruz Biotechnology), and glyceraldehyde-3-phosphate dehydrogenase
(GADPH; 1:5000; Santa Cruz Biotechnology) at 4 ◦C overnight. Blotted membranes were
washed in TBST with agitation at room temperature and then incubated in blocking solution
containing secondary antibody [goat antirabbit IgG (H + L)-horseradish peroxidase (1:5000;
GenDEPOT, Barker, TX, USA) or m-IgG® BP-horseradish peroxidase (1:5000; Santa Cruz
Biotechnology)] at room temperature for 2 h. After being washed with TBST, membranes
were incubated with Clarity™ Western ECL Substrate (Bio-Rad) at room temperature for
10 min, and signals were recorded using ChemiDoc (Bio-Rad). Densitometric analyses
were conducted using Image Lab software (version 6.0.0; Bio-Rad).

2.10. Statistical Analysis

All data are presented as the mean ± standard deviation. Treatment group means
were compared by one-way analysis of variance followed by post hoc Duncan’s multiple
range tests. A p < 0.05 was considered significant for all tests, and all calculations were
performed using Statistix 8.1 (Statistix, Tallahassee, FL, USA).

3. Results
3.1. Piceid and Resveratrol Contents in Rice Callus Extracts

The piceid and resveratrol contents in the extracts of DJ and DJ526 callus extracts were
measured by HPLC (Figure S1). The peak retention time for piceid was 16.688 min, while
that of resveratrol was 27.182 min. Neither peak was detected in extract samples from DJ
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callus (Figure 1). In DJ526 extract, the mean (±SD) piceid content was 85.43 ± 3.44 µg/g
dry weight, and that of resveratrol was 3.94 ± 0.02 µg/g dry weight. Thus, substantial
amounts of these compounds remain in DJ526 rice callus after seed induction.
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Figure 1. Piceid and resveratrol enrichment in DJ526 rice callus extract as measured by high-
performance liquid chromatography (HPLC). Sample chromatograms show that piceid and resvera-
trol are undetectable in DJ rice callus extract (upper left panel) but are abundant in DJ526 rice callus
extract (lower left panel).

3.2. Effects of Resveratrol-Enriched Rice Callus Extract on the Viability of LPS-Stimulated
RAW264.7 Cells

The potential cytotoxic effects of rice callus extracts on LPS-stimulated RAW264.7
cells were examined at extract concentrations ranging from 10 to 100 µg/mL (Figure 2).
Treatment with LPS alone modestly but significantly increased the number of viable cells
(p < 0.05) compared to parallel cultures of untreated cells (set to 100%), and these increases
were maintained in cultures additionally treated with 10 µg/mL DJ callus extract and both
10 and 25 µg/mL DJ526 callus extract (p < 0.05). Further, cell viability did not fall below
control (the baseline) in the presence of 100 µg/mL DJ or DJ526 extract, indicating no
toxicity within the tested range. In addition, cell viability was not reduced by cotreatment
with 200 µg/mL aspirin plus LPS compared to 1 µg/mL LPS alone and was still above
baseline (p < 0.05). These findings indicate that extract concentrations of 10, 25, 50, and
100 µg/mL can be safely used for potential suppression of LPS-induced inflammatory
activities in RAW264.7 cells.
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3.3. Resveratrol-Enriched Rice Callus Extract Inhibited LPS-Induced NO Production by
RAW264.7 Cells

Treatment of RAW264.7 cells with 1 µg/mL LPS markedly enhanced NO production
(Figure 3), and this inflammatory response was substantially and dose-dependently reduced
by resveratrol-enriched rice callus extract (DJ526) (all p < 0.05). In fact, the maximum
inhibition at 100 µg/mL was comparable to that of 200 µg/mL aspirin (administered
as a positive control). Moreover, this dose-dependent anti-inflammatory effect of DJ526
callus extract was markedly greater than that of DJ callus extract at all equivalent doses.
These results strongly suggest that piceid and resveratrol enrichment contribute to the
anti-inflammatory efficacy of rice callus extract.
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mean ± standard deviation. The increase in NO production induced by LPS was dose-dependently
inhibited by DJ callus extract and more substantially by DJ526 callus extract enriched in resveratrol
and piceid. The NO production by cells treated with LPS alone (“a”) is the reference value for
statistical comparison. Letters (a–h) indicate significant differences (p < 0.05) between treatments
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3.4. Resveratrol-Enriched Rice Callus Extract Suppressed LPS-Induced Upregulation of Multiple
Proinflammatory Genes in RAW264.7 Cells

Treatment with DJ rice callus extract also dose-dependently reduced LPS-induced
upregulation of multiple proinflammatory genes (all p < 0.05), including the inflammatory
mediator genes iNOS and COX-2, proinflammatory cytokine genes IL-1β, IL-6, and TNF-α,
and the LPS receptor gene TLR-4 compared to untreated controls (Figure 4). Consistent with
effects on NO, DJ526 callus extract evoked markedly greater downregulation of these genes,
including iNOS, at all concentrations compared to DJ callus extract (p < 0.05). Moreover, this
anti-inflammatory effect was equivalent to or greater than that of aspirin. Thus, enrichment
of resveratrol and piceid in rice callus extract substantially enhanced the suppression of
LPS-induced inflammatory responses by RAW264.7 cells.
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Figure 4. DJ and DJ526rice callus extract potently decreased the lipopolysaccharide-induced upreg-
ulation of proinflammatory genes in RAW264.7 cells. Pretreatment with DJ526 rice callus extract
substantially reversed the LPS-evoked upregulation of (a) iNOS, (b) COX-2, (c) IL-1β, (d) IL-6,
(e) TNF-α, and (f) TLR-4. The experiment was performed in triplicate (n = 3 for each replicate). Data
are presented as mean ± standard deviation. The gene expression levels of LPS-treated cells (“a”) are
the reference values for statistical comparison. Letters (a–g) indicate significant differences (p < 0.05)
between treatments (where a > b > c > d > e > f > g).

3.5. Resveratrol-Enriched Rice Callus Extract Reduced the Production of PGE2 by LPS-Stimulated
RAW264.7 Cells

Treatment with these extracts also significantly reduced LPS-evoked PGE2 production
(p < 0.05) in RAW264.7 cells (Figure 5), consistent with downregulation of COX-2, an
enzyme required for PGE2 synthesis. Again, the DJ526 callus extract was markedly more
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potent than the DJ callus extract at equivalent concentrations, and the maximum effect was
comparable to that of aspirin.
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(“a”) is the reference value for statistical comparison. Letters (a–i) indicate significant differences
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3.6. Resveratrol-Enriched Rice Callus Extract Inhibited MAPK and NF-κB Pathway Activation in
LPS-Stimulated RAW264.7 Cells

Stimulation of RAW264.7 cells with LPS also activated inflammation-associated MAPK
pathways, as evidenced by increased phosphorylation of MAPK isoforms ERK-1/2 (p-ERK-
1/2) and p38 (p-p38) (Figure 6). Further, LPS stimulation also increased phosphorylation of
the NF-κB active unit p65 (p-NF-κB p65). Consistent with downregulation of inflammation-
associated genes (Figure 4), many of which are known targets of MAPK and NF-κB signal-
ing, these phosphorylation events were dose-dependently reduced by DJ rice callus extract
and more potently by DJ526 rice callus extract. Also consistent with downregulation of
target genes, the maximum effect of DJ526 rice callus extract was comparable to that of
aspirin. Indeed, 10–100 µg/mL DJ526 rice callus extract suppressed LPS-induced activation
of MAPK and NF-κB signaling pathways and the downstream upregulation of multiple
proinflammatory factors. Moreover, peak effects at the highest concentration (100 µg/mL)
were comparable to those of aspirin and were not associated with any substantial reduction
in cell viability (Figure 2), while the higher concentrations (125 and 150 µg/mL) caused a
reduction in cell viability (Table S1).
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Figure 6. Both DJ and DJ526 rice callus extracts inhibited LPS-induced activation of MAPK and NF-κB
signaling pathways in RAW264.7 cells. (a) Representative western blots. (b–d) Densitometric analyses
of (b) p-NF-κB p65 protein expression, (c) p-ERK 1/2 protein expression, and (d) p-p38 protein
expression. The experiment was performed in duplicate. Data are presented as mean ± standard
deviation. Protein expression levels in cells treated with LPS alone (“a”) are the reference values for
statistical comparison. Letters (a–c) indicate significant differences (p < 0.05) between treatments
(where a > b > c).

4. Discussion

Resveratrol exerts anti-inflammatory effects through several signaling pathways, such
as NF-κB, MAPK, and the arachidonic acid pathway [39–41]. Arachidonic acid pathway
inhibition plays a major role in the anti-inflammatory activity of resveratrol [41,42]. Resver-
atrol inhibits the activity of COX-1, leading to a reduction in prostaglandin production [43].
In PMA-treated human mammary epithelial cells, resveratrol directly inhibits the activity
of COX-2, leading to the inhibition of PGE2 production [44]. Therefore, resveratrol inhibits
inflammatory responses through the arachidonic acid pathway by suppressing the activity
of COX-1 and COX-2. The activation of NF-κB by LPS leads to the release of inflammatory
mediators such as pro-inflammatory cytokines and NO [45]. Resveratrol decreased the
expression of TLR-4 (the LPS-associated receptor), leading to the reduction of IL-6, iNOS,
and NO by preventing the translocation of NF-κB p65 to the nucleus [46]. Resveratrol
is able to suppress the inflammatory response by blocking the phosphorylation protein
expression of p65 and IκB from the NF-κB signaling as well as phosphorylation of p38 and
ERK from MAPK signaling under mastitis conditions [47].

Introduction of the resveratrol synthesis enzyme gene STS from peanut into the
genome of Dongjin rice (creating the DJ526 line) markedly enhanced the concentrations of
resveratrol and the resveratrol metabolite piceid in both seeds and calluses induced and ex-
panded using 2N6 and 2MS-NO3-free liquid media, respectively. Callus induction dramati-
cally enhanced piceid content to 85.43 ± 3.44 µg/g dry weight from 4.72 ± 0.02 µg/g dry
weight in DJ526 rice seeds or 17.10 ± 0.73-fold, and resveratrol content to 3.94 ± 0.02 µg/g
dry weight from 2.605 ± 0.001 µg/g dry weight in DJ526 seeds or 1.52 ± 0.01-fold [32].
This enrichment markedly enhanced the anti-inflammatory activity of DJ526 callus ex-
tract compared to DJ callus extract. Thus, these DJ526-derived calluses are an excellent
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source of anti-inflammatory resveratrol and piceid for the treatment or prevention of
inflammatory diseases.

Based on the demonstrated anti-inflammatory efficacy of DJ526 rice seed extract en-
riched in resveratrol and piceid [32] and the further enrichment observed in the extract from
callus, we predicted that the DJ526 callus extract would suppress LPS-induced inflamma-
tory activity with high potency. Thus, DJ526 rice callus extract is essentially noncytotoxic
within the effective anti-inflammatory range. Further, these anti-inflammatory effects
were substantially greater than those of DJ extracts, suggesting that resveratrol and piceid
enrichment augment the anti-inflammatory activity of endogenous rice phytochemicals.

Macrophages exhibit different phenotypes at different stages of the inflammatory
response [48]. Macrophages have at least two different polarizations, the classical (M1)
and alternative (M2) [49,50]. M1 and M2 macrophages can provide for their biological
activities by secreting different cytokines and effector molecules [51]. The activation of
M1 macrophages is associated with cytokine secretion for antigen defense, including anti-
bacterial, anti-viral, and anti-tumor functions [52]. Treatment of DJ526 (without LPS) on
macrophage cells significantly increased the expression of pro-inflammatory cytokines
such as COX-2, IL-1β, IL-6, and TNF-α (Figure S4 and Table S2). The activation of M2
macrophages relates to the natural inflammation resolution. Therefore, M2 macrophages
are usually mentioned as having repair or anti-inflammatory functions [53]. Numerous
studies have reported that LPS activates the macrophage inflammatory response [54–56].
Lipopolysaccharide is recognized by TLR-4 and MD-2, which are abundantly expressed by
macrophages and other innate immune cells [57–59], and stimulation of these receptors
activates intracellular cascades such as MAPK and NF-κB signaling pathways. These
activated pathways in turn upregulate the expression levels of enzymes that generate
proinflammatory factors, such as iNOS, the enzyme generating NO, and COX-2, an enzyme
producing prostaglandins such as PGE2, as well as proinflammatory cytokines like IL-
1β. All of these proinflammatory changes were dose-dependently suppressed by DJ526
rice callus extract and less potently by DJ rice callus extract. Moreover, the reductions
evoked by DJ526 callus extract were significantly (p = 0.01) correlated with piceid and
resveratrol contents according to Pearson’s correlation analysis [TLR-4 (r = −0.92830), iNOS
(r = −0.91994), COX-2 (r = −0.91493), IL-1β (r = −0.94282), IL-6 (r = −0.90036), and TNF-α
(r = −0.96397)] (Figure S5).

These results are consistent with the report by [60] that LPS activates macrophages via
cell-surface TLR-4, leading to enhanced production and release of inflammatory cytokines
such as TNF-α and IL-6, while resveratrol at 25 µM significantly downregulated the
expression of TLR-4, TNF-α, and IL-6 at both mRNA and protein levels [60]. Zong et al. [61]
also reported that 10 µM resveratrol significantly suppressed TNF-α, COX-2, IL-1β, and
iNOS protein and mRNA expression levels, as well as the production of NO and PGE2.
Similarly, Bigagli et al. [62] reported that 5 and 10 µM resveratrol significantly reduced
the production of NO and PGE2 by LPS-stimulated RAW264.7 cells. Here, we show
that a rich natural source of resveratrol (DJ526 rice callus) can suppress LPS-induced
macrophage activation without inherent cytotoxicity. Moreover, the decreases in NO
and PGE2 production were again significantly (p = 0.01) correlated with the amount of
piceid and resveratrol contained in DJ526 callus extract [r = −0.94071 for NO production
(Figure S6) and r = −0.97022 for PGE2 production (Figure S7)].

Both the NF-κB and MAPK pathways are activated during inflammation, as evidenced
by the phosphorylation of critical pathway signaling proteins [63]. In turn, these pathways
directly or indirectly activate proinflammatory genes [60,64–66], including iNOS, TNF-α,
IL-6, IL-1β, and COX-2 [67–70], that can facilitate the elimination of infectious pathogens
and damaged cells [71,72]. The phosphorylation levels of proteins involved in the NF-
κB and MAPK pathways were substantially reduced by resveratrol-enriched callus rice
extract in LPS-stimulated RAW264.7 cells. The precise mechanisms for these effects warrant
further study.
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5. Conclusions

We demonstrate that piceid and resveratrol enriched in DJ526 rice seed are further
enriched by callus induction and that callus extract can potently suppress the LPS-induced
inflammatory activation of RAW264.7 macrophages. These anti-inflammatory effects
included suppression of MAPK and NF-κB pathway activity and downregulation of IL-1β,
IL-6, TNF-α, TLR-4, COX-2, iNOS, NO, and PGE2 expression and/or release. We conclude
that the piceid and resveratrol contents in DJ526 rice seed can be increased by callus
induction and that callus extract is a potent and nontoxic anti-inflammatory.
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